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On the Discovery of the Photograph of
S. Ramanujan, F.R.S.

S. CHANDRASEKHAR, F.R.S.

Hardy was to give a series  of twelve lectures on subjects suggested by
Ramanujan’s life and work at the Harvard Tercentenary Conference  of Arts
and Sciences in the fa11  of 1936. In the spring of that year, Hardy told me that
the only photograph of Ramanujan that was available at that time was the
one  of him in cap and gown, “which make him look ridiculous.” And he asked
me whether 1 would try to secure,  on my next visit to India, a better
photograph which he might include  with the published version of his lectures.
It happened that 1 was in India  that same  year from July to October. 1 knew
that Mrs. Ramanujan was living somewhere in South India, and 1 tried to find
where she was living, at first without success. On the day prior to my
departure for England in October of 1936, 1 traced  Mrs. Ramanujan to a
house  in Triplicane, Madras. 1 went to her house  and found her living under
extremely modest circumstances. 1 asked her if she had any  photograph of
Ramanujan which 1 might give to Hardy. She told me that the only one  she
had was the one  in his passport  which he had secured in London early in
1919. 1 asked her for the passport  and found that the photograph was
sufficiently good (even after seventeen years) that one  could make a negative’
and copies. It is this photograph which appears in Hardy’s book, Ramanujan,
Twelve Lectures on Subjects Suggested by His Life  and Work (Cambridge
University Press, 1940). It is of interest  to recall  Hardy’s reaction  to the
photograph: “He looks rather il1 (and no doubt was very  ill): but he looks a11
over  the genius he was.”

’ It is this photograph which has served as the basis for all later  photographs, paintings, etchings,
and Paul Granlund’s bust of Ramanujan; and the enlargements are copies of the frontispiece  in
Hardy’s book.



from  the Uniuersity Library,  Dundee

B. M. Wilson devoted much  of his short career  to Ramanujan’s work. Along
with P. V. Seshu Aiyar and G. H. Hardy, he is one  of the editors of
Ramanujan’s Collected  Papers. In 1929, Wilson and G. N. Watson began the
task of editing Ramanujan’s notebooks. Partially due to Wilson%  premature
death in 1935 at the age of 38, the project  was never completed. Wilson was in
his second year as Professor of Mathematics at The University of St. Andrews
in Dundee when he entered hospital in March,  1935 for routine surgery. A
blood infection took his life two weeks later.  A short account  of Wilson’s life
has been written by H. W. Turnbull [Il].



Preface

Ramanujan’s notebooks were compiled  approximately in the years
1903-1914, prior to his departure for England.  After Ramanujan’s death in
1920, many  mathematicians, including G. H. Hardy, strongly urged that
Ramanujan’s notebooks be edited and published. In fact, original plans called
for the publishing of the notebooks along with Ramanujan’s Collected  Papers
in 1927, but financial considerations prevented this. In 1929, G. N. Watson
and B. M. Wilson began the editing of the notebooks, but thetask  was never
completed. Finally, in 1957 an unedited photostat edition of Ramanujan’s
notebooks was published.

This volume is the first of three volumes devoted to the editing of
Ramanujan’s notebooks. Many of the results found herein are very  well
known, but many  are new. Some results are rather easy to prove, but others
are established only with great difficulty.  A glance  at the contents
indicates a wide diversity of topics examined by Ramanujan. Our goal has
been to prove each  of Ramanujan’s theorems. However, for results that are
known, we generally refer to the literature where proofs may  be found.

We hope that this volume and succeeding volumes Will further enhance  the
reputation of Srinivasa Ramanujan, one  of the truly great figures in the
history of mathematics. In particular, Ramanujan’s notebooks contain new,
interesting, and profound theorems that deserve  the attention of the math-
ematical public.

Urbana, Illinois
June, 1984
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Introduction

Srinivasa Ramanujan occupies  a central but singular position in mathemat-
ical  history. The pathway to enduring, meaningful, creative mathematical
research is by no means  the same  for any  two individuals, but for Ramanujan,
his path was strewn with the impediments of poverty, a lack  of a university
education,  the absence of books and journals, working in isolation in his most
creative years, and an early death at the age of 32. Few, if any,  of his
mathematical peers had to encounter SO many formidable obstacles.

Ramanujan was born on December 22,1887,  in Erode, a town in southern
India. As was the custom at that time, he was born in the home of his
materna1 grandparents. He grew up in Kumbakonam where his father was an
accountant for a cloth merchant. Both Erode and Kumbakonam are in the
state of Tamil Nadu with Kumbakonam a distance of 160 miles south-
southwest of Madras and 30 miles from the Bay of Bengal. Erode lies 120
miles west of Kumbakonam. At the time of Ramanujan’s .birth,  Kumba-
konam had a population of approximately 53,000.

Not too much  is known about Ramanujan’s childhood, although some
stories demonstrating his precocity survive. At the age of 12, he borrowed
Loney’s Trigonometry [l] from an older student and completely mastered its
contents. It should be mentioned that this book contains considerably more
mathematics than is suggested by its title. Topics such  as the exponential
function,  logarithm of a complex  number, hyperbolic functions,  infinite
products,  and infinite series,  especially in regard to the expansions of
trigonometric functions,  are covered in some detail. But it was Car?s  A
Synopsis of Elementary Results in Pure Mathematics, now published under a
different title [l],  that was to have its greatest influence on Ramanujan. He
borrowed this book from the local Government College library at the age of
15 and was thoroughly captivated by its contents. Carr was a tutor at
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Cambridge, and his Synopsis is a compilation of about 6000 theorems which
served as the basis of his tutoring. Much  on calculus  and geometry but
nothing on the theory of functions of a complex variable or elliptic functions
is to be found in Carr’s book. Ramanujan never  learned about functions of a
complex variable, but his contributions to the theory of elliptic and modular
functions are profound. Very  little space  in Carr’s Synopsis is devoted to
proofs which, when they are given, are usually very  brief and sketchy.

In December, 1903, Ramanujan took the matriculation examination of the
University of Madras and obtained a “first class”  place. However, by this
time, he was completely absorbed in mathematics and would not study any
other subject. In particuiar, his failure to study English and physiology
caused  him to fail his examinations at the end of his first year at the
Government College in Kumbakonam. Four years later,  Ramanujan entered
Pachaiyappa’s College in Madras, but again he failed the examinations at the
end of his first year.

Not much  is known about Ramanujan’s life in the years 1903-1910, except
for his two attempts to obtain a college  education and his marriage in 1909 to
Srimathi Janaki. During this time, Ramanujan devoted himself almost
entirely to mathematics and recorded his results in notebooks. He also was
evidently seriously il1 at least once.

Because he was now married, Ramanujan found it necessary to secure
employment. SO in 1910, Ramanujan arranged a meeting with V. R. Aiyar,
the founder of the Indian Mathematical Society. At that time, V. R. Aiyar was
a deputy collecter in the Madras civil service, and Ramanujan asked him for
a position in his office. After perusing the theorems in Ramanujan’s
notebooks, V. R. Aiyar wrote P. V. Seshu Aiyar, Ramanujan’s mathematics
instructor while a student at the Government College in Kumbakonam. P. V.
Seshu Aiyar, in turn, sent Ramanujan to R. Ramachandra Rao, a relatively
wealthy mathematician. The subsequent meeting was eloquently described
by R. Ramachandra Rao [l] in his moving tribute to Ramanujan. The
content of this memorial and P. V. Seshu Aiyar’s [ 1)  sympathetic obituary are
amalgamated into a single biography inaugurating Ramanujan’s Collected
Papers [15].  It suffices  now to say  that R. Ramachandra Rao was indelibly
impressed with the contents of Ramanujan’s notebooks. He unhesitatingly
offered Ramanujan a monthly stipend SO that he could continue his
mathematical research without worrying about food for tomorrow.

Not wishing to be a burden for others and feeling inadequate because he
did not possess a job, Ramanujan accepted  a clerical  position in the Madras
Port Trust Office on February 9, 1912. This was a fortunate event in
Ramanujan’s career.  The chairman of the Madras Port Trust Office was a
prominent English engineer Sir Francis Spring, and the manager was a
mathematician S. N. Aiyar. The two took a very  kindly interest  in
Ramanujan’s welfare and encouraged  him to communicate  his mathematical
discoveries to English mathematicians.

C. P. Snow has revealed, in his engaging collection of biographies [l] and
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in his foreword to Hardy’s book [17],  that Ramanujan wrote two English
mathematicians before he wrote G. H. Hardy. Snow does  not reveal their
identities, but A. Nandy [Il,  p. 1471  claims  that they are Baker and Popson.
Nandy evidently obtained this information in a conversation with J. E.
Littlewood. The first named  mathematician is H. F. Baker, who was G. H.
Hardy’s predecessor as Cayley Lecturer at Cambridge and a distinguished
analyst and geometer. As Rankin [2]  has indicated, the second named  by
Nandy is undoubtedly E. W. Hobson, a famous  analyst and Sadlerian
Professor of Mathematics at Cambridge. According to Nandy, Ramanujan’s
letters were returned to him without comment. The many  of us who have
received letters from “crackpot” amateur mathematicians claiming to have
proved Fermat’s last theorem or other famous  conjectures cari  certainly
empathize with Baker and Hobson in their grievous errors. Ramanujan also
wrote M. J. M. Hi11 through C. L. T. Griffith, an engineering professor at the
Madras Engineering College who took a great interest  in Ramanujan’s
welfare. Rankin [l] has pointed out  that Hi11 was undoubtedly Griffith’s
mathematics instructor at University College, London, and this was obvi-
ously why Ramanujan chose to Write Hill. Hi11 was more sympathetic to
Ramanujan’s work, but other pressing matters prevented him from giving it a
more scrutinized examination. Fortunately, Hill’s reply has been preserved;
the full text may  be found in a compilation edited by Srinivasan [l].

On January 16, 1913, Ramanujan wrote the famed  English mathematician
G. H. Hardy and “found a friend in you  who views my labours sympatheti-
cally” [15, p. xxvii]. Upon initially receiving this letter, Hardy dismissed it.
But that evening, he and Littlewood retired to the chess  room over  the
commons  room at Trinity College. Before they entered the room, Hardy
exclaimed that this Hindu correspondent was either a crank  or a genius. After
29 hours, they emerged from the chess  room with the verdict-“genius.”
Some of the results contained in the letter were false, others were well known,
but many  were undoubtedly new and true. Hardy [20, p. 91 later concluded,
about a few continued fraction formulae in Ramanujan’s first letter, “if they
were not true, no one  would have had the imagination to invent them. Finally
(you must remember that 1 knew nothing whatever about Ramanujan, and
had to think of every possibility), the writer must be completely honest,
because great mathematicians are commoner than thieves or humbugs of
such  incredible skill.” Hardy replied without delay and urged Ramanujan to
corne to Cambridge in order that his superb mathematical talents might
corne to their fullest fruition. Because of strong Brahmin caste convictions
and the refusa1 of his mother to grant permission, Ramanujan at first declined
Hardy’s invitation.

But there was perhaps still another reason why Ramanujan did not wish to
sail  for England.  A letter from an English meteorologist, Sir Gilbert Walker,
to the University of Madras helped procure Ramanujan’s first officia1
recognition; he obtained from the University of Madras a scholarship of 75
rupees per month beginning on May 1, 1913. Thus, finally, Ramanujan
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possessed a bona fide  academic position that enabled him to devote  a11  of his
energy to the pursuit of the prolific mathematical ideas flowing from his
creative  genius.

At the beginning of 1914, the Cambridge mathematician E. H. Neville
sailed to India to lecture in the winter term at the University of Madras. One
of Neville3 tasks was to convince Ramanujan that he should corne to
Cambridge. Probably more important than the persuasions of Neville were
the efforts of Sir Francis Spring, Sir Gilbert Walker, and Richard Littlehailes,
Professor of Mathematics at Madras. Moreover, Ramanujan’s mother con-
sented to her son’s wishes to journey to England. Thus, on March  17, 1914,
Ramanujan boarded a ship in Madras and sailed for England.

The next three years were happy and productive ones  for Ramanujan
despite his difficulties in adjusting to the English climate and in obtaining
suitable vegetarian food. Hardy and Ramanujan profited immensely from
each  other’s ideas, and it was probably only with a little exaggeration that
Hardy [20, p. 111  proclaimed “he was showing me half a dozen  new ones
(theorems) almost every day.” But after three years in England, Ramanujan
contracted  an illness that was to eventually take his life three years later.  It
was thought by some that Ramanujan was infected  with tuberculosis,  but as
Rankin [l],  [2]  has pointed out,  this diagnosis appears doubtful. Despite a
loss of weight and energy, Ramanujan continued his mathematical activity  as
he attempted to regain his health in at least five sanatoria and nursing homes.
The war prevented Ramanujan from returning to India. But finally it was
deemed safe  to travel, and on February 27, 1919, Ramanujan departed for
home. Back  in India, Ramanujan devoted his attention to q-series  and
produced what has been called his “lost notebook.” (See Andrews’ paper [2]
for a description of this manuscript.) However, the more favorable climate
and diet did not abate Ramanujan’s illness. On April 26, 1920, he passed
away after spending his last month in considerable pain. It might be
conjectured  that Ramanujan regretted his journey to England where he
contracted  a terminal illness. However, he regarded his stay in England as the
greatest experience  of his life, and, in no way, did he blame his experience
in England for the deterioration of his health. (For example, see Neville3
article [l, p. 295-J.)

Our account  of Ramanujan’s life has been brief. Other descriptions may  be
found in the obituary notices of P. V. Seshu Aiyar [l],  R. Ramachandra Rao
[l],  Hardy [9],  [lO],  [ll],  [21, pp. 702-7201,  and P.V. Seshu Aiyar,
R. Ramachandra Rao, and Hardy in Ramanujan’s Collected  Papers  [15];  the
lecture of Hardy in his book Ramanujan [20, Chapter 11; the review by
Morde11 [l];  an address by Neville [l];  the biographies by Ranganathan [l]
and Ram [l];  and the reminiscences  in a commemorative  volume edited by
Bharathi [ 11.

When Ramanujan died, he left behind three notebooks, the aforemen-
tioned “lost notebook” (in fact, a sheaf of approximately 100 loose pages), and
other manuscripts. (See papers of Rankin [l] and K. G. Ramanathan [l] for



Introduction 5

descriptions of some of these manuscripts.) The first notebook was left with
Hardy when Ramanujan returned to India in 1919. The second and third
notebooks were donated to the library at the University of Madras upon his
death. Hardy subsequently gave the first notebook to S. R. Ranganathan, the
librarian of the University of Madras who was on leave at Cambridge
University for one  year. Shortly thereafter, three handwritten copies of a11
three notebooks were made by T. A. Satagopan at the University of Madras.
One  copy  of each  was sent back  to Hardy.

Hardy strongly urged that Ramanujan’s notebooks be published and
edited. In 1923, Hardy wrote a paper [ 121,  [ 18, pp. 505-5 161  in which he gave
an overview of one  chapter in the first notebook. This chapter pertains almost
entirely to hypergeometric series,  and Hardy pointed out that Ramanujan
discovered most of the important classical results in the theory as well as
many  new theorems. In the introduction to his paper, Hardy remarks that “a
systematic verification  of the results (in the notebooks) would be a very  heavy
undertaking.” In fact, in unpublished notes left by B. M. Wilson, he reports a
conversation with Hardy in which Hardy told him that the writing of this
paper [12]  was a very  difficult  task to which he devoted three to four full
months of hard work. Original plans called for the notebooks to be published
together with Ramanujan’s collected  published works. However, a lack  of
funds prevented the notebooks from being published with the Collected
Papers in 1927.

G. N. Watson and B. M. Wilson agreed in 1929 to edit Ramanujan’s
notebooks. When they undertook the task, they estimated that it would take
them five years to complete  the editing. The second notebook is a revised,
enlarged edition of the first notebook, and the third notebook has but 33
pages. Thus, they focused their attention on the second notebook. Chapters
2-13 were to be edited by Wilson, and Watson was to examine Chapters
14-21. Unfortunately, Wilson passed away prematurely in 1935 at the age of
38. In the six years that Wilson devoted to the editing, he proved a majority of
the formulas in Chapters 2-5, the formulas in the first third of Chapter 8, and
many  of the results in the first half of Chapter 12. The remaining chapters
were essentially left untouched. Watson’s interest  in the project  evidently
waned in the late 1930’s.  Although he examined little in Chapters 14 and 15,
he did establish a majority of the results in Chapters 16-21. Moreover,
Watson wrote several papers which were motivated by findings in the
notebooks.

For several years no progress was made in either the publishing or editing
of the notebooks. In 1949, three photostat copies of the notebooks were made
at the University of Madras. At a meeting of the Indian Mathematical Society
in Delhi in 1954, the publishing of the notebooks was suggested. Finally, in
1957, the Tata Institute of Fundamental Research in Bombay published a
photostat edition [16]  of the notebooks in two volumes. The first volume
reproduces Ramanujan’s first notebook, while the second contains the second
and third notebooks. However, there is no commentary whatsoever on the
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contents. The reproduction is very  clearly and faithfully executed. If one  side
of a page is left blank in the notebooks, it is left blank in the facsimile  edition.
Ramanujan’s scratch work is also faithfully reproduced. Thus, on one  page
we find only the fragment, “If I is positive.” The printing was done  on heavy,
oversized pages with generous margins. Since  some pages of the original
notebooks are frayed or faded, the photographie  reproduction is especially
admirable.

Except  for Chapter 1, which probably dates back  to his school days,
Ramanujan began to record his results in notebooks in about 1903. He
probably continued this practice until 1914 when he left for England.  From
biographical accounts, it appears that other notebooks of Ramanujan once
existed. It seems likely that these notebooks were preliminary versions of the
three notebooks which survive.

The first of Ramanujan’s notebooks was written in what Hardy called “a
peculiar green ink.” The book has 16 chapters  containing 134 pages.
Following these 16 chapters  are approximately 80 pages of heterogeneous
unorganized material. At first, Ramanujan wrote on only one  side  of the page.
However, he then began to use the reverse sides  for “scratch work” and for
recording additional discoveries, starting at the back  of the notebook and
proceeding forward. Most of the material on the reverse sides  has been added
to the second notebook in a more organized fashion. The chapters  are
somewhat organized into topics, but often there is no apparent connection
between adjacent sections of material in the same  chapter.

The second notebook is, as mentioned earlier, a revised, enlarged edition
of the first notebook. Twenty-one  chapters  comprising 252 pages are found in
the second notebook. This material is followed by about 100 pages of
disorganized results. In contrast  to the first notebook, Ramanujan writes on
both sides  of each  page in the second notebook.

The third notebook contains 33 pages of mostly unorganized material.
We shall now offer some general remarks about the contents of the

notebooks. Because the second notebook supersedes the first, unless other-
wise stated, a11  comments  shah  pertain to the second notebook. The papers of
Watson [2] and Berndt [3]  also give surveys of the contents.

If one  picks  up a copy  of the notebooks and casually thumbs through the
pages, it becomes immediately clear that infinite series  abound throughout
the notebooks. If Ramanujan had any  peers in the forma1 manipulation of
infinite series,  they were only Euler and Jacobi.  Many of the series  do not
converge, but usually such  series  are asymptotic series.  On only very  rare
occasions does  Ramanujan state conditions for convergence or even indicate
that a series  converges or diverges. In some instances, Ramanujan indicates
that a series  (usually asymptotic) diverges by appending the words “nearly”
or “very nearly.” It is doubtful that Ramanujan possessed a sound grasp of
what an asymptotic series  is. Perhaps he had never heard of the term
“asymptotic.” In fact, it was not too many  years earlier that the foundations
of asymptotic series  were laid by Poincaré and Stieltjes. But despite this
possible shortcoming, some of Ramanujan’s deepest and most interesting
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results are asymptotic expansions. Although Ramanujan rarely indicated
that a series  converged or diverged, it is undoubtedly true that Ramanujan
generally knew when a series  converged and when it did not. In Chapter 6
Ramanujan developed a theory of divergent series  based upon the
Euler-Maclaurin summation formula. It should be pointed out  that Raman-
ujan appeared to have little interest  in other methods of summability, with a
couple of examples in Chapter 6 being the only evidence  of such  interest.

Besides basing his theory of divergent series  on the Euler-Maclaurin
formula, Ramanujan employed the Euler-Maclaurin formula in a variety of
ways. See Chapters 7 and 8, in particular. The Euler-Maclaurin formula was
truly one of Ramanujan’s favorite tools. Not surprisingly then, Bernoulli
numbers appear in several of Ramanujan’s formulas. His love and affinity for
Bernoulli numbers is corroborated by the fact  that he chose this subject for
his first published paper [4].

Although series  appear with much  greater frequency, integrals and
continued  fractions are plentiful in the notebooks. There are only a few
continued  fractions in the first nine chapters,  but later chapters  contain
numerous continued fractions. Although Ramanujan is known primarily as a
number theorist, the notebooks contain very  little number theory.
Ramanujan’s contributions to number theory in the notebooks are found
chiefly in Chapter 5, in the heterogeneous material at the end of the second
notebook, and in the third notebook.

The notebooks were originally intended primarily for Ramanujan’s own
persona1 use and not for publication. Inevitably then, they contain llaws  and
omissions. Thus,  notation is sometimes not explained and must be deduced
from the context,  if possible. Theorems and formulas rarely have hypotheses
attached  to them, and only by constructing a proof are these hypotheses
discernable in many cases. Some of Ramanujan’s incorrect “theorems” in
number theory found in his letters to Hardy have been well publicized. Thus,
perhaps some think that Ramanujan was prone to making errors. However,
such  thinking is erroneous. The notebooks contain scattered minor errors
and misprints, but there are very  few serious errors. Especially if one  takes
into account  the roughly hewn nature of the material and his frequently
forma1 arguments, Ramanujan’s accuracy is amazing.

On the surface, several theorems in the notebooks appear to be incorrect.
However, if proper  interpretations are given to them, the proposed theorems
generally are correct. Especially in Chapters 6 and 8, formulas need to be
properly reinterpreted. We cite one  example. Ramanujan offers several
theorems about 1 1/x,  where x is any  positive real number. First, we must be
aware that, in Ramanujan’s notation, 1 1/x = xnsx l/n. But further reinter-
pretation is still needed, because Ramanujan frequently intends c 1/x to
mean  $(x + 1) + y, where $(x)  = r’(x)/r(x)  and y denotes Euler’s constant.
Recall  that if x is a positive integer, then $(x + 1) + y = xi=  i l/n. But in other
instances, 1 1/x may  denote Log x + y. Recall  that as x tends to CO,  both
$(x  + 1) +Y and Cnsx l/n are asymptotic to Log x + y.

The notebooks contain very  few proofs, and those proofs that are given are
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only very  briefly sketched.  In contrast  to a previous opinion expressed by the
author [3],  there appear to be more proofs in the first notebook than in the
second. They also  are more frequently found in the earlier portions of the
notebooks; the later chapters  contain virtually no indications of proofs. That
the notebooks contain few proofs should not be too surprising. First, as
mentioned above, the notebooks chiefly served Ramanujan as a compilation
of his results; he undoubtedly felt that he could reproduce any  of his proofs if
necessary. Secondly, paper was scarce and expensive for a poor, uneducated
Hindu who had no means  of support for many  of his productive years. As was
the case for most Indian students at that time, Ramanujan worked out most
of his mathematics on a slate. One advantage of being employed at the
Madras Port Trust Office was that he could use excess wrapping paper for his
mathematical research. Thirdly, since  Car?s  Synopsis was Ramanujan’s
primary source of inspiration, it was natural that this compendium should
serve as a mode1 for compiling his own results.

The nature of Ramanujan’s proofs has been widely discussed and debated.
Many of his biographers have written that Ramanujan’s formulas were
frequently inspired by Goddess Namagiri in dreams. Of course, such  a view
cari  neither be proved nor disproved. But without discrediting any  religious
thinking, we adhere to Hardy%  opinion that Ramanujan basically thought
like most mathematicians. In other words, Ramanujan proued  theorems like
any  other serious mathematician. However, his proofs were likely to have
severe gaps caused  by his deficiencies. Because of the lack  of sound, rigorous
training, Ramanujan’s proofs were frequently formal.  Often limits were taken,
series  were manipulated, or limiting processes were inverted without justifi-
cation. But, in reality, this might have been one  of Ramanujan’s strengths
rather than a weakness. With a more conventional education,  Ramanujan
might not have depended upon the original, forma1 methods of which he was
proud and rather protective. In particular, Ramanujan’s amazingly fertile
mind was functioning most creatively in the forma1 manipulation of series.  If
he had thought like a well-trained mathematician, he would not have
recorded many  of the formulas which he thought he had proved but which, in
fact, he had not proved. Mathematics would be poorer today if history had
followed such  a course. We are not saying that Ramanujan could not have
given rigorous proofs had he had better training. But certainly Ramanujan’s
prodigious output of theorems would have dwindled had he, with sounder
mathematical training, felt the need to provide  rigorous proofs by con-
temporary standards. As an example, we cite Entry 10 of Chapter 3 for which
Ramanujan laconically indicated a proof.  His “proof,”  however, is not even
valid for any  of the examples which he gives to illustrate his theorem. Entry
10 is an extremely beautiful, useful, and deep asymptotic formula for a general
class  of power series.  It would have been a sad loss for mathematics if
someone had told Ramanujan to not record Entry 10 because his proof was
invalid. Also in this connection,  we briefly mention some results in Chapter 8
on analogues of the gamma function.  It seems clear that Ramanujan found
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many  of these theorems by working with divergent series.  However,
Ramanujan’s theorems cari  be proved rigorously by manipulating the series
where they converge and then using analytic continuation. Thus, just one
concept outside of Ramanujan’s repertoire is needed to provide  rigorous
proofs for these beautiful theorems analogizing properties of the gamma
function.

TO be sure, there are undoubtedly some instances when Ramanujan did
not have a proof  of any  type. For example, it is well known that Ramanujan
discovered the now famous  Rogers-Ramanujan identities in India but could
not supply a proof until several years later  after he found them in a paper of
L. J. Rogers, As Littlewood [l],  [2,  p. 16041  wrote, “If a significant  piece  of
reasoning occurred somewhere, and the total mixture of evidence  and
intuition gave him certainty, he looked no further.”

In the sequel,  we shall indicate Ramanujan’s proofs when we have been
able to ascertain them from sketches provided by him or from the context  in
which the theorems appear. We emphasize, however, that for most of his
work, we have no idea how Ramanujan made his discoveries. In an interview
conducted by P. Nandy [l] in 1982 with Ramanujan’s widow S. Janaki, she
remarked that her husband was always fearful that English mathematicians
would steal his mathematical secrets while he was in England. It seems that
not only did English mathematicians not steal his secrets, but generations of
mathematicians since  then have not discovered his secrets either.

Hardy [20,  p. 101  estimated that two-thirds of Ramanujan’s work in India
consisted  of rediscoveries. For the notebooks, this estimate appears to be too
high. However, it would be difficult  to precisely appraise the percentage of
new results in the notebooks. It should also be remarked that some original
results in the notebooks have since  been rediscovered by others, usually
without knowledge that their theorems are found in the notebooks.

Chapter 1 has but 8 pages, while Chapters 2-9 contain either 12 or 14
pages per chapter.  The number of theorems, corollaries, and examples in each
chapter is listed in the following table.

Chapter Number of Results

1 43
2 68
3 86
4 50
5 94
6 61
1 110
8 108
9 139

Total 159



10 Introduction

In this book, we shall either prove each  of these 759 results, or we shall
provide references to the literature where proofs may be found. In a few
instances, we were unable to interpret the intent of the entries.

In the sequel,  we have adhered to Ramanujan’s usage of such  terms as
“corollary” and “example.” However, often these designations are incorrect.
For example, Ramanujan’s “corollary” may be a generalization of the
preceding result. An “example” may be a theorem. SO that the reader with a
copy  of the photostat edition of the notebooks cari more easily follow our
analysis, we have preserved Ramanujan’s notation as much as possible.
However, in some instances, we have felt that a change in notation is
advisable.

Not surprisingly, several of the theorems that Ramanujan communicated
in his two letters of January 16, 1913, and February 27, 1913, to Hardy are
found in his notebooks. Altogether about  120 results were mailed to Hardy.
Unfortunately, one  page of the first letter was lost, but a11 of the remaining
theorems have been printed with Ramanujan’s collected papers [15].  We
have recorded below those results from the letters that are also found in
Chapters l-9 of the second notebook or the Quarterly Reports. Considerably
more theorems in Ramanujan’s letters were extracted from later chapters in
the notebooks.

Location in Collected  Papers

p. xxiv, (2), parts (b), (c)
p.  xxv, IV, (4)
p. xxvi, VI, (1)
p. 350, VII, (1)
p. 351, lines  1, 3

Location in Notebooks or Reports

Chapter 5, Section 30, Corollary 2
First report, Example (d)
Chapter 7, Section 18, Corollary
Chapter 9, Section 27
Chapter 6, Section 1, Example 2

Many of Ramanujan’s papers have their geneses in the notebooks. In a11
cases, only a portion of the results from each  paper are actually found in the
notebooks. Also some of the problems that Ramanujan submitted to the
Journal of the Indian Mathematical Society are ensconced in the notebooks.
We list below those papers and problems with connections to Chapters l-9
or the Quarterly Reports. Complete bibliographie  details are found in the list
of references.

A condensed  summary of Chapters l-9 Will now be provided. More
complete descriptions are given at the beginning of each  chapter.  Because
each  chapter contains several diverse topics, the chapter titles are only
partially indicative of the chapters’  contents.

Magie squares cari  be traced back  to the twelfth or thirteenth Century in
India  and have long been popular amongst Indian school boys. In contrast to
the remainder of the notebooks, the opening chapter on magie  squares
evidently arises from Ramanujan’s early school days. Chapter 1 is quite
elementary and contains no new insights on magie  squares.
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Paper Location in Notebooks

Some properties of Bernoulli numbers
On question 330 of Prof. Sanjana
Irregular numbers

On the integral
s

X  tan’  t
~ dt

0 t

On the sum of the square roots of
the first n natural numbers

Some definite integrals

Some formulae in the analytic
theory of numbers
Question 260
Question 261
Question 321
Question 386
Question 606
Question 642

Chapter 5
Chapter 9, Entries  4(i), (ii)
Chapter 5

Chapter 2 , Section 11
Chapter 9 , Section 1 7

Chapter 7 , Section 4, Corollary 4

Chapter 2 , Section 11

Chapter 4 , Entries 11, 12
Quarterly Reports

Chapter 7 , Entry 13
Chapter 2 , Section 4, Corollary
Chapter 2 , Section 11, Examples 3, 4
Chapter 8 , Entry 16
First Quarterly Report, Example (d)
Chapter 9 , Section 6, Example (vi)
Chapter 9 , Section 8

Chapter 2 already evinces  Ramanujan’s cleverness. Ramanujan examines
several finite and infinite series  involving arctan  x. Especially noteworthy are
the curious  and fascinating Examples 9 and 10 in Section 5 which follow from
ingenious applications of the addition formula for arctan  x. The sum

<p(a) = 1 + 2 f
1

k=l (ak)3 - ak

is examined in detail in Chapter 2 and is revisited in Chapter 8.
Much  of Chapter 3 falls in the area of combinatorial analysis, although no

combinatorial problems are mentioned. The theories of Bell numbers and
single-variable Bell polynomials are developed. It might be mentioned that
Bell and Touchard  established these theories in print over  20 years after
Ramanujan had done this work. Secondly, Ramanujan derives  many  series
expansions that ordinarily would be developed via the Lagrange inversion
formula. The method that Ramanujan employed is different and is described
in his Quarterly Reports.

Like Chapter 3, Chapter 4 contains essentially two primary topics. First,
Ramanujan examines iterates of the exponential function.  This material
seems to be entirely new and deserves  additional study. Secondly, Ramanujan
describes an original, forma1 process of which he was very fond. One of the
many  applications made by Ramanujan is the main focus  of the Quarterly
Reports.
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Chapter 5 lies in the domain of number theory. Bernoulli numbers, Euler
numbers, Eulerian polynomials and numbers, and the Riemann zeta-function
c(s)  are the chief  topics covered. One  of the more intriguing results is Entry 29,
which, in fact, is false!

Ramanujan’s theory of divergent series  is set forth in Chapter 6. He
associates to each  series  a “constant.” For example, Euler’s constant y is the
“constant” for the harmonie series.  Ramanujan’s theory is somewhat flawed
but has been put on a firm foundation by Hardy [ 151.

Chapter 7 continues the subject matter of both Chapters 5 and 6. The
functional equation of i(s)  is found in disguised form in Entry 4. It is
presented in terms of Ramanujan’s extended Bernoulli numbers, and his
“proof”  is based upon his idea of the “constant” of a series.  Chapter 7 also
contains much  numerical calculation.

Analogues of the logarithm of the gamma function form the topic of most
of Chapter 8. Ramanujan establishes several beautiful analogues of Stirling’s
formula, Gauss’s  multiplication theorem, and Kummer’s formula, in partic-
ular. Essentially a11  of this material is original with Ramanujan.

Another analogue of the gamma function is studied in Chapter 9.
However, most of the chapter is devoted to the transformation of power series
which are akin to the dilogarithm. Although a11  of Ramanujan’s discoveries
about the dilogarithm are classical, his many  elegant theorems on related
functions  are generally new. This chapter contains many  beautiful series
evaluations, some new and some classical.

In 1913, Ramanujan received a scholarship of 75 rupees per month from
the University of Madras. A stipulation in the scholarship required Raman-
ujan to Write quarterly reports detailing his research. Three such  reports were
written before he departed for England,  and they have never  been published.
This volume concludes with an analysis of the content of the quarterly
reports. The first two reports and a portion of the third are concerned  with a
type of interpolation formula in the theory of integral transforms, which is
original and is discussed in Chapter 4. However, in the reports, Ramanujan
discusses his theorem in much  greater detail, provides  a “proof,”  and gives
numerous examples in illustration. His most noteworthy new finding  is a
broad generalization of Frullani’s integral theorem that has not been
heretofore observed. Using a sort of converse theorem to his interpolation
formula, Ramanujan derives  many  unusual series  expansions.

We collect  now some notation and theorems that Will be used several times
in the sequel.  We shall not employ the conventions used by Ramanujan for
the Bernoulli numbers B,,  0 2 n < 00,  but instead we employ the contempor-
ary definition found, for example, in the
S&gun  [l, p. 8041, i.e.,

We adhere to the current  convention for

compendium of Abramowitz and

1x1 < 2n. (11)

the Euler numbers E,,  0 < n < CO;
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thus, Ezn+ 1 = 0, n 2 0, while Ezn, n 2 0, is defined by

secx=~o(-t~f2nx2n,  lxl-c5,n . (12)

which again differs from the convention used by Ramanujan.
Many applications of the Euler-Maclaurin summation formula Will be

made. Versions of the Euler-Maclaurin formula may  be found in the treatises
of Bromwich [l, p. 3281, Knopp [l,  p. 5241, and Hardy [15, Chapter 133, for
example. If f has 2n + 1 continuous derivatives on [a, 81, where a and /I are
integers, then

+ k.$  &z$ {j’2k-“(/j)  -f’““-“(t-#  + Rn7
(13)

where, for n 2  0,

1 lr
R, = (2n + l)!

s
B,, + 1  (t  - Lt]  )ff2”+  l’(t) d4a (14)

where B,(x), 0 < n < CO,  denotes the nth Bernoulli polynomial. For brevity,
we sometimes put P,(x) = B,(x  - [X])/~I!.  In the sequel,  we shall frequently let
B = x, where x is to be considered large. Letting n tend to 00 in (13) then
normally produces an asymptotic series  as x tends to CO.  In these instances,
we shall Write (13) in the form

f(t) dt + c + $I-(x)  + ,tl $f,,‘2’p  “(4, (15)

as x tends to CO,  where c is a certain constant.
As usual, I denotes the gamma function.  Recall  Stirling’s formula,

I(x+1)~&xX+‘12e-X l+&+&+  ... (16)

as x tends to CO.  (See, for example, Whittaker and Watson’s text [l, p. 2531.)
At times, we shall employ the shifted factorial

(u)~=u(u+  l)(a+2)  . ..(u+k-  I)=%F,

where k is a nonnegative integer.
In the sequel,  equation numbers refer to equations in that chapter in which

reference  is made, except  for two types of exceptions. The equalities in the
Introduction are numbered (Il), (12),  etc. Secondly, when an equation from
another chapter is used, that chapter Will be specified.

In referring to the notebooks, the pagination of the Tata Institute Will be
employed. Unless otherwise stated, page numbers refer to volume 2.
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Because of the unique circumstances shaping Ramanujan’s career,
inevitable queries arise about his greatness. Here are three brief assessments
of Ramanujan and his work.

Paul Erdos has passed on to us Hardy’s persona1 ratings of mathema-
ticians. Suppose that we rate mathematicians on the basis of pure talent on a
scale  from 0 to 100. Hardy gave himself a score of 25, Littlewood 30, Hilbert
80, and Ramanujan 100.

Neville [l] began a broadcast in Hindustani in 1941 with the declaration,
“Srinivasa Ramanujan was a mathematician SO great that his name  tran-
scends  jealousies, the one  superlatively great mathematician whom India  has
produced in the last thousand years.”

In notes left by B. M. Wilson, he tells us how George Polya was captivated
by Ramanujan’s formulas. One day in 1925 while Polya was visiting Oxford,
he borrowed from Hardy his copy  of Ramanujan’s notebooks. A couple of
days later,  Polya returned them in almost a state of panic explaining that
however long he kept them, he would have to keep attempting to verify the
formulae therein and never  again would have time to establish another
original result of his own.

TO be sure, India has produced other great mathematicians, and Hardy%
views may  be moderately biased. But even though the pronouncements of
Neville and Hardy are overstated, the excess is insignificant,  for Ramanujan
reached a pinnacle scaled by few. It is hoped that readers of our analyses of
Ramanujan’s formulas Will be captivated by them as Polya once was and Will
join  the chorus of admiration along with Hardy, Neville, Polya, and countless
others.

The task of editing Ramanujan’s second notebook has been greatly
facilitated by notes left by B. M. Wilson. Accordingly, he has been listed as a
coauthor on earlier published versions of Chapters 2-5 to which he made
extensive contributions. Wilson’s notes were given to G. N. Watson upon
Wilson’s death in 1935. After Watson passed away in 1965, his papers,
including Wilson%  notes, were donated to Trinity College, Cambridge, at the
suggestion of R. A. Rankin. We are grateful to the Master and Fellows of
Trinity College for a copy  of Watson and Wilson%  notes on the notebooks
and for permission to use these notes in our accounts.

We sincerely appreciate the collaboration of Ronald J. Evans on Chapters
3 and 7 and Padmini T. Joshi on Chapters 2 and 9. The accounts of the
aforementioned chapters  are superior to what the author would have
produced without their contributions. Versions of Chapters 2-9 and the
Quarterly Reports have appeared elsewhere. We list below the publications
where these papers appeared.

We appreciate very  much  the help that was freely given by several people
as we struggled to interpret and prove Ramanujan’s findings. D. Zeilberger
provided some very  helpful suggestions for Chapters 3 and 4. The identities of
others are related in the following chapters.  However, we particularly draw
attention to Richard A. Askey and Ronald J. Evans. Askey carefully read our
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Chapter Coauthors Publication

2 P. T. Joshi, B. M. Wilson
3 R. J. Evans, B. M. Wilson
4 B. M. Wilson

5 B. M. Wilson

6
1 R. J. Evans

8
9 P. T. Joshi

Quarterly Reports
(Abridged Version)
Quarterly Reports

Glasgow Math. J., 22 (1981),  199-216.
Adu.  Math., 49 (1983),  123-169.
Proc.  Royal Soc. Edinburgh, 89A  (1981),

87-109.
Analytic Number Theory (M. 1. Knopp,

ed.). Lecture Notes in Math., No. 899,
Springer-Verlag, Berlin, 198 1,
pp. 49978.

Resultate der Math., 6 (1983),  l - 2 6 .
Math. Proc.  Nat. Acad. Sci. India,  9 2

(1983),  67-96.
J. Reine Angew. Math., 338 (1983),  l-55.
Contemporary Mathematics, vol. 23,

Amer. Math. Soc., Providence, 1983.

Amer. Math. Monthly,  90 (1983),  505-516.
Bull. London Math. Soc., 16 (1984),  4499489.

manuscripts and offered many suggestions, references, and insights. Evans
proved some of Ramanujan’s deepest and most difficult theorems.

The manuscript was typed by the three best technical typists in
Champaign-Urbana, Melody Armstrong, Hilda Britt, and Dee Wrather. We
thank them for the superb quality of their typing.

Lastly, we thank the Vaughn Foundation for its generous financial
support during a sabbatical leave and summers. This aid enabled the author
to achieve considerably more progress in this long endeavor than he would
have otherwise.
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Magie Squares

The origin of Chapter 1 probably is found in Ramanujan’s early school days
and is therefore much earlier than the remainder of the notebooks. Rules for
constructing certain rectangular arrays of natural numbers are given. Most of
Ramanujan’s attention is devoted to constructing magie  squares. A magie
square is a square array of (usually distinct) natural numbers SO that the sum
of the numbers in each  row, column, or diagonal is the same. In some
instances, the requirement on the two diagonal sums is dropped. In the
notebooks, Ramanujan uses the word “corner” for “diagonal.” We emphasize
that the theory of magie  squares is barely begun by Ramanujan in Chapter 1.
Considerably more extensive developments are contained in the books of
W.  S. Andrews [l] and Stark [ 11, for example.

Ramanujan commences Chapter 1 with the following simple principle
for constructing magie  square&  Consider two sets of natural numbers
S, = {A, B, C, . ..} and S, = (P,  Q, R, . ..}. each  with n elements. Take the n2
numbers in the direct sum S, + S, and arrange them in an n x n square SO

that each  letter appears exactly once in each  row, column, and diagonal.
Clearly, we have then constructed a magie  square. Of course, some numbers
may appear more than once.

In Corollary 1, Ramanujan states the trivial fact  that if A + P, A + Q,
A + R, . . . are in arithmetic progression, then B + P, B + Q, B + R, . . . are also
in arithmetic progression.

In Corollary 2, Ramanujan remarks that if A + P, A + Q, A + R, A + S, . . .
are known and also B + P is given, then we cari  determine B + Q, B + R,
Il+s, . . . . This is clear, for B-A is thus known, and we may Write
B + Q = (B - A) + (A + Q), etc.

Ramanujan informs us that in constructing a magie  square, we should not
give values to A, B, C, . . and P,  Q, R, . . . . but instead values should be
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as s igned toA+P,A+Q,A+R ,....The reason for this advice  is not clear,
for in either case 2n parameters need to be prescribed.

Example 1. Given that A+P=S,  B+P=lO, C+P=ll, D+P=14, and
C+R=25,jndA+R,B+R,andD+R.

Solution. Since  R - P = 14, then A + R = (A + P) + (R -. P) = 22. Similarly,
B+R=24and  D+R=28.

Example  2 .  G i v e n  A+P=5,  A+Q=7,  A+S=17,  B+Q=23,  a n d
B+R=26,findA+R,B+P,andB+S.

Solution. Note that B - A = 16. Hence, A + R = - 16 + 26 = 10, B + P = 21,
and B f S = 33.

Entry 2(i). Let m, and m2  denote  the sums  of the middle row  and middle column,
respectively, of a 3 x 3 square array of numbers. Let c1  and c2  denote  the sums
of the main diagonal and secondary diagonal, respectively. Lastly, let S denote
the sum of a11  nine  elements of the square. Then tfx denotes  the tenter element of
the square,

x = $(m, + m2  + c1  + c2  -S).

Proof. Observe that

m,+m,+c,+c,=S+3x,

since  x is counted four times on the left side.  The result now follows.

Entry 2(ii).  Suppose that the sum of each  row  and column is equal to r.  Then, in
the notation of Entry 2(i),

x = +(c,  + c2  - r).

Proof. By Entry 2(i).

x=‘j(r+r+c,+c,-3r)=+(cI+c,-r).

Note that if the square is magie, then Entry 2(ii) implies that x = r/3,  and SO

r is a multiple of 3.

Corollary 1. In a 3 x 3 magie  square, the elements in the middle row,  middle
column, and each  diagonal are in arithmetic progression.

Proof. In each  case, the second element is equal to r/3  by the remark above. If
a and b are the first and third elements, respectively, in any  of the four cases,
then

a + r/3  + b = r.
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Hence,

b - r/3  = r/3  - a,

i.e., the three numbers are in arithmetic progression.

Example 1. Construct  magie  squares with (i) r = 15, and (ii) Y = 27 and a11
numbers odd.

Solutions.

1 5 1 11Dl5 9 13

7 17 3

Example 2. Construct magie  squares with (i) r = 36 and a11  elements even, and
(ii) r = 63 and a11  elements divisible by 3.

Solutions.

Ramanujan begins Section 4 with a general construction for a 3 x 3 magie
square:

For this square to actually be magie, it is easily seen  that A, B, C and P, Q, R
must each  be arithmetic progressions. Adjacent to the square above, there is
an unexplained 4 x 4 square partially filled with the marks A, V, and x .
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Example l(i). Construct a 3 x 3 square with a11  row and column sums equal to
19 but with only one diagonal sum equal to 19.

Solution.

Example l(ii). Construct a 3 x 3 square with a11  row and column sums  equal to
31 but with dnly one  diagonal sum equal to 31. Ramanujan also requires that a11
the elements be odd, but the example that he gives does not satisfy this criterion.

Solution.

Example 2(i). Construct a 3 x 3 square with a11  row and column sums equal to
20 and diagonal sums equal to 16 and 19.

Solution.

Example 2(ii).  Construct a square with diagonal sums 15 and 19, column sums
16 , 17 , a n d 12 , a n d r o w sums 6, 21, a n d 18 .

Solution.
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In Section 5, Ramanujan turns his attention to the construction of certain
rectangles which he calls “oblongs.” First, he gives the following general
construction of a 3 x 4 rectangle with equal row sums and with equal column
sums:

In order for this rectangle to satisfy the designated specifications,  we need to
require that A + C = 2B + 30.  The common  row sum Will then be equal to
A + C + 2B + 9D. Adjacent to the rectangle displayed above, there appears an
unexplained 3 x 4 rectangle filled with the symbols A, v , and x .

Example. Construct 3 x 4 rectangles where the average of the elements in each
row and column is equal to (i) 8, and (ii) 15 with a11  numbers odd.

Solutions.

1 13 3 15

El1 1 9 1 5

1 2 2 14 4

Observe that the requirement of average row and column sums in a
rectangle is the correct analogue of equal row and column sums in a square.

Section 6 is devoted to the construction of 4 x 4 magie  squares. Raman-
ujan begins with the easily ascertained equality,

sum of middle 4 elements = $(sum  of diagonals

+ sum of middle rows

+ sum of middle columns - total sum),

except that Ramanujan has the wrong sign on the left side.

Entry 6(ii). Construct a magie  square by letting S, = {A, B,  C, D} and
S, = {P, Q, R, S>  and considering SI + Sz.
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AS-P  D+S C+Q B+R A + P  D + Q  D + R  A + S

C+R B+Q A + S D + P B-CS C+R  C + Q B+P

BS-S CfP D + R  A + Q c + s B + R B+Q C+P

D + Q  A + R B+P  c + s D + P  A + Q  A + R  D + S

There are no restrictions on the elements in the first square, but in the
second we need to require that A + D = B + C and P + S = Q + R.

In a note, Ramanujan remarks “If A + D = B + C and P + R = Q + S the
extreme middle four in the first square also satisfy the given condition.” “The
extreme middle four” is not defined by Ramanujan, but presumably they are
the four middle squares which, in fact, have been blocked out by Ramanujan.
But then the hypotheses A + D = B + C and P + R = Q + S are not needed!

Example 1. Construct  4 x 4 magie  squares with common  sums of 34, 34, ad 35.

Solution.

Al1 three examples are instances of the first general construction described
above. A table of parameters for these three examples as well as the next two
examples is provided below.

Example

la
lb
lc
2a
2 b

A B C D P Q R S

1 5 9 13 0 2 3 1
1 3 7 5 0 8  1 9
1 5 9 14 0 2 3 1
1 5 25 29 0 2 3 1
9 13 17 21 0 2 3 1
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Example 2. Construct two 4 x 4 magie  squares with common sums of 66.

Solution.

Example 3. Construct two 3 x 3 magie  squares with common sum 60.

Solution.

Ramanujan commences Section 7 by correctly asserting that a magie
square of m rows cari  be formèd from magie squares of n rows when nJm,
except  in one  case. This case is when m = 6 and n = 3. In this instance, each  of
the four magie squares of three rows must have the same  common sum r. The
tenter  element in each  square is then r/3,  contradicting the requirement that
the elements be distinct. However, 6 x 6 magie squares cari  be constructed
from 3 x 3 squares if the requirement that the diagonal sums be the same  as
the row and column sums is relaxed in the construction of the four 3 x 3
squares.

Ramanujan now gives two examples of 8 x 8 magie squares. The first is
constructed from four 4 x 4 magie squares, while the second is not.
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Ramanujan begins Section 8 by once again  enunciating the method for
constructing magie squares described in Sections 1, 3, and 6. He ‘offers  two
general constructions of 5 x 5 magie squares; namely

There are no restrictions on the parameters in the first square, but in the
second, the condition A + B + D  + E = 4C must be satisfied.

Example 1. Construct  5 x 5 magie  squares with common  sums of 65 and 66.

Solution.

The first magie square arises from the second general construction and,
according to W. S. Andrews [ 1, p. 21,  is a very  old magie square. The second is
a consequence  of the first general method. The parameters may  be chosen  by
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taking P=O,  Q=l,  R=2,  S=3,  T=4,  A=l,  B=6,  C=il, 0=16,  and
E = 21, 22, respectively.

Example 2. Construct 7 x 7 magie squares with common sums of 1 7 0 a n d 1 7 5 .

Solution.

1 2 6 4 5 1 5 4 1 1 2 3 0

40 32 24 16 8 7 48



CHAPTER 2

Sums Related to the Harmonie Series  or the Inverse
Tangent Function

Chapter 2 is fairly elementary, but several of the formulas are very  intriguing
and evince  Ramanujan’s ingenuity and cleverness. Ramanujan gives more
proofs in this chapter than in most of the later chapters.

Many of the formulas found herein are identities between finite  sums.
Many of these identities involve arctan x, and because this function  arises SO

frequently in the sequel,  we shall put A(x) = arctan x. It Will be assumed that
- 71/2  I A(x) I 7c/2.  Several of Ramanujan’s theorems concerning this func-
tion arise from the elementary equalities

A(x)+A(y)=A  x+y
( >l - x y  ’

except when xy > 1, and

A(x)-A(y)=A  x - y
( >l+xy  ’

(0.1)

(0.2)

except when - xy > 1 .
Entries 1, 2 , 4 , 5 , and 6 involve the functions

and +~(a)  = lim,, m cp(a,  n), where a is an integer exceeding one.  Ramanujan
continues his study of q(a) in Chapter 8.

Entry 1. For each  positive integer n,

i’=“+$  l
k=ln+k  2n+l  k=l(2kj3-2k (1.1)
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Proof.  We give Ramanujan’s proof.  In the easily verified identity

1 1 1 1
x3-x=2(x+1)-2(x+

let x = 2k and sum on k, 1 I k I n. The right side  of (1.1) is then found to be
equal to

Corollary.

Proof.  Using the following well-known fact  found in Ayoub’s text [ 1, p. 433,

‘\E  &-LOPX}  =Y>
i

(1.4)

where y denotes Euler’s constant, we find from the last equality in (1.3) that

i(
k$l  k - Log(2n))  - ( ktl  k - Log n)} + Log 2

= Log 2.

The result now follows from Entry 1 and the definition of q(a).

There is a different proof of this corollary in Ramanujan’s first notebook
(vol. 1, p, 7). This proof is also discussed in the author’s paper [3,  p. 1541.

Example. For each  positive integer n,

n n - k
c- =2n i 1 n

k=t  n+k k=,(2k--1)2k(2k+l)  2n+l’

Proof.  The proof below is given by Ramanujan. Multiply both sides  of (1.1)
by 2n to get

n 2nc- =2n jJ
1 2n2

k=in+k k=l(2k-1)2k(2k+1)+2n+l’ (1.5)

Subtract 1 from each  term on the left side  of (1.5) and n from the right side  of
(1.5) to achieve the desired equality.
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Entry 2. For each  positive integer n,
2n+l  1

c - = 43,  n).
k=l n+k

(2-l)

Proof.  Using (1.2),  we find that

’ 1 1
2(3k  - 1) + 2(3k  + 1)

- -
3k

from which the desired result follows.

Corollary. Log 3 = (p(3).

Proof.  The proof is like that of the corollary to Entry 1. Let n tend to CO in
(2.1) and use the fact  that, by (1.4),

3n+1  1

lim 1 k =Log  3.
n-m  k=n+l

(2.2)

Ramanujan’s proof of the corollary above is similar to the aforementioned
proof that he gave in the first notebook for the corollary of Entry 1.
Ramanujan replaced  n by l/dx  in the left side of (2.1) and regarded this sum as
a Riemann sum. Thus,

2n+l  dx

lim 1 ~ =
s

’ dx
dx+o  k=l 1 + k d x - = Log 3,1  x

from which the corollary follows.

Entry 3. For each  positive integer n,

(3.1)

Proof.  By (0.1) and (0.2),  respectively,

A(&) ++AT) =A(A)
and

A(;) -A(&) =A(&).

(3.2)

(3.3)
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for each  positive integer k. By (3.2),  (3.3),  and (0.2)  we find that

(3 .4)

If we now sum both sides  of (3.4) for 1 5 k I n, we readily complete the proof
of Entry 3.

Note that, by (3.1) and Taylor’s theorem,

Letting n tend to 00 and using (2.2),  we deduce that

10k n

(3k2  + 2)(9k2  - 1) = Log  3 - 4’

which is given by Ramanujan in his first notebook (vol. 1, p. 9).

Entry 4. For each  positive integer n,

Proof.  The complete proof is given by Ramanujan. By (1.2),

=$&+$,2n+:k+  1’ (4 .2)

which proves the first equality in (4.1).
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Next, using the second equality in (4.2),  we find that

=yll’-k”” +;k$l(-;+l,

which establishes the second equality in (4.1).

In the proof above, and elsewhere, Ramanujan frequently uses a rather
unorthodox notation. Thus, for example,

The corollary below represents the first problem that Ramanujan sub-
mitted to the Journal of the Zndian  Muthematical Society [l],  [15, p. 3221.
Ironically, this result was previously posed as a problem by Lionnet Cl] in
1879. The problem and its solution are also given in Chrystal’s textbook
[l, p. 2491.

Corollary. 3 Log 2 = (p(4).

Proof.  Let n tend to cc on the right side of (4.1) and use the equality
Ckm,l  (-l)k+1/k=Log2.

Entry 5. For euch positive integer n,

(~(6,  n) = 2 i3k=&+$o2n+:k+1

Proof.  By (1.2),

(5.1)
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=k~$+l;+&&;k=~+l~~
from which (5.1) easily follows.

Corollary. +Log3++Log4=(p(6).

Proof.  Letting n tend to CO in (5.1) and employing (1.4),  we achieve the desired
equality.

Example 1. &Log2=  f
1

k=l  {2(2k-1)}3-2(2k-1)’

Proof.  The right side  above is equal to *{(p(2)  - (p(4)).  Hence,  the result
follows from the corollaries to Entries 1 and 4.

Example 2. Log2=1+  $
2(  - l)k

k=  1 (2k)3  - 2k ’

Proof.  The right side  above is 2~(4)  - (p(2),  and SO the example again  follows
from the corollaries to Entries 1 and 4.

Example 3. For each  positive integer n,

1
2~(4,4  = d2,2n)  + ha 4 + (4n  + 1)(4n  + 2).

Proof.  From Entries 1 and 4, respectively,

and

Thus, the right side  of (5.2) may  be written as

2,=~+,  ii = 2~(4,n!,

(5.2)

(5 .3)

(5 .4)

which completes the proof.
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Example 4. For each  positive integer n,

Proof.  This expression for (~(4,  n) arises from a rearrangement of the terms in
(5.4).

Example 5 . a Log 3 5 Log 2
1

- = 2k=  1 {3(2k - l)}” ’- 3(2k - 1)

Prooj.  The right side above is ${(p(3)  - (p(6)},  and SO the result follows
immediately from the corollaries of Entries 2 and 5.

Example 6. $Log2=1+  2
2(  - l)k

k=  1  (3k)3  - 3k ’

Proof.  The right side above is 2&6)  - (p(3), and SO the result is a consequence
of the corollaries to Entries 2 and 5.

Example 7. For each  positive integer n,

2~(6,n)  + k~(2,n)  = (~(3~4  + (~(2,34  +
2

(6n + 1)(6n  + 2)(6n  + 3) ’ (5*5)

Proof.  By Entries 2 and 5, respectively,

(~(3~4  = ,3ill,  k

and

8(6,n)=~k=~+l~+k~n&.

(5.6)

(5.7)

Thus, by (5.3) and (5.7),  the left side of (5.5) is equal to

2k=j+ld +zk$“zkl+l  + l3(2n + 1) =2k:$+11;-k=$+lt+&

36n2  + 30n + 8
+ (6n + 1)(6n  + 2)(6n  + 3) ’ (5’8)
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By (5.3) and (5.6),  the far right side of (5.8) is easily seen to be equal to the right
side of (5.5).

Example 8.

13

1 A(;)=;+2A(;)+A($)+A(&)+A(&).
k=2

Proof.  Apply (3.1) with n = 1 and with n = 4. Adding the two results yields the
desired equality.

Example 9. For each  positive integer n,

(5 .9)

Proof.  Rewriting the left side of (5.9) and then employing (0.1) and (0.2)
several times, we find that

=NI+A(&)  +2,i1  &) -A($}
+kil{[A(&)-A(&)]-[A(t)-A(&)]}

=A(q)  +zkgl  {A($+($}
+k${A(4k2-:k+l)-A(4k2+ik+~)}

=A(%)+2,$IA(k(4kil+3))+$IA(8k4+Zk’+1)’

Example 10. For each  positive integer n,

=i+  i A 9 k 4 k
32k4  + 22k2  - 1 128k4 + 8k2  + 1 . (5.10)

k=l
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Proof.  We first rewrite the left side of (5.10) and then use (0.1) and (0.2) several
times. Accordingly, we get

=4l)+$l {2A(&)  -[A($ -A(&)]]
+,i,  {[A(i&)  -A(A)]  - [A(&) -A(i&)]}

=~+k~l{~(ï&+o)}
+$k=l i(  A 116k2-4k+  1 ) (

- A
116k2 + 4k + 1 11

=;+kA 9 k 4 k
k=l 32k4  + 22k2  - 1 128k4  + 8k2  + 1 ’

Entry 6. Let k and n be nonnegative integers and define  A, = 3k(n  + 3)  -3.
Then ifr  is a positive integer,

r-l
r+2  1 ( r - k )  $J 1

k = O j=Ak-i+l(3j)3~’

where we dejne  A- 1 = 0.

Proof.  This proof was given by Ramanujan. First, it is easily shown that
A k+ 1 = 3Ak + 1, k 2 0. Hence,  by Entry 2, with n = Ak,

4+1  1

j;c+ 1 j = d3, Ad.

NOW  sum both sides  of this equality on k, 0 5 k 5  r - 1, to obtain

Rearranging the right side above, we deduce the desired equality.

Corollary. For each  positive integer r,
r-1

r+2  1 ( r - k )  g 1
k=l j=Ak-I+l  (3J3  -3 j ’

where A, = (3k  - 1)/2, k 2  0.

Proof.  This corollary is the case n = 0 of Entry 6.
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At this point, Ramanujan claims  that if a,, . . . , a, are in arithmetic
progression and if a, and a, are large then x2= r l/u,  is approximately equal
to 2n/(u,  + a,). Unfortunately, this remark is false. For example, consider
s, = cg:: 1 l/k. If Ramanujan were correct, then for large n, S, would
approximately be equal to 2(2n + 1)/(4n + 2) = 1. However, by (2.2),  S, tends
to Log 3, as n tends to cc.

Nonetheless, Ramanujan’s assertion is correct if n/ul is “small,” as we now
demonstrate. Letting a, d, and n denote positive integers, define

Now, 2n/(u, + a,) in Ramanujan’s notation becomes 2(n  + 1)/(2u + nd) in our
notation. Thus, we wish to examine

2(n  + 1)S(u,  d, n) - ~ = t
(n - 2k)d

2u+nd  ,=,(u+kd)(2u+nd)

1
a + (n - I)d

+ (n - 4) 1
--u+(n1-2)d)+  ‘**+T.}’a + 2d

where

- i

1 1
a + (n - l)d/2 - a + (n + l)d/2 ’

if n is odd,

L L
U+(n-2)d/2  -u+(n+2)d/2’

if n is even.

Hence,  with d fixed,

2(n  + 1)
S(a,  4  4 - 2u + nd--=o{+-&)}=o{(~y},

as n/u tends to 0. Thus, under this assumption, Ramanujan’s approximation
is, indeed, valid.

Example 1.
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Proof.  In the previous corollary, let r = 3. Since A, = 0, A, = 1, AZ = 4, and
A, = 13, we find that

kf1;=3+&+2(’  L- l ),6j - 6 + 93 - 9 + (12)3  - 12

and the result follows.

Example 2. “very  nearly.”

Proof.  In the previous corollary, let r = 7. In addition to A,, A,, A,, and
A, calculated above, we need the values A, = 40, A, = 121, A, = 364, and
A, = 1093. Thus,

y13;= (7+3+5  A+&)+&
>

+8  f
x=5(3k)3-3k  +6,X,(31z)31-3k
121

+4 ci=41(3k)Jl-3k  +2Xz(3k)31-3k

= 7 + 0.5 + 0.067335442...  + 0.006435448...

-t 0.000541282...  + 0.000040137...  + 0.000002230...

= 7.574354539.. . .

Next, by the remarks prior to Example 1,
(6.1)

,;Ell ; z & = 0.088825214.... (6.2)

Thus, from (6.1) and (6.2) we conclude  that H % 7.48552932....  This is
probably the method that Ramanujan employed to estimate H. On the other
hand, by using the Euler-Maclaurin summation formula or a programable
calculator, it cari  readily be shown that H = 7.48547086.. . . In any  event, the
estimate  of 7$ for H is not as good as Ramanujan would lead us to believe.

Entry 7. Let n > 0 and suppose that r is a natural number. Then
r-l

k=O  A (n+2k+  1)’= ( 2 )=A(n2+L+l)’

Proof.  The proof is very  briefly sketched  by Ramanujan. Since n > 0, it
follows from (0.2) that

(7 .1)
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Now sum both sides  of (7.1) on k, 0 5  k I r - 1, to get

An application of (0.2) on the left side  of (7.2) completes the proof.

Corollary. For n > 0,

Proof.  Let r tend to CO in (7.2).

Example 1. For n > 0,

(7 .2)

(7 .3)

(7 .4)

where p(n) = TC  if n < ($ - 1)/2  and p(n) = 0 otherwise.

Proof.  The proof is sketched  by Ramanujan. From the previous corollary
and (O.l),

’ ‘(&)  =,gO  A((n+z:+  1)‘) +kr A((n+z:+2)2)k=l

=A(i)  ‘“(Lb)

=A(n?Tz’  l)  +&4

since  p(n) = rc if and only if n2  + n < 1, i.e.,  n < (fi  - 1)/2.  This completes the
proof.

Example 2. For n > 0,

Proof.  The proof is very  similar to that of Example 1.

Example 3. For n > 0,

’ A(2(n:k)2)=A(&)’k=l

(7 .5)

(7 .6)

Proof.  Replace n by 2n + 1 in the corollary to Entry 7.
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Example 4.

Proof.  Since the series  on the left side  of (7.4) converges uniformly on
0 I n I 1, we may  let n tend to 0 on both sides  of (7.4). The desired result then
immediately follows.

Example 4 and the first equality in Example 5 which follows were
apparently first established by Glaisher [2]  in 1878. This paper contains
many  other examples of this sort. Example 4 is a problem in Chrystal’s book
[l, p. 3571  as well as in Loney’s textbook [l, Part II, p. 2061. The latter fact  is
interesting because the borrowing of Loney’s book from a friend while in
fourth form was evidently a pivota1 event in Ramanujan’s mathematical
development [15, p. xii]. Still another proof of Example 4 cari  be found in
Wheelon’s book [l,  p. 461.

Example 5. =$ = f (-l)k+lA
k=l

Proof.  The series  on the left sides  of (7.5) and (7.6) each  converge uniformly on
0 I n I 1. Letting n tend to 0 in (7.5) and (7.6),  we immediately deduce the
evaluations above.

Example 6.

Proof. In Example 3 let n = l/$.  A short calculation shows that
tan(rr/8)  = l/(&’  + l), and SO the result readily follows.

Example 7.

Proof.  Since the left side  of (7.4) converges uniformly on 0 < n I 1, we may  let
n tend to ($  - 1)/2  + 0. The sought equality then follows.

Example 8.

Proof.  The series  on the left side  of (7.3) converges uniformly on 0 I n I 1.
Letting n tend to 0 in (7.3) yields the desired result.

Example 8 is also found in Glaisher’s paper [2].
In Entry 8 Ramanujan considers an entire  function  f(z) with zeros zl,

z2, . . . . He evidently assumes that I;=l  l/lz,l  converges and states a
corresponding special  case of the Hadamard factorization theorem. (See, for
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example, Titchmarsh’s book [l, p. 2501.) He then takes the logarithmic
derivative of this product representation for f(z) and evaluates it at z = 0.

In Entries 9(i) and (ii) the familiar product representations for sin x and
COS x are stated. Corollaries 1 and 2 of Entry 9 give the well-known product
representations of sinh x and cash  x.

Corollary 3. For each  complex number x,

Corollary 4. Let x and a be complex, where a is not an integral multiple of rc.
Then

sin(x + a) x + a  m
sin a =- IJ {(l-&)(1+G&J}.a k=l

Corollary 3 is easily derived from Corollary 4 by setting a = 7z/4 and
replacing x by x/4. Corollaries 3 and 4 are rather straightforward exercises
which cari  be found in Bromwich’s book Cl, p. 2241, for example, and SO it is
pointless to give a proof of Corollary 4 here.

Example 1. Let x and a be complex, where a is not an odd multiple of 42.  Then

cos(x + a) =
cas a l-(k-+Tn-a ’ +(k-+Tx+a ’

Example 1 is easily derived from Corollary 4 by replacing a by a + 42.
Example 2 below follows from Corollary 4 and Example 1 upon the use of the
identity

sin x
l+-=

sin{+(x  + a)> cos{+(x  - a)}
sin a sin(+a) cos(+a)  ’

Example 2. Let x and a be complex, where a is not an integral multiple of z.
Then

sin x a + x  ml+-=-
sin a a n {(hkJ(1+&Jk=l

)(‘+(2k-T)n--a )l ’

Next, Ramanujan asserts that if the value of F(x) = HC=  1 (1 + akx)  is
known, then it is possible to find the value of nF= 1 (1 + akx”),  where n is a
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positive integer. Ramanujan’s declaration evidently arises from the identity

klpl+ a;x”)  = fi F(-d-lx),
j=l

which is a consequence  of the factorization

1 + a”x” = fi (1 - MPlx),
j=l

where w  = exp(rri/n).
In Entry 10, the familiar partial fraction decompositions of cet  x, tan x,

csc x, and sec x are given. (See, for example, Bromwich’s text [l,  pp. 217,
2251.)

Entry 11. Let x and a be real. Then

A(z)  +kzl  { A ( & )  - A ( & ) }  =A(tanhxcota). (11 .1 )

Proof.  The main idea for the proof is indicated by Ramanujan. By Corollary
4 of Entry 9,

ImLog(sin~~n~ix))=*mLOg{(l+~)~l(l-&)(l+~)}

=A(:) + kz  {+k)  -A(&))~
(11.2)

up to an additive multiple of rc.  On the other hand,

Im Log ( sin~~n~ix))  = Im Log(cosh x + i sinh x cet a)

= A(tanh x cet a), (11 .3 )

up to an additive multiple of X.  Combining (11.2) and (11.3),  we have shown
that (11.1) is valid up to an additive multiple of rr.  We now show that this
additive multiple of x is, indeed, 0.

First, if a is a multiple of n,  it is readily checked that (11.1) is valid. Suppose
now that a is fixed but not a multiple of rr.  For x = 0, (11.1) is certainly true.
Since both sides of (11.1) are continuous functions of x, that additive multiple
of rc must be 0 for a11  x. Since a is arbitrary, the proof is complete.

Corollary 1. Let x and a be real. Then

= A(sinhxcsca). (11 .4 )



4 0 2. Sums Related to the Harmonie  Series  or the Inverse Tangent Function

Proof.  First, by Example 2 of Entry 9,

A(sinhxcsca)=ImLog(l+i%&)

x l-(Zk-;7c+a( >( l

-&)(l+&)
f(2k-l&-a )i

up to an additive multiple of 7~.  Thus, (11.4) is valid up to an additive multiple
of rr.  T O show that this multiple of rc is 0, we proceed in the same  manner as in
the proof  of Entry 11.

Corollary 2. For real  x,

Proof.  Replacing x by 71x/4  and setting a = rc/4  in Entry 11, we readily achieve
the desired formula.

Corollary 3. For real  x,

Proof.  In Corollary 1 of Entry 11 replace x by 71x14 and let a = n/4  to deduce
the sought formula.

The next two examples are obtained by replacing a by 7c/2 - a in Entry 11
and Corollary 1, respectively. In the second notebook there is a minor
misprint in Example 1.

Example 1. For x and a real,

x
+(2k  - 1)rc + a

= A(tanh x tan a).

Example 2. For x and a real,

= A(sinh x sec a).

Entry 11 is an exercise  in both the books of Chrystal [l,  p. 3731 and Loney
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[l, Part II, p. 2083. Corollary 2 is also a problem in Loney’s book [l].
Entry 11, Corollaries 1 and 2, and Example 1 are given in Hansen’s tables
[l, p. 2761.  Several other arctangent series  in the spirit of those given
above are summed in this compendium. Ramanujan himself summed other
arctangent series  in [lO],  [15, p. 421.  Glasser and Klamkin [ 1] have summed
several arctangent series  in an elementary fashion. Further examples of
arctangent series  are found in Bromwich’s book [l, pp. 314-3153. l

Example 3.

Example 4. ,(l-$)=&cosh($)

Examples 3 and 4 constitute the second problem that Ramanujan
submitted to the Journal ofthe Zndian Muthematical  Society [2], [ 15, p. 3221.
In a later paper [12],  [15, pp. 50-521,  Ramanujan studied the more general
product

In Entry 12, Ramanujan presents a method for approximating the root z0 of
smallest modulus of the equation

5 A,zk  = 1. (12 .1 )
k=l

It is assumed that a11  other roots of (12.1) have moduli strictly greater than 1 z. 1.
For 1 z 1 sufficiently small, Write

1

1 - T Akzk
= kg P,zk-  ’

k = l

It follows easily that P,  = 1 and
n-l

P,  = 1 AjP”-j, n 2  2.
j=l

(12 .2 )

Now assume that lim,, m P,/P,  + 1 exists and is equal to J!,.  Then, of course, the
radius of convergence of cp= i Pkzk  is equal to 1 L].  Moreover, by a theorem of
Fabry in the book of Hadamard and Mandelbrojt [l,  pp. 39-401,  L is a
singularity of the function represented by this series. It follows that if the radius
of convergence of the series cp= 1 Akzk  is greater than 1 L 1, then z = Lis a root of
(12.1). Ramanujan’s discourse is characteristically brief; he gives (12.2) and
claims, with no hypotheses, that P./P,,  + 1 approaches a root of (12.1).
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In the case that (12.1) is an algebraic equation, this method is originally
due to Daniel Bernoulli. Accounts of Bernoulli’s method may  be found in the
books of Whittaker and Robinson [l, pp. 98-991  and Henrici  [l, p. 6631.
Usually, a change of variable is made SO that the method yields the
approximate value of the root with largest modulus. Bernoulli’s method has
been generalized by Aitken [l]  who found a way to approximate any  root of
a polynomial.

Ramanujan concludes this chapter by giving six examples to illustrate his
method. He takes P,  = 0, and SO the first convergent is always O/l.

Example 1. The roots  of x+x2  = 1 are (- 1 -l-$)/2,  and  SO ($-  1)/2
=0.618034...  is the root of least modulus. Ramanujan gives the jirst eight
convergents to this root with the last being P,/P,  = 13/21 = 0.619048...  .

Example 2. By Newton’s method the real root of x+x2  +x3  = 1 is
0.543689013.. . . Ramanujan gives the jirst eight convergents to this root with
the last equal to 24144  = 0.5454. . . .

Example 3. Ramanujan lists the jirst ten convergents to the real root of
x + x3  = 1, with the last convergent being 13/19 = 0.684210...  . By Newton’s
method, this root is 0.682327804.. .

Example 4. The last polynomial equation examined by Ramanujan is
2x + x2  + x3  = 1. He calculates seven convergents to the real root andfinds the
seventh to be 841214  = 0.392523...  . This root is 0.392646782..., by Newton’s
method.

At this point, Ramanujan claims  that “If p/q and r/s  are two consecutive
convergents to x, then we may  take (mp + nr)/(mq  + ns) in a suitable manner
equivalent to x.” If m and n are to be taken as real, then Ramanujan’s remark
is pointless, for then this ratio may  be made to take any  real value. On the
other hand, if m and n are to be understood as positive, then Ramanujan’s
assertion is false. Ramanujan’s claim would be valid if the hmit L were always
between two consecutive  convergents. However, this may  not be true. For
example, the last three convergents 13/33, 33184,  and 84/214  given by
Ramanujan in Example 4 satisfy the inequalities 13133  > 33184  > 84/214.

Example 1. In this example Ramanujan examines eX = 2 and jinds  the jirst six
convergents to Log 2 = 0.69315.. . . The sixth convergent is 3751541  = 0.69316.. . .

Example 2. In this last example Ramanujan approximates the root of emx  = x.
He calculatesjve  convergents with the last one equal to 148/261  = 0.567049. . . .
By Newton’s method, the root is 0.567143290.. . .
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E. M. Wright has written several papers Cl]-[5],  in which he has studied
solutions of equations generalizing the one in the last example. Such
equations are very important in the theory of differential-difference
equations.



CHAPTER 3

Combinatorial Analysis and Series Inversions

Although no combinatorial problems are mentioned in Chapter 3, much  of
the content of this chapter belongs under the umbrella of combinatorial
analysis. Another primary theme in Chapter 3 revolves around series  expan-
sions of various types. However, the deepest and most interesting result in
Chapter 3 is Entry 10, which separates the two main themes but which has
some connections with the former. Entry 10 offers a highly general and
potentially very  useful asymptotic expansion for a large class of power series.
As with Chapter 2, Ramanujan very  briefly sketches the proofs of some of his
findings, including Entry 10.

Some of the results of Chapter 3 cari  be traced  back  to Lambert, Lagrange,
Euler, Rothe, Abel, and others. On the other hand, much  of Ramanujan’s
work in Chapter 3 has been rediscovered by others unaware of his work. For
example, the single variable Bell polynomials were first thoroughly examined
in print by J. Touchard  [l] in 1933 and by E. T. Bell [l] in 1934, but
Ramanujan had already discovered many  properties of these polynomials in
Chapter 3. Also, several other results were rediscovered and considerably
generalized by H. W. Gould Cl]-[6]  in the late 1950’s  and early 1960’s.

The first nine sections of Chapter 3 comprise a total of 45 formulas. The
majority of these results involve properties of the Bell numbers and single
variable Bell polynomials and are not very  difficult  to establish.

Entry 10 is enormously interesting and is certainly the most difficult  result
to prove in this chapter. Ramanujan proposes an asymptotic expansion for a
wide class of power series  and provides a sketch of his proof.  His argument,
however, is forma1 and not mathematically rigorous. He then gives three very
intriguing applications of this theorem. Unfortunately, for none  of these
applications are the hypotheses, implied in his forma1 argument, satisfied. We
shah  establish Ramanujan’s asymptotic formula under much  weaker assump-
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tions than those implied by his argument. Ramanujan’s three examples are
then seen to be special  cases of our theorem. As is to be expected, our method
of attack is much  different from that of Ramanujan, but since his argument is
interesting, we shall provide  a sketch of it.

The content of Sections 1 l-l 7 is not unrelated to that of Sections l-9.
However, the proofs are somewhat more formidable. The key problem is to
express powers of x by certain series,  where x is a root of a particular
equation. This theme appears to have commenced  in the work of Lambert
[l],  Lagrange [l],  and Euler [4] and has had a fairly long history. These
expansions cari  be derived via the Lagrange inversion theorem. This theorem
is found in Carr’s book [l],  and Ramanujan’s quarterly reports bear
testimony that he was well acquainted with Lagrange’s theorem. However, as
the quarterly reports further indicate, Ramanujan possessed another tech-
nique, indeed, a very ingenious, novel one,  for deriving these expansions.
Entry 13 is central in Ramanujan’s theory and is the ground for several
variations in the sequel.  Example 1 of Entry 15 is an extremely interesting
result. Entries 16 and 17 do not seem to have been expanded upon in the
literature and would appear to be a basis for further fruitful  research.

Entry 1. Letf(z)  be analytic on Jz]  < R,,  where R, > 1, and let g(z) = cTZo Qkzk
be analytic on IzI  <R,,  where R,  > 0. Dejine  Pk,  01  k < CO,
by cp=  o Pkzk  = e”g(z),  where .I z 1 < R2.  Suppose that  1;: 0  Qjzp=  of”‘k’(0)/k!
converges and that this repeated summation may  be replaced  by a summation
along diagonals, i.e., j + k = n, 0 I n < CO.  Then

“zo  Pnf’“‘(O)  = “zo  Qnf'"'(l).
Proof  Since  R, > 1, we find from Taylor% theorem that

f(j)(l)=  f ‘l, ()<j<  00.
k = O

Hence,

jgo  Qjf”‘(l)  = jgo  Qj f. ‘T = .ro Pnf’“‘(O),
k = O

which cari  readily be seen from the definition of P,.

Corollary 1. Suppose that the hypotheses of Entry 1 are satisJed  for
f(z) = (1 +xz)n,  where 1x1  < 1 and n is arbitrary. Then

Proof:  Elementary calculations yield f’“‘(O)  = r(n  + l)xk/r(n - k + 1) and
ftk’(l)  = r(n + l)xk(l  + x)“-“/r(n - k + l), 0 < k < 00.  The desired equality
now follows.
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Corollary 2 is simply an alternative formulation of Entry 1, and SO we shah
not bother to state this corollary.

Note that the next entry gives concrete  examples for Pk and Qk in Entry 1.
Ramanujan indicates two proofs of Entry 2. The first is purely formal,  while
the second is more easily made rigorous.

Entry 2. For a11  complex x and z, dejine

‘(‘) = k$l  (z + k -xl;(k  - l)!’
Then

First proof By employing the Maclaurin series  for ex and integrating
termwise, Ramanujan gets

1
dz) = & kgo  & = -xz-l s

xz  - lex dx

(- l)k-lxk= ex 2
k=rz(z+l)(z+2)...(z+k-1)’

upon infinitely many  integrations by parts.

Second proof:  An easy calculation gives zcp(z)  + xcp(z  + 1) = xeX.  By employing
this recursion  formula n times, we obtain

<p(z)-exk&z+  l)(:;;;-‘;*+k-  1) =
(-  l)“x”cp(z  + n)

. . . z z(z+l)(z+2)...(z+n-1)’

(2.2)

From the definition of q(z)  and Stirling’s formula (16),  it is not hard to see that
the right side  of (2.2) tends to 0 as n tends to CO.

Corollary 1. Let fsatisfy  the hypotheses of Entry 1. Then for a11  z,

f f’“‘(0) fi  (-  l)kf’k’(l)---=
k=o(z+k)k!  k=,,z(z+l)...(z+k)’

Proof:  Use the functions  of Entry 2 in Entry 1, and the desired result
immediately follows.

Corollary 2. For each  complex number x, we have

1+;+ . . .
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Proof In (2.1) replace x by -x  and z by z + 1 to get

Xk

k=l (z  + l)(z  + 2) . . . (z + k) (2 .3)

Now differentiate both sides  of (2.3) with respect to z and then set z = 0 to
achieve the desired formula.

The function

$Cz)  = ,$ (z + I:,s:‘; lx;z + k)’ x # 0,. . . (3 .1)

is a meromorphic function of z with simple poles at z = - k, 1 < k < o,  and
thus has an essential singularity at CO.  For each  fixed x, $(z) is an inverse
factorial  series  and has its abscissa  of convergence equal to - 00.  Thus, the
series  also represents the function asymptotically as z tends to CO in the region

R, = {z: -II+E<  argzIn-s}, E > 0. (3 .2)

In Entry 3, Ramanujan obtains a second asymptotic expansion for il/(z)  valid
in R,. TO describe  this expansion, first define,  after Ramanujan,

f-1c4-  1,
m knxk

e”LC4  = 1 ~k=l (k-l)!’ (3 .3)

where x is any complex number and n is a nonnegative integer. In Entry 3,
Ramanujan shows that as z tends to CO in R,,

IC/(~)- ‘f (-l)k-‘fk-l(X)

k=l Zk .
(3 .4)

The series  in (3.4) is divergent for a11  values of x # 0 and z, as cari  be seen
directly from (3.3). Entry 3 is readily seen to be a special  case of Example 1 in
Section 8, and SO we shall defer  the proof of Entry 3 until then.

Entry 3. Let t+G  and f, be dejïned  by (3.1) and (3.3),  respectively. Then as z tends
to CC  in R,, (3.4) holds.

Entry 4. Let a and x be arbitrary complex numbers. Then

(4 .1)

where f.(x) is dejned by (3.3).
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Proof.  We have

from which the desired result follows.

Entry 5. For each  nonnegative integer n,

Proof.  Differentiate both sides of (4.1) with respect to a to obtain

f. SfJx)  = xeaexcem-  ‘) = xea k$o  gfk  - 1(x). (5.2)

If we now equate coefficients of a” on the extremal sides of (5.2),  we readily
deduce (5.1).

It is clear from the recursion formula (5.1) that f,(x) is a polynomial of
degree n + 1 with integral coefficients. Furthermore, for n 2  O,fJO)  = 0. Thus,
following Ramanujan, we define  integers VI(n),  . . . . qn+,(n), 0 < n < CO,  by

The polynomialsf,(x)  appear to have been first systematically studied in
the literature by Touchard [l] in 1933 and Bell [l] in 1934, although there is
an early reference  to these polynomials in Bromwich’s book [l,  p. 1951.  They
are now called single-variable Bell polynomials and are most often desig-
nated by C~,,(X)  =f.-  i(x), n 2 0. Touchard [l],  [2] and Carlitz [S]  have
studied these polynomials in detail and have established many  arithmetic
properties for them. Actually, Bell Cl] introduced a much  more general class
of polynomials, now called Bell polynomials. In addition to Bell’s papers [ 11,
[2],  extensive discussions of Bell polynomials may  be found in the books of
Riordan [l] and G. E. Andrews [l] which also describe  combinatorial
applications of Bell polynomials. The coefficients cpk(n)  are Stirling
numbers of the second kind. In the most frequent contemporary notation,
q,(n) = S(n  + 1, k). The recursion formula (5.1) is now well known as are the
properties of the Stirling numbers of the second kind found in the next three
entries.
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Entry 6. Let n be a nonnegative integer and let r be a positive integer with
r<n+ 1. Then

r-l  q,-,(n)  r”c---=-
k=o  k! (r  - l)!’

Proof.  From (6.1) and (3.3),

(6.2)

Equating coefficients of x*  on both sides above, we achieve the sought
equality.

Entry 7. Let r and n be nonnegative integers with r I n. Then

r! rp,+,(n)=k$O(-l)k
0

L (r+l-k)“.

Proof.  Multiply both sides of (6.2) by eex and equate coefficients of x’+r  on
both sides to reach  the desired conclusion.

Entry 8. Let n and r be integers such  that 1 5  r < n + 1. Then

cp,(n  + 1) = v,(n) + cpr  ,(n),
where q,,(n)  = 0.

Proof.  By Entry 7,

+(r-  l>(Lri)}(r-4”)

1=-
(r - l)!

r’+l+r  C ( - 1 ):l: *(‘i  l)o-4”)

Ramanujan next indicates that the recursion  formula in Entry 8 cari be
employed to calculatef,(x).  In the following corollary, Ramanujan givesf,(x),
0 I n I 6. In a corollary after Entry 5, Ramanujan inexplicitly indicates that
the calculus  of finite differences  in conjunction with Entry 5 cari also be used
to calculate in(x). Since  this is now very well known, we shall forego  any
further calculations and be content with merely exhibiting the first seven
polynomials.
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Corollary.

fa(x) = XT

fi(X) = x + x2,

fi(X) = x + 3x2 + x3,

f3(x)  = x + 7x2 + 6x3 + x4,

f4(x) = x + 1 5x2 + 25x3 + 10x4 + x5,

f5(x)  = x + 31x2 + 90x3 + 65x4 + 15x5  + x6,

f6(x)  = x + 63x2 + 301x3  + 350x4  + 140x5 +21x6 +x7,

Example 1. Let  cpi(n),  . . . . q,,+,(n), 0 I n < 00,  be dejined
1 I k < 00,  be any sequence  of complex  numbers such  that

by (6.1). Let {a,},

has abscissa  of convergence Â.  < 00.  Dejïne,  for each  nonnegative integer j,
F(j) = pizi  a,cp,(j).  Let R, be defined  by (3.2) ifA= - 00,  but if,l isjinite, let

RE={~: -$c+EIarg(z--;1)  1$x-c}, E  >  0.

Then as z tends to CO in R,,

$(z)  - T (- l)kFW
k=O

Zk+l  '

Proof.  Using a well-known generating function  for Stirling numbers of the
second kind found in the handbook of Abramowitz and Stegun [l, formula
24.1.4B, p. 8241, we have

1 = f  (-l)‘+kqkO’- l)

(Z+1)(2+2)*..(Z+k)  j=k  Z j

qk(-ly+y-  1) +o(Z-n-l)

as z tends to 00 in R,. Hence,

E (- l)k-lak = k (-l)k-lak  t (-l)‘+~o‘-l)  +~(~-n-‘)
k=l(z+l)(z+2)...(z+k)  k=l j = k

=j~l~k~lak~k~-l)+o(z-“‘)

=jil (-y-Ci-l) +o(z-"-l).

This completes the proof.
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Example 2. Let r and n be integers with 0 I r I n. Then r! <p,+  l(n)  is the
coeficient  of x”/n!  in the Maclaurin series  of ex(eX  - 1)‘.

Proof.  By Entry 7, r! <p*+  l(n) is the coefficient of x”/n!  in the expansion of

kio (- I,*(;)e x(r+l-k)=ex(e”-  l)*,

and the proof is complete.

Example 3. Let n be a positive integer. Then

Proof.  From Entry 4,

Equating the coefficients of a” on both sides, we complete the proof.

Both Examples 2 and 3 are well known.
The next example is the first of many entries in the second notebook that

involves the Bernoulli numbers B,, 0 I n < CO.  Ramanujan defines the
Bernoulli numbers by

BA=  1 -&x+ f (-l)n-lZnX2n,
(2n)! Ix/<  271. (8.2)

n=l

However, today the Bernoulli numbers are more commonly defined by (Il),
and SO the latter convention shall be employed here. Moreover, generally,
Ramanujan’s formulas are more easily stated in the notation (Il) rather than
( 8 . 2 ) .

Example 4. Let n denote  an integer greater than or equal to  -1. Then

Proof.  Replace x by t in (4.1) and integrate both sides over 0 5 t I x to obtain,
for (a( < 271,
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where we have utilized (Il). Now equate the coefficients of a”+  ’ on the
extremal sides of (8.3) to obtain the desired result.

Example 4 was incorrectly stated by Ramanujan. On the right side of his
equality, replace n by n + 1 everywhere except  in the suffixes.

Example 5(i). For each  nonnegative integer n, dejine A, by

eA, = 4,(l) = ,zl &.
Then A, = 1, A, =2, A, = 5, A, = 15, A, = 52, A, =203, A, = 877,
A , = 4140, and A , = 21147.

Proof.  It is not difficult  to show that, with x = 1, (5.1) cari  be equivalently
expressed by means  of difference notation in the form

L\“A,  = A,- 1, n2 1. (8.5)

Since  A, = 1, (8.5) cari  be used to construct  a difference table in order to
calculate A,

The numbers A, are now called Bell numbers with the nth Bell number
B(n) being defined by B(n) = A,-  i, n 2 1. Combinatorially, B(n) is the number
of ways of partitioning a set of n elements. According to Gould [9],  the
earliest known application of these numbers is in an edition of the Japanese
Tale ofGenji published in the seventeenth Century. The numbers B(n) arose as
the number of ways of arranging n intense sticks. As another application,
Browne [l] observed that B(n) is the number of ways of rhyming a stanza of n
lines. The first explicit appearance of these numbers apparently is in a paper
of C. Kramp [l] in 1796. They are also found in a treatise of J. Tate [l, p. 451
published in 1845. The formula (8.4) appears as a problem [l] in the
Matematicheskii Sbornik in 1868. In 1877, Dobinski [ 11  used (8.4) to calculate
B(l), . ..) B(8). In 1885, Cesàro [l] found the numbers to be solutions of the
difference equation (8.5). Again,  in connection  with (8.4),  the numbers appear
in problems in the texts of Hardy [16, p. 4241 and Bromwich [l, p. 1971.
Touchard  [l],  [2],  Bell [l],  Browne [l],  Williams [l],  Ginsburg [l],  and
Balasubrahmanian [l] have established several elementary properties and
give lists of varying lengths of the Bell numbers. Carlitz [S]  has written a nice
paper on Bell numbers, Stirling numbers of the second kind, and some
generalizations. For references  to other papers of Carlitz on this subject see
his paper [S]. Levine and Dalton  [l] have calculated the first 74 Bell
numbers. Obviously, B(n) grows very rapidly, and Epstein [l] has found an
asymptotic formula for B(n). He has also discovered other analytic properties
of the Bell numbers, for example, integral representations.  For the numbers
listed in Example 5(i), A, is even if n 3 1 (mod 3), and A,, is odd otherwise.
This property persists, and a simple proof of it cari  be found in the paper of



3. Combinatorial Analysis  and Series  Inversions 5 3

Balasubrahmanian [l].  Actually, more general congruences are known; see
papers of Touchard  [L] and Williams [l],  for example. The Bell numbers
have been rediscovered by many  authors, and we have listed but a small
portion of those papers in which properties of the Bell numbers are proved
and combinatorial applications are given. For further references,  readers
should consult  Gould’s extremely comprehensive  bibliography [9].

Example 5(ii).  For each  nonnegative integer n, define  C, by

?=,gl&

Then C,=-1,  C,=O,  C,=C,=l,  C,=-2,  C,=C,=-9,  C,=50,  and
C, = 267.

Pro~f:  Observe that C, =f,( - l), n 20. This, from (5.1) it is readily  shown
that A”C, = - C,- r, n 2 1. Using this difference equation and the initial value
Ce = - 1, we may  compose a difference table to calculate C,.

The equalities in the next example are easily verified from Examples 5(i)
and 5(ii).

Example 6 .

(9 f3(1) = 3f,(l) = 15,

(ii) fdl)  +.hU)  = 4&(l)  = 208,

(iii) f3(-  1) =f2(-  1) = 1,

(iv) LA-l)=.f,(-l)= - 9 ,

Cv) fs( - 1) +f6( - 1) +f5( - 1) +fJ  - 1) = 5f7(  - =1) 250.

Let x, a, and b be complex  numbers, and let n be a nonnegative integer.
Generalizing f”(x),  we define

m ( a +  bk)“xkexFn(u,  b; x) = e”F,(x)  = 1
k=l  (k- l)! * (9 .1)

Thus,f,(x),  defined by (3.3),  is the particular case of F,(x) which is obtained by
putting a = 0 and b = 1. Moreover, F,(x) cari readily be expressed in terms of

~O(X),  . . ,fn(x),  since

e”Fflc4  = kz, g& .;
4

;
an -.ibjkj

‘1 0

a” -‘b%(x). (9 .2)
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Expressed in a slightly different  way, Entry 9(i) below is a generalization of
Entry 3.

Entry 9(i). As z tends to CO in R,, where R, is dejïned by (3.2),

k=O Zk+l k=  1  (Z + a + b)(Z + U + 26)  ... (Z + U + kb) + o(z-n-2).

t (- l)kF&)  ‘+’=c (-b)k-lxk

Proof.  By Taylor? theorem,

a j
=pï

- j - l

+ 0(2-n-2), (9.3)

as z tends to CO.  Thus,  by (9.2),  (9.3),  and (8.1),

i (-  l)kFk(x)

k=O
Zk+l = k$o $i$  jio  (;)a”-‘b!I@4

= SO (;JiG4  Zj (;)  (-;Xkak

=  jio (z(+-a;y+  ,.m  +  o(z-“-2)

from which the desired asymptotic formula follows.

The next entry generalizes Entry 4.

Entry 9(ii).  If a, b,  x, and y are complex  numbers, we have

Proof.  By (9.2),

(9.4)

Applying (5.2),  with by in place of a, we complete  the proof.
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Entry 9(iii). For each  nonnegative integer n, we have

F, + 1(x)  - (a + W’,(x)  = bx  ,io 0i bkF,  -k(X).
Proof.  Differentiating both sides of (9.4) with respect to y, we find that

“El  & FA-4  = (a + b + bxeby)  .zo 5 F,(x).
On equating coefficients of y” on both sides, we finish the proof.

Entry 9(iii) is obviously an analogue of Entry 5. After Entry 9(iv),
Ramanujan indicates very briefly how to express Entry 9(iii) in terms of
differences.  For each  nonnegative integer n, define

I)~(X)  = F,,  1(x)  - (a + b)F,(x) = bx(b  + F)“,

where in the expansion of (b + F)“, Fk is to be interpreted as meaning FI<(x).
Next, define  an operator 6 by 6g(n)  = g(n) - bg(n  - 1). SO,

SI),  = $,  - b$,_,  = bx(b  + F)“-‘F.

By inducting on k, it cari  easily be shown that

S”$,  = bx(b  + F)“-kFk, O<k<n.

In particular,

Gnt+bn  = bxF” = bxF,(x).

Since  F,(x) = x, it follows from Entry B(iii), or from (9.2),  or from the
preceding paragraph, that F,(x) is a polynomial in .x of degree n + 1.
Moreover, F,(O) = 0. Hence,  we define  VI(n),  . . . , qn+ l(n),  n 2  0, by

Il+1

F,(x)  = k&  vk(n)xk.

The next four results generalize Entries 6, 7, and 8, and Example 2 of
Section 8, respectively. The proofs are completely analogous, and SO we omit
them.

Entry 9(iv).  Suppose that r and n are integers such  that 0 < r 5  n + 1. Then

Entry 9(v). Let r and n be as in Entry 9(iv).  Then
r-l

(r - V cp,(n)  = kzo ( - Uk {a + (r - k)b}“.
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Entry 9(G).  Let n and r be integers such  that 1 I Y I n + 1. Then

cp,(n  + 1) = (a  + Wcp,(n)  + b- l(n),
where q,,(n)  = 0.

Using Entry 9(vi),  Ramanujan next calculates F,(x), 1 I  II 5 4. Thus,

F,(x)  = x,

F,(x) = (a + b)x + bx2,

F,(x) = (a + b)2x  + b(2a  + 3b)x2  + b2x3,

F3(x)  = (a + b)3x  + b{3(a  + b)(a + 2b) + b2}x2
+ 3b2(a  + 2b)x3  + b3x4,

F4(x)  = (a + b)4x  + b(2a  + 3b){2(a  + b)(a + 26) + b2}x2

+ b2{6(a  + 2b)2  + b2}x3  + 2b3(2a  + 5b)x4  + b4x5. (9 .6)

Entry 9(vii).  Let r and n be integers with 0 < r < n. Then r! (P,.+ l(n) is the
coejtïcient  of x”/n!  in the Maclaurin series  of e(a+b)x(ebx  - 1)‘.

Example (i). k$o(-‘)k
(2k  + l)j + (2k + 1)2 = o

k!

Proof.  From (9.1),  we have

kgon(-l)k (2k  + 1)3 + (2k + 1)2
k ! = -&-1,  2; -l)+F,(-1,  2; -l)}.

(9 .7)

But from  (9.6),  F2( - 1, 2; x) = x + 8x2 + 4x3 and F3( - 1, 2; X) = x + 26x2
+ 36x3 + 8x4. Hence, F2( - 1 , 2; - 1) = 3 = - F3( - 1 , 2; - 1) . Using these
values in (9.7),  we complete the proof.

Example (ii). $ L=4k$o(2k;l)2.
k=l  (k - l)!

Proof.  The left side above is 52e by Example 5(i) of Entry 8. The right
side above is 4eF,(  - 1, 2; 1) by (9.1). But from the previous proof,
F2( - 1, 2; 1) = 13, and SO the proof is complete.

Example (iii). ,zI  (- l)k- 1 $-&$  = k$I ( - l)k  (ft-  llr .

Proof.  By Example 5(ii) of Entry 8, the left side above is - 41/e.  Now, by (9.6),
F4( - 1,2;  x) = x + 80x2 + 232x3 + 128x4 + 16x5.  Thus, the right side above
is F4(  - 1, 2; - l)/e = - 41/e.
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Example (iii) must be corrected in the second notebook by multiplying
either side  of the equality by - 1. Example (iv) must be corrected in the
second notebook by replacing - 4 on the right side  of the equality by - 8.

Example (iv). k$, (- l)k  ‘2;;;” = k$  $$  - 8.

Proof.  We have

kgl  (_ l)k  “;;k”’ = k$l  i$ + k$ ( _ l)k  8 + 24k + ;fk’  + lfjk3

=,zl g- ;{8F,(-1,  1; -1)+24F,(-1,  1; -1)

+ 32F,(  - 1, 1; - 1) + 16F,(  - 1, 1; - l)}  - 8. (9.8)
Now, from (9.6),  F,(x) = x, F,(x) = x2, F2(x)  = x2 + x3, and F3(x)  = x2 + 3x3
+ x4 when -a = 1 = b. Thus,  the expression in curly  brackets  on the right
side  of (9.8) is equal to 0. This completes the proof.

Some properties of F,(a  - 1, 1; x) have been derived by Manikarnikamma
Dl.

In preparation for Entry 10, we first define  a sequence  of nonnegative
integers hkn, k 2 2, by the equalities:

i

b,,  = 1;  b,,  = 0, forn<korn>2k-2;  a n d

bk+l,n+l=nbk,,-I+(n-k+l)bk,,  forkInI2k-1.
(10 .1)

A short table of values for b,,  is provided below.

n 1 I I I I I I I I I I I
5 6 7 8 9 10 11 1 2

10 15
1 25 105 105

6 1 56 490 1260 945
7 1 119 1918 9450 17325 10395

In fact, bkn  = S,(n, n + 1 -k),  where S,(n,  k) is the 2-associated Stirling
number of the second kind. (See the books of Comtet [l, pp. 221-2223  and
Riordan [l, pp. 74-781.)

Entry 10. Let q(x) denote a function of at most polynomial growth as x (real)
tends to CO.  Suppose that there exists a constant A 2  1 and a function G(x) of ut
most polynomial growth as x tends to CC  such that for each  nonnegative integer
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m and a11  sujïciently  large x, the derivatives q’“‘(x)  exist and satisfy

Put
m x”cp(k)cpm(x)=eex  c’  ~k=O  k! ’

where the prime on the summation sign indicates that the (jinitely many)  terms
for which q(k) may  be undejned are not included in the sum. Then for anyfixed
positive integer M,

M 2k-2
q , ( x ) =  q(x)+  1 c bknx”‘+lF + O(G(x)x  - M), (10 .3 )

k=2 n - k

as x tends to CO, where the numbers b,,  are dejned  by (10.1).

Before embarking upon a proof of Entry 10, we offer several comments.
Examples of functions cp  satisfying the conditions of Entry 10 are functions

of polynomial growth that are analytic in some right half plane. This follows
from Cauchy’s integral formula for derivatives. Specific examples Will be
given upon the conclusion of the proof of Entry 10.

The following result is related to Entry 10. If cp  is bounded and continuous
on [0, oo],  then from Feller’s text [l, pp. 219, 2271

ëx  kgo T - C~(X),

as x tends to CO.  Observe that the left side above is the expected value E(V(U)),
where U is a random variable with Poisson distribution of mean x.

The asymptotic formula above has a superficial  resemblance  to Bore1
summability. However, it is doubtful that Ramanujan was influenced  by this.
In particular, no other material in the second notebook pertains to Bore1
summability.

Formula (10.3) is a more precise version of the formula that Ramanujan
gives in his Entry 10. He provides a very brief sketch of his forma1 “proof”  of
Entry 10, amd because it is instructive, we shall give it below.

Ramanujan tacitly assumes that cp  is an entire  function.  Hence,

=ex 2 cp'"'mL,(x)
n=O n! ’
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by (3.3),  where it is assumed that the inversion in order of summation above is
justified. (There is a misprint in the notebooks in that J, _ i(x)  is replaced  by
f,(x).) Using (6.1) above, we find that

wJ p(0)  ”%W  = P(O)  + c -Il=1 n! jzl qAn  - ‘jxj

=$I(O)+ f f cp’“‘ocp,~k+,(n-l)x”-“+l.
k=l “Zk n ! (10 .4 )

We now separate q(O)  together with the series  for k = 1 in (10.4). These
terms are

m (D’“‘(O)
cp(O)  + c - m fp’“‘(0),n=1  n. cp,(n  - 1)x” = do)  + nzl 7-x”  = cpw (10 .5 )

Here we have used the fact  that

cp,(n  - 1) = 1, n2 1,
which is easily proved by induction with the aid of Entry 8.

Next, we examine the series  for k = 2 in (10.4). This series  is

(10 .6 )

cc  q+“‘(O)
cIl=2

n!rp”-,(n-  1)y-l  =x 2 cP’“‘oxn-2  - x
2 n=2(n-2)!

- 7 q”(x). (10 .7 )

In this calculation we have used the evaluation q,(n)  := n(n + 1)/2  for n 2 1,
which again is readily established by induction with the help of Entry 8.

Ramanujan continues to calculate in the fashion indicated above. In fact,
using special  cases of Lemma  3 below, he finds that

m cp’“‘(0)c 7 $0,  - 2(n  - 1)x” - 2 = ; q”‘(X)  + ; qqx),
n=3  .

m q+“‘(O)
c 7 (P”  - 3(n  - 1)x”-  3 = ; (p(4)(x)  + 6 f$P’(x)  + ; (p’@(x),

n=4 .
m q?‘“‘(O)
c T ql-4(n  - I)x”-4Il=5  *

= & p(x) + g qqx) + g (p’7’(x)  + & qqx),

and

m q+“‘(O)
c -yy,-,(n  - 1)x”-5

n=6  .

(10 .8 )

(10 .9 )

(10 .10)

(10 .11)

At this point Ramanujan cesses  his calculations and substitutes (10.5) and
(10.7H10.11) into (10.4). With the help of the table for bkn,  we readily verify
that Ramanujan’s result agrees with (10.3).
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In a corollary, Ramanujan claims  that C~,(X)  = q(x)  + (X/~)#‘(X)  “very
nearly.” However, no discussion of the error term is given.

Before commencing the proof of Entry 10, we provide  four lemmas.

Lemma 1. Let t be jixed, where 0 < t < 1. Then

each  tend to 0 exponentially as x tends to 00.

An easy proof of Lemma 1 has been given by Breusch in a solution to a
problem posed by Moy [l].

Lemma 2. Let 2 5  k <n. Then b,, I (n - l)!.

Proof.  With the use of (lO.l),  induct  on n, and the result follows easily.

Lemma 3. Let 2 s k < n. Then
2k-2

%+l-dn-  1)~  jzk bkj
0

j” y

where q,(n) is defined by (6.1).

Proof.  The result follows from Entry 8 by induction on k. See also Comtet’s
text [l, p. 2261.

Lemma 4. Let p(x) be a polynomial of degree n. Then

p,(x) = emx C,:,y =dx)+ c f: bkjxj-k+~p’jlx).
j=2  k=2

Proof.  By linearity, it suffices  to prove this lemma in the case that p(x)  = xn,
where n is a nonnegative integer. The result is easily proved for n = 0, 1, and
SO we suppose that n 2  2. By (6.1)

pdx)  = e-x kro  g =f,-  1(X)  = kil  vkb  - l)Xk

Using (10.6) and Lemma 3, we deduce that
n 2k-2

p , ( x )  =  x”+ 1 C bkjxj-k+l J xn-j
k=2  j=k 0

=P(X) + k~2  h bkjX’-k’l  ~.



3. Combinatorial Analysis  and Series  Inversions 6 1

Since p(j)(x) = 0 for j > n and since bki  = 0 for j > 2k - 2, the Upper index 2k
- 2 on the inner sum may  be replaced  by n. The result now follows upon
inverting the order of summation.

Proof  of Entry 10. Throughout the proof we always assume that x is
sufficiently large. Fix t  E (0, l), but we require that t  is close enough to 1 SO

that 3(1  - t)A/t  < 1. Define  the intervals Z,,  Z,,  and Z,  by Z,  = [0, tx),  Z, =
[tx, (2 - t)x),  and Z, = [(Z  - t)x,  00).

Consider the Taylor polynomial

p(y) = c’ cqy - x)‘,
r=~ r!

where N = [&/6A].  By Taylor? theorem, for each  y E Z,,

where r is some point between x and y. Thus, by (10.2),

l dY>  - P(Y)1  5
I .l
9 (x(1 - t)}”

5 G(5)  ; N{x(l -t,>”
0

< G(<)3-N<  2-N,

for every y E Z,.  Therefore, as x tends to 00,

(10 .12)

(10 .13)

Since C~(X)  has at most polynomial growth as x tends to 00,  it follows from
Lemma 1 that

e-xg y -) 0 exponentially as x -+  CO.

Also, for some fixed natural number B,

SO again by Lemma 1,

eexkz3T -+  0 exponentially as x -+  co.
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By (10.2) and (10.12) for 0 I y I 2x,

‘Y  + (A  + llN,
and SO by Lemma 1,

ëX,,~+O exponentially as x + CO.

Write

e-xkz3+ Sl + s,,
where

(2-r)xsk<2x k !
a n d  S,  = 1 -

kz2.x k! ’
By (10.16) and Lemma 1,

S,  + 0 exponentially as x -+  CO.

For k 2 2x, it follows from (10.2) that

Also, for k 2  2x, xk/k!  < (xe/k)k.  Hence,

The summands in (10.20) are strictly decreasing in k. Thus,

S24e-” f
j=2  jxck$j+,)x  (?)k(kr’

X/7

=x f {ej-lj-j+l/7}x

j=2

( x/3
<X  f {ei-lj-j+1/7  3  .

j=2 4

(10.16)

(10 .17)

(10.18)

(10 .19)

(10.20)

Since  the series  in parentheses above converges to a number less than 1,

S2  + 0 exponentially as x -t  GO. (10.21)
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By (10.18),  (10.19),  and (10.21),

e-x xkp(W
c-

kels k!
-+  0 exponentially  as x -+ 03.

By (10.13),  (10.14),  (10.15),  (10.17), and (10.22),

40,(x)  - PA4 = w -7
as x tends to 00,  where

(10.22)

(10.23)

m xkpU4pm(x)=ePx  C -.
k=O  k!

By Lemma 4, (10.12), and (lO.l),

p,(x)  = p(x)  f ‘9’  i bkjXj-k+l  F!
j=2  k=2

N-l j

=C&C)+  c  1  bkjxj-*‘lT

j=2  k=2

N - l  N - l

=  q ( x ) +  c  c  bkjxj-“+&j!!?

k=2  j=k

M 2k-2

where

k=2  j=k
(10.24)

S, = ‘2’  ‘2’  bkjXj-k+l  “p’.

k=M+l  j = k

In view of (10.23) and (10.24),  in order to prove (10.3) it suffices  to show that
S,  = O(G(X)X-~)  as x tends to CO.

By (lO.l),  (lO.Z),  and Lemma 2,

Is,l  < f 2k2  bkjXj-k+l  lpyy)l

k=M+l  j=k

I kz$+l  ;zk2 o’-  l)! G(x)A~x’-~

I G ( x )  f (2k)!  A2k~’  -k
k=M+l

< G(x)xeM  kto  (2k + 2m + 2)!

I G(x)-M ,ro (k + 2M + 2)!
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Since  N I &/6A,  the (k + 1)th  term in the last sum above is less than half of
the kth term, for each  k < 2N. Thus,

IS31  I G(x)x-~(~M  + 2)! kfo  2-k  = O(G(x)x-M).

This completes the proof.

The following four examples give applications of (10.3).

Example 1. As x tends to CO,

Log
Oz xk&

( .)kzl 7
1

=x+fLogx-8x-T16, +O +3 .
0

Proof.  Letting q(x)  = G(x) = ,,& in (10.3) with M = 3, we find that

as x tends to CO.  Hence,

and the result easily follows.

Example 1 is actually a special case of a result of Hardy [4, pp. 410-411],
[18, pp. 71-721,  who derived in the case q(x)  =(x  + a)-’ an asymptotic series
which is in a more complicated form than that given by (10.3). In particular,
we find that

s(s  + l)(s  + 2)-
6 x(x + u)-s-3

+ s(s  + l)(s  + 2)(s  + 3)
8 x2(x  + u)y4

+ 0(x-“-3).

Quite likely Ramanujan discovered Entry 10 about the same  time that Hardy
established the aforementioned special case. It is unfortunate that these two
great mathematicians had not been able to collaborate ten years earlier than
they did, for Ramanujan possessed the more general theorem, while Hardy
might have supplied a rigorous proof.
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Example 2. As x tends to 00,

Proof.  Letting C~(X)  = Log(x + 1) in (10.3) with M = 4, we deduce that

e-x k$l  Xk  L”$  + l) = Log(x + 1) - &r  + ’
3(x + 1)3

3x2
- 4(x + 1)4 +o $

0

=Logx+&&’  1-c
2X ( >

+&-G+o  ;y  3
0

as x tends to CO.  The desired asymptotic expansion now readily follows.

Ramanujan returns to Example 2 in Section 12 of Chapter 13 where he
calculates additional terms of the asymptotic series.  Pollak and Shepp [l]
have proposed an asymptotic expansion equivalent to that of Example 2.

Example 3.

LopdzO  9) = 100 + Log(<p(I1o):  <p(9-) “nearly”.

Proof.  We have quoted Ramanujan above, who evidently uses the approx-
imation C~,(X)  - q(x),  sets x = 100, and then replaces (~(100)  by
Ml 10)  + (~(90))/2.

Example 4. Let t,+(x)  = xkSx  l/k. Then as x tends to CO,

,

where y denotes  Euler’s  constant.

Proof.  As x tends to cc  (see Ayoub’s text [l, p. 43]),

1
Il/(x)= Log x +y + 0 -0 .

X

(10 .25)

Now substitute (10.26) into the left side  of (10.25). Then apply (10.3) to
q(x)  = Log x with M = 1. The result now easily follows.

An independent proof of Example 4 cari  be gotten by employing Corollary
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2 of Entry 2. We omit the details. Anticipating his work on divergent series  in
Chapter 6, Ramanujan calls y (c in his notation) the “constant” of the series
Cc=l llk.

Entry 11. Suppose that f(x) = CT=  1 A, x” /n is analytic for 1x1  < R. Defîne pn,
O<n<ce,  by

f PS” = exp  { f(41, 1x1  <R. (11 .1 )
n=O

Then

nPn=  2 A,P,-,y n2 1. (11 .2 )
k=l

Proof.  Taking the derivative of both sides of (1 l.l), we find that

c npnxnml  = jzo  pjxjkgl  AkXk-‘, 1x1  <R.
#I=l

Equating the coefficients of x”-l on both sides  above, we obtain the desired
recursion  formula.

Corollary.  Let {ak},  1 I k < c/3,  be a sequence of complex  numbers such  that
IF=  1 la,/ < CO.  Let S, = cp= 1 a;, where n is a positive integer. For n 2  1, dejine
pn to  be the sum of ail products  of n distinct terms takenfrom  {ak}.  Let p. = 1.
Then

npn=kil  (-l)k-lSkPn-kp n2  1.

Proof.  For 1 x)  < p z inf,  l/la,l,  a, # 0,

f pnxn  = fi (1 + a,x)
n=O #I=l

is analytic and nonzero. Thus, in the notation of Entry 11, for 1x1  < p,

.gl  $f  x”  = k$l  Log(1  + akx)  = .tl (- ‘:- lsnx”

Hence,  A, =( - l)n-l&,  n 2 1. Substituting this in (11.2),  we complete  the
proof.

In the corollary above, Ramanujan assumes that the sequence (ak} is finite,
but this is unnecessary.

For integral r and complex n, define

(12 .1)

By Stirling’s formula (16),  the (k + 1)th  term of Fr(n)  is asymptotic to
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(l/&)k’-l’z(  / )”e a as k tends to CO. Wence, F,(n) converges for la1 > e and
also for (a( = e if Y < - 1/2.

Entry 12. For Y, n, and a as specijïed above, we have

F,+,(n)  = nF,(n) + f F,+h + 1).

Proof.  We have

a~ k(n+kytk
F, + l(n)  = nF,(n) + 1

k=O akk!

m (n+k)l+k
= nFr(n)  + ; kzl  ak-  ‘(k  _ p’

from which the desired recursion follows.

Entries 13 and 14 are concerned with functions of the form

where the coefficients are polynomials in x such that

fnlx  +  Y) =  i  fktx)f,  - k(y), O<n<ce, (13 .1 )
k=O

where x and y are arbitrary real numbers. Thus, cp  satisfies the relation

cp(x + Y) = cp(XMY) (13 .2)

for a11  values of x and y.
We first prove a general theorem and corollary from which we shall deduce

the identities of Entries 13 and 14.

Theorem. Let  p and q be constants with q #  0. Let fn(x), 0 I n < 00,  be a
sequence  of polynomials satisfying the diflerence  equation

L(x  + 4)  -L(x) = dl - lb + PIY n2 1, (13.3)

together with the initial conditions

foc4 - 1 (13 .4 )

a n d

L(O)  = 03 n2 1. (13.5)

Thenf,(x)  satisjïes  (13.1).

Before commencing the proof, it might be noted that the theorem remains
true if the factor q on the right side of (13.3) is replaced by a third arbitrary
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constant r, r # 0. For if the solutions of (13.3)-(13.5)  are denoted by f”(x),
those  solutions under the modified conditions are (r/q)“f,(x),  0 I n < CO.  Thus,
for the apparent generalization, both sides  of (13.1) are merely multiplied by
(r/qY.

Proof  of Theorem. We shall induct  on n. By (13.4),  the relation (13.1) holds for
n = 0. Suppose that (13.1) is valid for a11  values of x and y when
Olnlm-1.

We shall first show that (13.1) is true for a11  values of x when n =m and
y=q. From (13.3) and (13.5),

.LM  = 4f,  - l(P), n2 1. (13 .6 )

By (13.3),  (13.6),  and the induction hypothesis,
m-l

L(x  + 4) =fmW + 4 go  fkwm  - 1 -k(P)

Il-1
=fm(x) + &.. M4fm  -k(q)

by (13.4).
Next,  we shall show that if (13.1) is valid for a11  values of x when n = m and

y has a particular value y,, then (13.1) also holds for a11  values of x when
n = m and y = y, + q. By (13.7),

f& + Y0 + 4) = k~oh<x  + YoLdq)

= k~o.L-*(4)  j$of,(x)X-  j(YO),

by our assumptions. Now invert the order of summation and put r = k -j to
obtain

.Mx + Y0 + 4) = j~o.ljCx>  ~,~MYO)fm  - j-r(4)

= j~oJ;<x>fm  - j(Y0 + 49

by the induction hypothesis and by (13.7) when j = 0. We have thus shown
that (13.1) is valid for a11  values of x when n = m and y is any  positive integral
multiple of q. In other words, the polynomial identity (13.1),  when n = m,  is
valid for a11  x and an infinite number of values of y, and SO must be valid for
a11  x and a11  y.
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Corollary.  Let p and q be constants. Then the polynomialsf,(x)  = l,f,(x)  = x,
and

f,(x) = $ IfJ (x + np - kq), n 2  L!,

satisfy (13.1).

Proof.  For q # 0, the result is obvious for n = 0 and follows from the Theorem
when n 2 1. For q = 0, the result follows by continuity in q.

The theorem above and its corollary are not explicitly stated by Raman-
ujan in his notebooks. The theorem’s proof that we have given was supplied
to Wilson by U. S. Haslam-Jones. The theorem and corollary are now part of
a general theory developed by Rota and Mullin [l, p. 1823. The polynomials
in the corollary were first introduced in the literature by Jensen [2]  in 1902
and later by Gould Cl],  and are essentially what are now called the Gould
polynomials. (Consult the papers of Rota, Kahaner, and Odlyzko [l,
pp. 733-7361  and Roman and Rota [l, p. 1151.)  See Gould’s papers [ l]-[6],
and a paper of Carlitz [4]  for several formulas and the context  in which these
polynomials arise.

Entry 13. Letf(n) = nF-  ,(n),  where F-  1 is dejned  by (12.1). Assume that a is
real, with la1  2  e. Then there exists a positive real nu,mber  x satisfying the
relation x = a Log x such that for any real number n, x”  = f (n).

Proof.  By the corollary with p = 1 and q = 0 and by (13.2),  f(m)f(n)  =
f (m + n), where m and n are arbitrary real numbers. Hence,  if n is any  posi-
tive integer, f (n) = x”, where x = f (1). This relation may  be extended to nega-
tive integers n by using the equality f (n)f (-  n) = f (0) := 1. It cari  further be
extended to a11  rational numbers r/s  upon noting that {f (r/s)}’ = f (r) = x’.
For 1 a 12 e, f (n) converges uniformly on any  compact interval in the variable
n. Hence,  f (n) is continuous for a11  n. It follows that f (n) := xn  for a11  real values
of n. Hence,  for la1 2 e,

f’(n) = x”  Log x = krI (n zky:  - 1 + kzI e$l T k)k  - ’ ,

since  both of these series  converge uniformly on any  compact interval in n.
Thus,

f’(0) = Log x = kzI ak,k’l),  + == ;.

This completes the proof.

Let a now be complex  and consider the relation x = a Log x, where x is to
be regarded as a function  of a. By considering, for example, the graph of
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x/Log  x for real values of x, we see that for a > e there are two branches x1
and x2 of the function x that have real values. Thus, a = e is a branch point.
One branch, say  x1, decreases from e to 1 as a increases from e to + 00.  The
other branch x2 increases from e to + 00 as a increases from e to + 00.  Since
S(1) tends to 1 as a tends to CO,  it follows that, for a > e,f(l)  defines  a branch
of the function x(a)  that is real and lies between 1 and e. Entry 13 thus shows
that f(n) = xl.

Corollary. Let z be an arbitrary complex number, and suppose that  w is any
complex number  such that  1 e”-  1 ) 2  ) w  1. Then

m z(z  + kw)k-leëkw
ez=  1

k = O k! (13.8)

Proof.  First suppose that w is real. Apply Entry 13 with x = ew,  and SO a
= e”‘/w.  Then for any  real number n,

f(n) = enw  = f n(n + k);‘wle-l”.

k = O

Letting z = nw, we deduce (13.8) for real z and real w with (WI  5  Iew-l/.  By
analytic continuation in each  of the variables w and z, we complete the proof.

For brevity, we shall now define  c,(n) = 1, cl(n)  = n, and

k - l

ck(n)  =  n  jgl (n +  kp  -bd,

Define, for complex a,

k 2  2. (14.1)

(14.2)

If p=  q=O,  cp(n)  =e”“. If p#O  but q=O,  then cp(n)=f(n/p),  where f is the
function defined in Entry 13 but with a replaced by l/ap. If p = 0 and q # 0,
then cp(n)  = (1 + aq)“iq.  If p = q #  0, then cp(n)  = (1 - ~p)~“‘~.  Thus,  in the
sequel  we may suppose that none of the parameters, p,  q, and p - q is equal to
0. Furthermore, without loss of generality, we may assume that p and q are
positive, for, in a more explicit  notation,

cp(n)=cp(n;p,q,a)=cp(-n;  -p,  - 4 ,  -4

=dn;p-q,  -q,a)=cp(-n;q-p,q,  -4.

Now, by Stirling’s formula (16),  as k tends to CO,

N  ck-3/2ppk/q(P  _ q(  -k(p-q)/q,
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where the constant c depends  upon p, q,  and n but not k. Thus, <p(n) converges
for

lai  Ip-p’qjp  - ql(p-q)‘q. (14 .3 )

Entry 14. Let cp be dejïned by (14.2) and let p and q be as specijied  above. Zf  x is a
certain root of the equation

aqxP  - x4  + 1 = 0, (14 .4 )

then cp(n)  = x”  for every real number n.

Proof.  By the same  type of argument as that in the proof of Entry 13,

cp(4  = x”, (14 .5 )

where ~(1) = x and n is any  real number. Next, by a direct calculation,

& Ckkz)  - &+I(P)  = 0.

Hence,  since  CO(n)  = 1,

d4)  - aqrp(p) = 1.
In other words, by (14.5),  x satisfies (14.4),  and the proof is complete.

Note that, by (14.2),  x=x(a) tends to 1 as a tends to 0.

Corollary 1. Let n be real  and suppose that la1 5  1/4.  Then

Proof.  In Entry 14, let p = 2q. The root of (14.4) which tends to unity as a
tends to 0 is given by

xq  = l-Jl-4aq  = 2

2aq 1 + J-q’

Thus, by Entry 14 and (14.1),

”  = cp(nq)  = 1 + nqa + nq

where [a[  < 1/(4q),  by (14.3). Setting q = 1 in the equalities above we complete
the proof.

Corollary 2. Let n be real and assume that ( a( I 1. Then

(a+JCL+=  1 +na+  kz2+,
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where, for k 2  2,

Mn)  =
n2(n2 - 22)(n2  - 42)  ... (n’ - (k - 2)2), if k is euen,

n(n’  - 12)(n2  - 32)  ...  (n’ -(k - 2)2), ifk  is odd.

Proof.  Let q = 2p in Entry 14. The root of (14.4) which tends to 1 as a
approaches  0 is given by xp = ap + Jm.  Hence,  by Entry 14,

(ap + dm)” = cp(np)  = 1 + npa +

where c,(np)  is given by (14. l), and where (a(  I l/p by (14.3). Now let p = 1 and
q = 2 in the above equalities. Then it is not very  hard to see that C~(H)  = b,(n),
and the proof is complete.

Entries 13 and 14 have a long history. Entry 14 was first established by
Lambert [l, pp. 38-403  in a paper published in 1758. In 1770, Lagrange [l]
published a proof of the celebrated “Lagrange inversion formula.” As an
application, he derived Entry 14 [l,  pp. 53-561.  Entries 13 and 14 appear as
problems illustrating the Lagrange inversion formula in the text of Polya and
Szego  [l, pp. 145-1461.  In 1779, in a paper stimulated by the work of
Lambert, Euler [4],  [6]  proved both Entries 13 and 14. Entry 13 actually
appears in a paper published by Euler [3]  one  year earlier, but no proof is
given. Rothe [l] rediscovered the special  case q = 1 of Entry 14 in his
dissertation published in 1793. Entries 13 and 14 also follow from Abel?  [l],
[2,  pp. 102-1031  generalization of the binomial theorem and are sometimes
attributed to him. Entry 13 was rediscovered in 1844 by Eisenstein [l],  [2,  pp.
122-1251  who was apparently unaware of earlier work. Other proofs of
Entry 13 or equivalent formulations have been given by Wittstein Cl] in 1845,
Woepcke [l]  in 1851, Seidel [l] in 1873, and Jensen [2]  in 1902. The result is
also found in Gould’s paper [2,  p. 4121. A similar theorem of a more general
type has also been established by Gould [4,  Theorem 71.  Entry 14 is similar
to further results of Gould [l, p. SS],  [4,  Theorem 11. Entry 14 has also been
generalized in a different direction; solutions of certain algebraic equations
cari  be represented by hypergeometric series.  Further references  cari  be found
in Birkeland’s paper [l].  Hardy [20, p. 1941  refers to Ramanujan’s work on
(14.4). Moreover, Ramanujan discusses (14.4) in his quarterly reports. The
corollary of Entry 13 is essentially a reformulation of an exercise  in
Bromwich’s book [l,  p. 1601.  (See also p. 195 of Bromwich’s text.) The
aforementioned corollary is also derived by means of the Lagrange inversion
formula in Chaundy’s text [l,  p. 4091 and Carmichael’s paper [l].  An
application of this corollary has been given by Rogers [l].  Jackson [l] has
found a q-analogue of this corollary as well as of Abel?  theorem and related
results. Gould [7]  has compiled  an extensive bibliography of papers related
to Entries 13 and 14, the aforementioned convolution theorem of Abel, and
similar results. Finally, an article by Knoebel [l] contains many  references  to
Entry 13 and allied results.
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Entry 15. Dejine u, 0 < u -c 1,  by

x2
u-Logu=1+2,

where x is real. Then

’ k!
m tk+‘jk-’  e-k(l+x*/2)=uel+x2/;!

k=O

7 3

(15 .1 )

(15 .2 )

Furthermore, for sujïciently  small  positive x,

u = 5 bkxk,
k = O

where b, = 1, b, = - 1, b, = 113, b3  = - 1136,  b4  = - 1/270, and, in general,
the coefficients b, are found successively by substituting into the identity

fx2  = f (1 - uy

j=2  j

Proof.  In Entry 13, let x = eu and a = e”/u,  SO a = exp(1 + x2/2)  by (15.1). We
then find that

f(l) = eu  = f (k +;,)-  e-k(l  +x2/2),

k=O

from which (15.2) follows.
Define  F(u) = 2(u - 1 - Log u) = x2. Note that F is analytic in a neigh-

borhood N of u = 1 and that F’(  1) = 0 and F”( 1) #O. For u E N, we may  then
Write F(u) = G(u)’ =x2, where G(u)  is analytic and one-to-one  on N, and
where, say,  x = G(u) and G’(1) < 0. Thus,  there exists an analytic inverse of
G(u) = x in a neighborhood of x = 0 of the form

u=  G-‘(x)= f b,xk.
k = O

When 0 -C  u < 1, the equalities above hold with x > 0, since G’( 1) < 0. We have
b. = 1 and b, is negative. By (15.1) and Taylor% theorem,

cc  (1 -u)’
&Lu-l-Logu=  c - -

j=2 j ’

and SO the coefficients b, may be calculated as indïcated.

Example 1. Let m be real and let 0 < n < 2. Then
mT(m  + kn)

k=eI(m+kn-k+  l)2k”kI’

This example ïs highly interesting. Ramanujan, in fact, claims  the result is
true for 0 -C  n < 00.  The series  does  converge for 0 <n < 00.  However, it
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converges to a different value for n > 2. In the proof below, we shah  prove this
last fact  as well.

Proof.  In Entry 14, replace n by m, let q = 1, replace p by n, and let a = 2-“,
where 0 < n < 00. We find  that if x is a certain root of

f(x)=2-“x”-x-t  1 =o, (15 .3 )

then

xm= f mT(m  + kn)
k=OT(m+kn-k+  1)2k”k!’

provided the series  converges. By (14.3),  the series  above converges if

2-” I n-“In  - lin-i, (15 .5 )

for n # 1. By the remarks made prior to Entry 14, the series  in (15.4) converges
for n = 1, in which case (15.5) would be interpreted as 2-i I 1. We now show
that (15.5) holds for 0 < n < CO.  Letting g(x) = (x/2)x1  1 - x 1 i -x,  we want to
show that g(x) I 1 for x 2 0. By elementary calculus, we find that g(x)
decreases for 0 < x < 2/3 from the value g(0) = 1. On 2/3 < x < 2, g increases
to the value g(2) = 1. For x > 2, g decreases. Thus, g(x) I 1 for x 2 0, and
(15.5) is valid for 0 < n < 00.

Now, obviously, x = 2 is a root of (15.3). Sincef’(x)  = n2-nx”-  ’ - 1, we see
that there is a unique positive value x = 5 such  thatf’(5)  = 0. Hence, (15.3) has
at most one  positive root in addition to the root x = 2. If 0 < n I 1, f(0) is
positive while f(  + CO)  is negative. Hence, x = 2 is the only positive root of
(15.3). Thus, Example 1 is established for 0 I n < 1. If n > 1, both f(0) and
f(  + 00)  are positive. Thus, in addition to the root x = 2, (15.3) has another
(not necessarily distinct) positive root x = 01,  and clearly c(  > 1,  Now c1=  2 if
and only iff’(2)  = 0, which happens only when n = 2. Thus, Example 1 is valid
for n = 2. Observe that f’(2) has the same  sign as n - 2. Thus, GI > 2 if
l<n<2,butcl<2ifn>2.Also,asntendstol+,atendstooo;asntendsto
2, CI tends to 2.

TO complete  the argument, we only need to show that the series  in (15.4)
converges uniformly in 1 I n I 2 for one  particular value of m # 0; the sum is
then a continuous function  of n, and SO x = 2 for 1 <n  < 2. Choose
m = - 1/2.  By (15.5) and Stirling’s formula (16),  there exists a constant K,
independent of k and n, such  that

r(-i+kn)
r(kn  _ k + ‘-)2k”k  I ’ Kk - 3’2’

2 .

Hence, the series  in (15.4) converges uniformly in n on any  interval in Cl, CO)
when m = - 1/2.  This completes the proof that (15.4) holds for x = 2 and any
real value of m when 0 < n I 2.

Lastly, we shall show that for n > 2, (15.4) is valid for x = c(  < 2. By the
argument above, the series  in (15.4) converges uniformly for 2 <n -c CO,
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and SO it is sufficient to prove the assertion for one  particular value of n
greater than 2. We shall choose  m = 1 and n = 3. Then from (15.3) we see that
a = ,,/5 - 1. We therefore must prove that

57 r(3k  + 1)
k=O  r(2k  + 2)8kk! =Js-1. (15 .6)

Now since  this sum is known to be equal to 2 or ,,/?  - 1, it suffices  to show
that this sum is less than 2. Let

r(3k  + 1)

Then for k 2  2,

uk  = r(2k  + 2)8kk!

ak+l 3(3k  + 1)(3k  + 2) 27 81k + 69 27
- = 16(k  + 1)(2k + 3)

=--
ak 3 2 32(k  + 1)(2k + < 32’

Hence,

27 kT .,<l+‘+‘f  - =
R=O 08 64k=o  32

1+;+$<2.

This establishes (15.6). Thus,  we have shown that the equality in Example 1 is
valid for 0 < n I 2 and invalid for n > 2.

In connection  with a11  of the examples below, it should be kept in mind
that in the proofs the relevant root X of the equation X = A Log X, A 2  e, as
was emphasized in the remarks made after Entry 13, is that root which lies
between 1 and e. If X is a root of X = - A Log X, A :L e, then there is no
ambiguity, as the root, which is between 0 and 1, is unique.

Example 2. Let a be positive and suppose that m, n, and p are real and nonzero.
Dejïne  the positive real number x by the relation (Log x)”  = ax”. Then, for
a 5  Im/enlm,

xp  = p f (mp + nk)k-‘ak’”
k=O mk-‘k!  ’

Proof.  Define  y > 0 by x” = y”. A short calculation gives

Log  Y n-=-a l,m
Y m ’

We now apply Entry 13 with x replaced by y and a replaced by (m/n)a-“m.
For Im/nla -rim 2 e, we then have

m (mp/n)(mp/n  + k)k-lxP= ympln=  C
k=O (ma-““/n)kk!  -’

from which the desired result follows.
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Examples 3(i)-3(viii)  and 4(i)-4(iv)  arise from Entry 13 by suitable changes
of variables. Example 3(i) is essentially the same  as Entry 13 except that x is
now defined in either of two ways by x = 2 a Log x. For Example 3(ii),  a is
replaced by fa/Log  a in Entry 13. The case x = 1 in the first equality of
Example 3(iii) below is a problem posed by Newman [l].  This problem cari
also be deduced from the corollary to Entry 13.

Example 3(iii).  Let a be r-eu1  with 1 a 1 I e und dejne the reul number x by either
of the two equulities x = ue’*. Then

ex= T (k+l)k-‘uk m (k + l)k-l(-u)ku n d  epx=  1
k=O k ! k=O k! ’

respectively.

Proof.  Let x = Log y. Then we have, respectively, y/Log y = llu and
y-‘/Log(  y-‘) = - l/u. Now apply Entry 13 with a replaced by l/u and - l/u,
respectively.

Example 3(iv)  follows from Entry 13 upon replacing a by + l/Log  a.

Example 3(v). Let a be positive with 1 Log a[  I e. Dejïne  a positive reul  number x
by either of the two relations xfx = a. Then

Proof.  Let x = l/y.  Then it follows that T(Log y)/y = Log a. Now apply
Entry 13 with x replaced by y and a replaced by T l/Log  a.

Example 3(vi) is identical to Example 3(iii) except that the relation
x = uekx  has been replaced by x = ueTx  in the second notebook.

Example 3(vii).  Let a be reul  und dejne the reul  number x by either of the
relations ex  f x = a. Then, respectively, if a I - 1,

e-er = f (k+l)kP1(-l)keak
k=O k! ’

und if a2 1,

eex = 2 (k + l)k-‘e-“k
k=O k! ’

Proof.  Let x = Log Log y. Then e” = y(Log y)“.  In the former case
LogUlYYWY)  = - eay and in the latter case y/Log y = ea. Now apply
Entry 13. In the former case x is replaced by l/y  and a is replaced by -e-“;  in
the latter case x is replaced by y and a by ea.
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Example 3(viii) is the same  as Example 3(vii), except  that x has been
replaced by Log x.

Example 4(i). Let x > 0 and dejine  v by u = x”. Then for 1 Log x 1 I l/e,

u = .f (k + l)k-;,Wg  4”.
k = O

Proof. In Entry 13, replace a by l/Log  x. Then x is replaced by u.

&c
X

For u Ramanujan writes xx . It is curious  that Eisenstein [l] used this
same  notation. In Examples 4(ii)-4(iv),  similar notations are employed by
Ramanujan.

X’

If we interpret xx as the limit of the sequence,  x, xx, x (“), . . . , then

X’
X

X converges for eme  _< x I elle. This fact  appears as an exercise in several
texts, including those of Apostol [l,  Exer. 12-7, p. 3831, Bromwich [l,  Exer.
11, p. 231, Knopp [l, Exer. 23, p. 1081,  Bender and Orszag [ 1, Exer. 4.2,
p. 1961,  and Francis and Littlewood [ 1, pp. 10,38,  391.  This exercise has also
been posed as a journal problem by several people including Lense [l] and
Ogilvy [ 11. A paper by Andrews and Lacher [l] examines the convergence in
great detail.

The more general problem concerning the convergence of

X3
x2

Xl

has been studied by many,  including Barrow [l],  Creutz and Sternheimer
[l],  and Shell [l].  The latter paper gives a synopsis of earlier results. For
many  references  on the aforementioned and related problems, consult the
comprehensive  survey paper by Knoebel [l].

Example 4(ii) is the same  as Example 3(vii) but with x and a replaced by u
and + x, respectively. Example 4(iii) is simply a reformulation of Entry 13 with
x replaced by e” and a replaced by x. Example 4(iv) is another version of
Example 4(ii), but with x replaced by -x  in the former equality and u
replaced by -u in the latter equality; in other words, x and u satisfy either of
the relations u = $-Log(x  + u).
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Ramanujan next attempts to generalize Entry 13 by considering the 
functions q,(n) defined by the equation 

x%(n) = FM, (16.1) 

where x = a Log x, F,(n) is defined in (12.1), and where a is specified prior to 
Entry 12. Thus, cp- l(n) = I/n. 

Entry 16(a). If r is an integer and n is any complex number, then 

w(n) = cPr+l(n)- U4 ~)cp,+~(n+l). (16.2) 

Proof. Using (16.1) and the relation x/a = Log x in Entry 12, we readily 
deduce (16.2). 

Putting r = - 2 in (16.2), we find that 

q-,(n)=$-49e-?(= l-Logx 1 
n(n + 1) n(n + 1) 

+ 
n2(n + 1)’ 

Letting r = - 3 in (16.2), we get 

cP-3(n) 1 -Logx 1 
+ 

Log x 

i 

l-Logx 1 = -- 
n”(n + 1) n3(n + 1) n (n + l)(n + 2) + (n + l)“(n + 2) l 

(1 -Logx)2 (3n + 2)(1 - Log x) 3n + 2 

= n(n + l)(n + 2) + n’(n + l)‘(n + 2) + n”(n + l)‘(n + 2)’ 

Both of these formulas for cp - 2(n) and rp - 3(n) were given by Ramanujan. It is 
clear from the recursion formula (16.2) that q-,(n), k 2 1, is a polynomial in 
Log x of degree k - 1 with the coefficients being rational functions of n. 

We now turn to the calculation of q,(n) when r is nonnegative. Let x = eu, 
and SO a = e’/u. Putting q,(n) = g,(n, u) = g,(u), we find from (16.1) that 

g,(u) = f (n + k)‘i~-“@‘+k)uk 

k=O 

= kzo jro (n + kYk+j(- l)juki’. 

k! j! 

We first calculate go(u). Using the latter representation above, we find that 

gag) = f z (n + k)k+j( - l)‘(k + j)! uk+jpm 
m 2 0, 

k=O j=O k! j! (k+j-m)! ’ 

and SO go’(O) = S(m, m), where 

S(m, m)=k~o(-l)k’“’ k (n+k)m. 
0 



3. Combinatorial Analysis and Series Inversions 79 

It is well known (see, e.g., Hansen’s tables [l, p. 1341) that S(m, m) = m!. Thus, 

go(u) = f 
1 p=--- 

m=O 1-U’ 

Next, we shah show, by induction on Y, that 

where Illk(r, n), 1 < k I r + 1, is independent of u. By (16.3), (16.4) is valid for 
Y = 0. A direct calculation shows that, for r 2 1, 

(1 - 4g&) = ngr - l(4 + w: - l(U) 

= %, - l(U) - (1 - 4g: - 164 + s: - l(U). 

Using the induction hypothesis, we thus find from (16.4) that 

+ i (r + k - l)+k@ - 1, n) 

k=l (l-u)‘+k ’ 

or 

g(u) = ‘f (n - r - k + l)+k(r- 1, n) + (r + k - 2)+k- l(r - 1, n) 
r 7 

k=l (1 - U)l+k 

where we define r,Go(r - 1, n) = 0 = J/,+ r(z - 1, n). Hence, (16.4) is established, 
and moreover we have proven the recursion formula 

t,bk(r, n) = (n - r - k + l)ek(r - 1, n) + (r + k - 2)$,- l(r - 1, n), (16.5) 

where l<klr+l. 

Entry 16(b). Let r and t be integers such that 1 I t 5 r + 2. Then 

tjt(r + 1, n) = (n - l)+,(r, n - 1) + $,- r(r + 1, n) - IL,- r(r + 1, n - l), 

where$,(r,n)=Oift$(k: l<klr+l}. 

Proof. Employing (16.4) in (16.2), we obtain the identity 

r+1 
$kb d ‘+’ +k(r + 1, n) 

n & (1 - Log Xrfk= k&, (1 -Log X)lfkfl 

Equating coefficients of (1 - Log x)-‘-~, 1 I t < r + 2, on both sides and 
replacing n by n - 1, we deduce the desired recursion formula. 
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Using either of the recursion formulas given in (16.5) and Entry 16(b) 
together with the value $i(O, n) = 1 from (16.3), we cari successively calculate 
the coefficients of cpi(n), q,(n), q,(n), . . . . We thus find that 

n-l 1 
cp1(n) = (1 - Log x)2 + (1 - Log x)3’ 

cp2(n)=(n-l)(n-2) (n-1)(n-2) i 

1 
n-2 +ntl 
~ ~ 

1 3 
(1 - Log x)3 

+ 
(1 - Log x)” + (1 - Log x)5’ 

q3(nJ=(n- l)(n-2)(n-3) +(n-1)(n-2)(n-3) i 

1 2 3 - - - 
n-3 + n-2 + n- 1 1 

(1 - Log x)” (1 - Log x)” 

15n - 35 15 
+ (1 - Log x)6 + (1 - Log x)7’ 

a11 of which are given by Ramanujan. 

Corollary 1. Let x be complex. Zf -p < n < 1, where p is the unique real root of 
yeY+’ = 1, then 

If n> 1, then 

where 0 < m < 1 and e”‘/m = e”/n. 

Proof. By (12.1), (16.1), and (16.3), for any y and for la1 > e, 

(16.6) 

(16.7) 

(16.8) 

where t = a Log t. Recall that if a > e, then t is that root of this equation which 
lies between 1 and e; if a < -e, then t denotes the unique real root of this 
equation. 

When n = 0, (16.6) reduces to the Maclaurin series for ex. Let a = e”/n, 
where -p < n < 1, n # 0. In this case, la1 > e, and the appropriate root t is 
equal to e”. Putting y = x/n, we find that (16.8) reduces to (16.6). 

If n = 1, the series in (16.6) diverges, but if n > 1 it converges. In the latter 
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case, let a = em/m, where m is defined in the hypotheses. Then by (16.6) 

emy -= f (Y +Qk 
1 -m k=0 (em/m)kk! =k$o&$ 

= kgo (y;;ek?k. 

Thus, (16.7) readily follows. 

As indicated in the proof, this very interesting corollary is a generalization 
of the very familiar Maclaurin series for ex. Characteristically, Ramanujan 
states no conditions on n for (16.6) to hold. By Newton’s method, it may 
readily be shown that p = 0.27846454... . The second part of Corollary 1, 
namely (16.7), is not given by Ramanujan. Equality (16.6) was apparently first 
established by Jensen [2]. Other proofs have been given by Duparc, 
Lekkerkerker, and Peremans [l] and by Gould [3]. Carlitz [2] has employed 
this corollary in establishing the orthogonality of a certain set of polynomials. 

Corollary 2. For each nonnegatioe integer r, 

r+1 
n* = lim dn) = kzl $k@, n). 

ll’cc 

Proof. The first equality above follows immediately from the definitions of 
F,(n) and q,(n) given in (12.1) and (16.1), respectively. The second equality 
follows from the definition of $k(r, n) in (16.4). 

Next, fix a > lje. For real h, define x > 0 by the relation 

xx = aneh. 

Then x Log x = a Log a + h and (1 + Log x) dx/dh = 1, i.e., 

(17.1) 

(x+a Loga+h)$=x. 

At h = 0, x = a and 

dx 1 
Z=l+Loga-n’ 

(17.2) 

(17.3) 

Since h = h(x) extends to a one-to-one analytic function in a neighborhood of 
a, there is an analytic inverse x = x(h) in a neighborhood of the origin. Thus 
we have an expansion of the form 

(17.4) 

where 1 hi is sufficiently small. 
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Entry 17. For r 2 2, we bave 

A,=n(r-2)A,-, +n &L (17.5) 

Proof. Substituting (17.4) in the differential equation (17.2), we obtain the 
identity 

or, by (17.3), 

h k-l 
1-v 2 (+A, _ 

k=l 0 1 (k-l)! a ’ 

Equating coefficients of (hIa)‘- ‘, r 2 2, we obtain 

A 

fi 
A,-, 

-n(Y =Iz 
4-k 

. k=l k!(r---k)! 

The recurrence relation (17.5) now easily follows. 

In Ramanujan’s version of (17.5) the terms with k=j and k= r -j, 
1 <j < r/2, are combined. However, he has incorrectly written the last term. 
On page 36, line 4, multiply A,,_ 1J,2 by A,,, l),z and square A,,2. 

We have seen that dx/dh = l/(l + Log x) E N and 

In general, it follows from (17.4) that for r 2 1, 

r 1d’x 
A,=(-4 - p h=O. 

Inducting on r, we find that there are numbers, a(r, k) for which 

Zr-k-1 = (mx)*-l f!?, r 2 2. 

(17.6) 

(17.7) 

(17.8) 

Differentiating both sides of (17.8) with respect to h and comparing coeffi- 
cients of NZrPk+‘, we obtain the following recursion formula given by 
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Ramanujan: 

a(r + 1, k) = (I - l)a(r, k - 1) + (2r - k - l)a(r, k), (17.9) 

wherer22,01klr-l,anda(r,k)isdefinedtobeOwhenk<Oork>r 
- 2. Setting h = 0 in (17.8) and using (17.7), we bave 

r-2 

A,= c a(r, k)n2’-k-1, r 2 2. 
k=O 

(17.10) 

From (17.6), (17.9), and (17. lO), Ramanujan has calculated A, (1 5 r < 7) as 
follows: 

A1=n, 

A, = n3, 

A, = 3n5 + n4, 

A, = 15n7 + 10n6 + 2n5, 

A, = 105n9 + 105n8 + 40n7 + 6n6, 

A, = 945n” + 1260n” + 700n9 + 196ns + 24n’, 

A, = 10395nr3 + 17325n” + 12600n” + 5068n” + 1 148n9 + 12On*. 

Example 1. For n = 1 and r 2 2, 

r-2 

kzo a(r, k) = A, = (r - l)r-r. 

Proof. The first equality follows from setting n = 1 in (17.6). In (17. l), let a = 1 
and x = l/y. We then easily find that t/Log y = - l/h. Now apply Entry 13 
with n = - 1, x replaced by y, and a = - l/h. Accordingly, we find that, for 
Ihel Il, 

1 x=-z- 
Y 

.f (k-l)k-l(-h)k 

k=O k! ’ 

On the other hand, putting a = 1 in (17.4) yields 

x=l+ .f (-l)k-lA&k 
k=l k! ’ 

A comparison of these two series yields the desired result. 

Example 2. Fix a, 0 < a < e. For real h, define x > 0 by the relation xlix = allaeh. 
Then for sujficiently small 1 h 1, 

Proof. Putting x = l/y, we find that yy = (l/a)“‘eëh. Now use (17.4) with a 
replaced by l/a, h replaced by -h, and x replaced by y. The desired equality 
now easily follows. 
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F. Howard [l] has shown that the numbers a(r, k) cari be expressed in 
terms of Stirling numbers of the first kind and associated Stirling numbers of 
the second kind. 

We thank R. A. Askey, H. W. Gould, and D. Zeilberger for several 
references to the literature. 



CHAPTER 4 

Iterates of the Exponential Function and an Ingenious 
Forma1 Technique 

The first seven paragraphs of Chapter 4 are concerned with iterated 
exponential functions and constitute a sequel to a large portion of Chapter 3 
wherein the Bell numbers, single-variable Bell polynomials, and related 
topics are studied. Recall that the Bell numbers B(n), 0 I n < CO, may be 
defined by 

They were first thoroughly studied in print by Bell [l], [2] approximately 
25-30 years after Ramanujan had derived several of their properties in the 
notebooks. Further iterations of the exponential function appear to have 
been scarcely studied in the literature. The most extensive study was 
undertaken by Bell [2] in 1938. Becker and Riordan [lyl and Carlitz [l] have 
established arithmetical properties for these generalizations of Bell numbers. 
Also, Ginsburg [l] has briefly considered such iterates.. For a combinatorial 
interpretation of numbers generated by iterated exponential functions, see 
Stanley’s article [l, Theorem 6.11. 

Sections 9-13 are devoted to a different topic and illustrate one of 
Ramanujan’s favorite techniques. Ramanujan’s procedure, however, is strict- 
ly formal, and the results that are obtained from it are valid only under severe 
restrictions. Section 9 contains summation formulas which resemble more 
complicated formulas found in Chapter 14. In Section 11, we find the formula 

s 

m  

Y-l kro cp(k)(-x)k dx = W’(-n) n > 0, (0.1) 
0 sin(nn) ’ 

“of which he was especially fond and made continua1 use.” We have quoted 
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Hardy’s book on Ramanujan [20, p. 151, where this formula and others of the 
same sort in Section 11 are discussed and rigorously proved in Chapter 11. 

About one year before Ramanujan’s departure from India to England, he 
obtained a scholarship from the University of Madras [15, pp. xv, xvi]. As 
stipulated by the scholarship, Ramanujan submitted quarterly reports on his 
research to the Board of Studies in Mathematics on August 5, 1913, 
November 7, 1913, and March 9, 1914. The first two reports are concerned 
entirely with formulas like (0.1) and their applications. Ramanujan gives a 
detailed proof of a formula (Entry 11) related to (0.1) and even lists 
hypotheses for which his formula is supposed to be valid. Evidently, early in 
his stay at Cambridge, Ramanujan discovered, perhaps from Hardy, that his 
hypotheses were not strong enough. For in [ 131, [ 15, pp. 53-581, Ramanujan 
evidently employs (0.1) to evaluate some integrals and remarks [ 15, p. 571, 
“My own proofs of the above results make use of a general formula, the truth 
of which depends on conditions which 1 have not yet investigated com- 
pletely.” Al1 of the formulas in Sections 11-13 are established in the 
quarterly reports, as well as many more. 

It is somewhat enigmatic that the integral formulas of Section 11 appear at 
this location in the second notebook. Since generally the material becomes 
more difficult and sophisticated in the latter portions of the second notebook, 
it is reasonable to conjecture that early chapters in the notebooks date from 
his student days, while later chapters were written in the period just before 
Ramanujan’s departure from India in 1914. The content of the quarterly 
reports indicates that these integral formulas were discovered at a time later 
than the other material in Chapter 4. Moreover, Chapter 5 of the first 
notebook coincides closely with the first eight sections of Chapter 4 of the 
second notebook, which is a revised, enlarged edition of the first notebook; 
none of the formulas from Sections 9-15 of Chapter 4 in the second notebook 
cari be found in Chapter 5 of the first notebook. However, Entry 11 cari be 
found on page 182 of the first notebook, which is a “back side” of one of the 
pages in Chapter 12. Pages 180, 182, and 184 of volume 1 contain 13 
applications of Entry 11, only one of which (Entry 13(ii)) is in Chapter 4 of the 
second notebook. 

The primary purpose of Entry 1 is to define the functions that Will be 
studied in the sequel. Let F,(x) = x and define 

F,+dx) =expPW - 1, (1.1) 

where r is any integer. Thus, for example, F,(x) = e* - 1, F,(x) = eex-’ - 1, 
F-,(x) = Log(1 +x), and F2(x) = Log{l + Log(1 +x)1. If r is nonnegative, 
F,(x) is entire; if r is negative, F,(x) is analytic in some neighborhood of the 
origin. Observe that F,(O) = 0, - 00 < r < CO. Ramanujan tacitly assumes that 
F,(x) cari be defined for a11 real values of r. He gives no indication how to do 
this, but Comtet [l, pp. 144-1481 describes how to define arbitrary real 
iterates of forma1 power series. In particular, the present situation is 
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specifically discussed on page 147. Thus, Ramanujan writes 

Fr(x) = kgl <pk(dXk = k$o fk(X)rky (1.2) 

where both series above are to be regarded as forma1 power series. Comtet 
[1, p. 1471 further shows that cpk(r) is a polynomial in r of degree*k - 1. By 
making such a substitution in the former series above and collecting 
coefficients of like powers of r, we easily find that fk(:‘c) has a zero of order 
k + 1 at the origin. 

Entry 2. For each integer r, 

F;(x) = (1 + F,(x)}F:-,(x). (2.1) 

Proof. Differentiate both sides of the relation F,- I(:‘c) = Log(1 + F,(x)} to 
achieve the desired equality. 

Corollary 1. Zfr is a positive integer, then 

F:(x) = knl { 1+ FL(X) 1. 

Proof. Apply (2.1) successively a total of r times. 

Corollary 2. Let r be any integer, and suppose that n is a positive integer. Then 

+%,(r) - <pn(r - 1)) = cl (n - h’&%L,(r - 1). (2.2) 

Proof. Using the first equality of (1.2) in (2.1) and equating the coefficients of 
x”-r on both sides, we readily achieve the desired result. 

It might be remarked that Corollary 2 implies that <p,(r) is a polynomial in 
r of degree n - 1, a fact previously noted after (1.2). TO see this, replace r by j 
in (2.2) and sum both sides of (2.2) from j = 1 to j := r. Now induct on n to 
complete the proof. 

In preparation for Entry 3, we observe that if f denotes a polynomial, the 
Euler-Maclaurin formula (13) yields 

r-l 

“TO f (4 = 
s 

’ f (4 dx + “zl 2 If(“- “(4 -f (“- “(0) >, (3.1) 
0 

where B,, 1 I n < 00, denotes the nth Bernoulli number. 

Entry 3. For each real number x, 

f l(x) = x + “g B”f”(X). 
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Proof. Let r be a positive integer. By differentiating (1.1) with respect to x we 
find that 

F:(~)=~F~~‘(x)F:~~(~)=~F~-I(x)+F~~z(x)F:_~(~)= . . . =eF-~(x)+...+Fo(x), 

or 

r-l 

Log FL(x) = 1 FL(X). 
k=O 

(3.2) 

Now apply (3.1) to the polynomials q,(n), 1 2 k < CO, to obtain 

r-l 

.zo qkb) = 
s 

: (PL@) du + “El 2 b?p- ‘)tr) - dpl’to)h (3.3) 

Next multiply both sides of (3.3) by xk and sum on k, 1 I k < CO. Using (1.2) 
and (3.2), we find that 

Log F;(x) = $(x) + 
s 

’ F,(x) du + “El 2 d”;;nf!~’ , (3.4) 
0 u=, 

where Il/(x) depends only upon x and not upon r. Both sides of (3.4) are forma1 
power series in x whose coefficients are polynomials. These polynomial 
coefficients agree for every positive integer Y. Hence, (3.4) is valid for a11 real 
numbers r. Now substitute the latter series of (1.2) into (3.4). Equating 
coefficients of Y on both sides and noting that fa(x) = x, we complete the proof 
of Entry 3. 

Corollary. Zf x is real, tken 

bw = ~ s x t -f;(t) dt 0 fi@) . 
Proof. Setting r = 0 in (3.4), we find that 

464 = - “Cl +L- lb). (3.5) 

Differentiating (3.5), we deduce that 

= x -fi (4, (3.6) 

by Entry 3. In the penultimate equality, Entry 4 was utilized. Since fk(0) = 0, 
0 I k < CO, we find from (3.5) that Il/(O) = 0. Hence, from (3.6), we complete the 
proof. 
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Entry 4. For each positive integer n, 

nf.(4 =fl(4fL - I(X)+ (4.1) 

Proof. By a general theorem in Comtet’s book [l, p. 1.481, 

Fk+r(x) = F,{F,(x)), (4.2) 

where k and r are arbitrary real numbers. Expanding both sides of (4.2) in 
power series of r and equating coefficients of r on both sides, we find that 
dF,(xWk =fi {U+ N ow let y = FL(x) and z = F,(y). Then dy/dk =fi( y) 
and dzldk =f,(y) dzldy, or 

Using (1.2) above and equating coefficients of k”- ’ on both sides we deduce 
(4.1). 

We observed after (1.2) that f,(x) has a (n + 1)-fold zero at x = 0. Hence, we 
may Write 

f,tx) = <ix,, kzl (- ljk-’ $k(n)Xky n 2 0. (4.3) 

Corollary 1. Zf n and r are positive integers, then 

0) 

and 

(ii) 

nrl/,(n) = i: (n + k - l)ll/kb - l)+,-k+l(l) 
k=l 

q~(2r)=k~I(-l)k-1rnmk$k(n-k). 

Proof. Substituting (4.3) into (4.1), we arrive at 

n kzl (- l)k-l+k(n)Xk-l 

Equating coefficients of XI- ’ on both sides, we complete the proof of (i). 
From (1.2) and (4.3), 

rjxj z (- l)k-l$k(j)~k. 
k=l 

Equating coefficients of x” on the extremal sides above, we obtain (ii). 
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Corollary 2. We haue tjl( 1) = 1, andfor II 2 2, 

tn + l)$n(l) =+lc/n-l<l, + 2 B2k2’-2ktin-2k(2k)> 
k=l 

where N denotes (n - 1)/2 or (n - 2)/2 according as n is odd or even. 

Proof. Substitute (4.3) into Entry 3 to obtain 

tngl (- 1)“-‘(n + W”Ub” 

=X-$X f (-l)“-‘$,(1)X” + ,EI B2k(+X)2k f (-1)‘p’$j(2k)X’. 
Il=1 j=l 

Equating coefficients of x on both sides, we find that $r(l) = 1, and equating 
coefficients of x”, n 2 2, on both sides, we deduce the desired formula for 
n 2 2. 

Entry 5. For each number x > - 1, we haue fi (x) = (1 + x)fl { Log( 1 + X) >. 

Proof. By (4.2), 

Fr-,(x)=F,{F-,(x)} =F,{Log(l +x1>, 

and SO by (1.2) and the fact that &(x) = x, 

exp{F,- l(x)> = (1 + 4 exp kf$l fkfLodl + 4Jrk . (5.1) 

On the other hand, by (1.1) and (1.2), 

exp {F,- l(x)> = 1 + FA-4 = 1 + kzo fktXJrke (5.2) 

Equating the coefficients of r in (5.1) and (5.2), we complete the proof. 

Entry 6(i). For n 2 1, 

and 

:=kg 2k-“$k(n - k). 

Proof. From (1.1) and (1.2), 

(6.2) 

ngl cp,(l)x” = F,(x) = ex - 1 = F XI. 
n=l n! 
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Hence, q,(l) = I/n!. Using Corollary I(ii) of Entry 4, we deduce (6.1). 
Similarly, for (x( < 1, 

fl cp,( - 1)x” = F- 1(x) = Log(1 + x) = 2 i- l)“- lx” . 
Il=1 II 

Thus, <p,( - 1) = (- l)“-‘/n. Putting r = - f in Corollary l(ii) of Entry 4, we 
derive (6.2). 

Entry 6(ii). For n 2 1, 

4+1(n) = 19 

*2(n)= 6 !ep, 

(6.3) 

(6.4) 

and 

+3(n) _ (n + lb + 2) 
72 

Furthermore, 

<p,(W = 1, (P2m = r, (~~(21) = r2 - hr, 

(6.5) 

91 
<p6(2r)=r5-$r4+&r3--- 

11 
1440r2 + 43201’ 

and 

q,(2r) = r6 - $ r ’ 175 149 91 +-r4--r3+--r2- 1 
216 720 4320 %Cif. 

Moreover, 

f,(x)=fx2-~x~+fx4-~x~+~x~-~x7+ . . . . 
6720 

Proof. By Corollary 2 of Entry 4, I,G~(~) = 1. Thus, letting r = 1 in Corollary 1 
of Entry 4, we find that tjl(n) = t,bl(n - 1). It then follows that t+bl(n) = 1 for 
each positive integer n. 
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By Corollary 2 of Entry 4, ez(l) = 1/6. Letting r = 2 in Corollary 1 of 
Entry 4 and using (6.3), we then deduce that 

1 n+l =- 
6 n-l $2(n - 2) 

n+l n+l -+ . . . +- 
n-l 2 

In examining ti3(n) it Will be convenient to use the function x(n) defined by 
$3(n) = (n + l)(n + 2)X(n). By Corollary 2 of Entry 4, $3(1) = 1/24. Once again 
by Corollary 1 of Entry 4, 

x(n) = x(n - 1) + 
36(n1+ 2) kt~ t + 24(n + :)(n + 2) ’ 

Since x(1) = 1/144, we deduce that 

x(n) = i + L f Lf!+Lf l 
144 36,=zm+2 k=z k 24,=z(m+ l)(m+2) 

i l 
,,,=2(m+l)(m+2) 

+‘t 1 
24,=2(m+ l)(m+2) 

Formula (6.5) now readily follows from the equality above. 
The functions (p,(2r) may be calculated from formula (ii) of Corollary 1 of 

Entry 4. Recall that e,(O) = 0 if k 2 2. In the calculations of t,Ql(n) and tjz(n), 
employ (6.3) and (6.4), respectively. It is not very convenient to use (6.5) to 
determine G3(n). Instead, it is easier to employ formula (i) of Corollary 1 of 
Entry 4 directly. For t,Gk(n), k 2 4, also use the aforementioned formula. 

Lastly, the formula for fi(x) follows from (4.3) and the previously made 
calculations of $,Jl), 1 I k I 6. (In the second notebook, Ramanujan in- 
advertently implies that fi(x) is a polynomial of degree 7.) 

Entry 7. Let x = y(1 - rx) and z = 1 - TX. Then 

F,,(x)=y+~y~Logz+~y3{Log~z+(1-Logz)2-z}+ . . . . (7.1) 
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Proof. By (1.2) and (4.3) 

F2&) = il (- 1)” + ’ i kro tinW(rx)k 1 9. (7.2) 

We shah show that the first three terms of (7.2) agree, respectively, with the 
first three terms given by Ramanujan in (7.1). 

By (6.3), the first term in (7.2) is 

x kzo (rx)k = -f!-- = 
1 - rx ” 

By (6.4), the second term in (7.2) is 

- 5 ,tl (k + 1) I$ j (rx)j. (7.3) 

On the other hand, 

iy2Logz= -- 6 “fJl n(W-’ jEl y 

(k + 1) j$l 5 - k (dk, 
which is readily seen to equal (7.3). 

Lastly, a straightforward calculation yields 

+y3{Log2 z + (1 - Log z)2 - z} = 
X3 

72(1 - rx)3 
3rx + f c(n)(rx)” , 

n=2 

where 

Note that $3(1) = 1/24. Thus, to show that the third terms of (7.1) and (7.2) 
agree, we must show, for n 2 2, that c(n) is equal to the coefficient of (rx)” in 

W - rxj3 k$o +3Mr4k. 
By (6.5) and a very lengthy calculation, this cari be accomplished. 

Example 1. For each real number x, 

’ ~I(X)~:(X) =~I(X) -fi(x) + ,zl (2k + llB2k.f2k+ 1(x)a 
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Proof. Upon differentiating the equality of Entry 3 we find that 

f:(x) = 1 - wlcx> + ,gl &kf;k(x). 

Now multiply both sides by fi(x) and apply Entry 4 to complete the proof. 

We Will not record Example 2 which is simply a restatement of Entry 7 
when 2r = n and x = lin. 

This concludes Ramanujan’s theory of iterates of the exponential function. 
1. N. Baker [l], [2] has made a thorough study of iterates of entire functions 
with particular attention paid to the exponential function in his second paper. 
These papers also contain references to work on iterates of arbitrary complex 
order. But we emphasize that no one but Ramanujan seems to have made a 
study of the coefficients (pL(r) and fk(x). A continued development of this 
theory appears desirable. 

Entry 8. Let H, = Et= 1 llk. If x is a positive integer, then 

(i) f H, =(x+ l)H,--x, 
k=l 

(ii) ,gl Hi = (x + l)Hz - (2x + l)H, + 2x, 

and 

(iii) f H~=(x+1)H~-~(2x+1)H~+3(2x+1)H,-6x+&$ 
k=l 

Proof. Inverting the order of summation, we find that 

from which (i) follows. 
By partial summation, 

kzl akbk = 0, - ;$ d’k + 1 - bd 

where s, = Ci = 1 ak. Put ak = b, = H, in (8.1) and use (i) to get 

i H~={(x+l)H,-x}Hx-x~l{(k+l)Hk-k}&- 
k=l k=l 

x-l x-l 

=(x+l)H:-xH,-k~lH,+k~l 

(8.1) 

=(x + 1)H; -(2x + l)HX + 2x. 
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Next, in (8.1), put a, = Ht and bk = Hk. Using (i) and (ii), we find that 

f Hk’ - (x + 1)H; + (2x + 1)H; - 2xH, 
k=l 

Ht- 
2k + 1 =- -H,+j-$ 
k+l 

= -(x+l)H:+(2x+l)H,-2x+H; 

+& x yHk-‘-2 c !$ 
k=l 

= -xH,2+(2x+l)H,-2x+2(xH,-x)-2(x-H,)-& 

where S = ci= 1 H,- 1 Jk. Thus, 

k$l H; =(x + 1)H; - (3 x + 1)H: + 3(2x + l)H, - 6x - S. (f3.2) 

But, 

H:=k~l”+21c~~k~~~=k~l~+2s. (8.3) 

Substituting the value of S obtained from (8.3) into (8.2), we complete the 
proof of (iii). 

Ramanujan begins the ninth section of Chapter 4 with the following 
statement and solution (abbreviated by sol. below). 

“If two functions of x be equal, then a general theorem cari be formed by 
simply writing q(n) instead of x” in the original theorem. 

sol. Put x = 1 and multiply it by f(O), then change x to x, x2, x3, x4 &c and 
multiply f’(O)/l!, f”(0)/2!, f”‘(0)/3! &c respectively and add up a11 the results. 
Then instead of x” we have f(x”) for positive as well as negative values of n. 
Changing f(Y) to <p(n) we cari get the result.” (Ramanujan actually denotes n! 
by In.1 

The formulas obtained by Ramanujan in illustration of his method are 
valid only under severe restrictions. We shall illustrate his method in detail 
for just one of the examples that is given. Then we shall give rigorous proofs 
for each of Ramanujan’s results, but with necessarily very restrictive 
hypotheses. 

Consider the relation tan-’ x + tan- ‘(1/x) = n/2. In accordance with 
Ramanujan’s process, we Write down the equalities 

f(O)(tan-’ 1 + tan-l 1) = if(O), 

L$!l(tan-l n f ‘(0) x + tan-‘(1/x)) = 21r, 

C$!!(tan-’ ?L f “(0) x2 $ tan-‘(1/x2)) = 22r, 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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Replace tan - ’ z above by its Maclaurin series in z, where z is any integral 
power of x. Now add a11 the equalities above. On the left side we obtain two 
double series. Invert the order of summation in each double series to find that 

f (- l)“{f(X2”“) +f(x-‘“-1)) 
n=O 2n+ 1 

= ; f(1). 

Replace f(xk) by q(k) to conclude that 

f (-l)“{q(2n+l)+cp(-2n-I)]=x 
n=O 2n+ 1 y CPKU. 

Of course, this forma1 procedure is fraught with numerous difficulties. 
In Examples 1-3, the circular contours are supposed to be oriented in the 

positive, counterclockwise direction. The choice of circular contours is not 
strictly necessary; any appropriate sequence of contours may be chosen. 

Example 1. Let C~(Z) denote an entire function. Suppose that there exists a 
sequence r,, 1 I n < CO, of positive numbers tending to CO such that r,=& s dz) dz 

121 =In z w7m 
= o(1) 

as r,, tends to CO. Then 

N (- 1)$(2k + 1) 
lim 1 

N+m k= -N 2k + 1 

Proof. We evaluate 1, by the residue theorem. Letting R, denote the 
residue of the integrand at a pole z = CC, we readily find that 
R, = C~(O) and R2k+ i = 2( - l)k+1cp(2k + l)/{n(2k + l)} for each integer k. 
Applying the residue theorem and letting n tend to CO, we find that 

0 = lim Z, = C~(O) + 1 lim 1 
(- l)k+1cp(2k + 1) 

n+m 71 n-m 12k+ll<r, 2k+l ’ 

from which the desired result immediately follows. 

It is not difficult to see that the hypotheses of Example 1 hold for 
C~(Z) = exp(izQ when -rc/2 < 13 < 7r/2. Example 1 thus yields the familiar 
expansion 

f (- 1)” cos(2n + l)O = n 
2n+ 1 -3 

n=O 4 
le1 < ;. 

In Example 2, Ramanujan considers x/( 1 + x) + (1/x)/(1 + 1/x) = 1. He 
expands z/(l + z) in powers of z, where z is either x or 1/x, and proceeds in the 
same fashion as with Example 1 to conclude that 

“rl (- lY’{cp(n) + d-4) = do). 
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Example 2. Let C~(Z) denote an entire function. Suppose that there is a sequence 
of positive numbers r,,, 1 I: n < CO, tending to 00 such that IF& s dz) dz - = o(1) 

14 =rn sin(M 
as n tends to CO. Then 

lim f (- l)k- ’ cp(k) = <p(O). 
N-m k= -N 

k+O 

Proof. The proof follows the same lines as the previous proof. Evaluate 1, by 
the residue theorem and then let n tend to CO. 

In Example 3 Ramanujan considers the relation Log(1 + x) - Log(1 + 
1/x) = Log x. Prior to Example 3, Ramanujan remarks that “If q(n) be 
substituted for x”, q’(O) must be substituted for log, x, <p”(O) for (log, x)’ C%C.” 
Subject to the formality of his argument, these substitutions in the equality 
above are correct. However, if a procedure analogous to that in Examples 1 
and 2 is followed, then f(Y) is replaced by cp(n) and Log x is replaced by 1 to 
get the desired formula 

.f (- lY-‘{cp(n) - d-4) 
n 

= q’(0). 
I!=l 

Example 3. Let C~(Z) denote an entire function. Suppose that there exists a 
sequence of positive numbers r,,, 1 I n < CO, tending to CO such that 

1 

-s 
C~(Z) dz 

27ci 
~ = o(1) 

I=l =,n z sin(7rz) 
as n tends to 00. Then 

lim 5 (-l)k-lcp(k) 
k 

= q+(O). 
N+m k= -N 

k+O 

Proof. The proof is similar to that of Example 1. 

If in Example 2 we let <p(z) = sin(ze)/z, where - rc < 8 < rc, or if in Example 
3 we let C~(Z) = exp(izQ, where -x < 0 < n, we obtain the well-known 
expansion 

f (- l)n-r sin(nf3) = 19 
-> 2 

le1 < 71. 
?I=l n 

Example 4. Let C~(Z) = $(z)/T(z + 1) satisfy the hypotheses of Example 3. Then 

f (-l)k-lW) 
k! k = Ybw) + bw), 

k=l 

where y denotes Euler’s constant. 
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Proof. Observe that cp( - k) = 0 for each positive integer k. Since Y( 1) = -y 
(e.g., see (10.7) below), we find that q’(O) = Y$(O)+ e’(O). Using this infor- 
mation in Example 3, we finish the proof. 

Ramanujan, anticipating his theory of divergent series in Chapter 6, calls y 
(c in his notation) the constant of ckm,r l/k. In fact, Ramanujan does not 
claim equality in (9.1), but writes that the left side of (9.1) is equal to the right 
side “nearly.” Evidently, Ramanujan realizes that his procedure does not 
always yield an equality, but perhaps an approximation of some sort. 

Now suppose that 4p is such that the integrals 1, in Examples l-3 do not 
tend to 0 as n tends to CO. The method, however, may still be used to obtain a 
finite expansion with a remainder term, and possibly an asymptotic expan- 
sion may be obtained in certain cases. With something like this in mind, 
Ramanujan offers a second enigmatic remark prior to Example 3. “If an 
infinite number of terms vanish it may assume the form 0 x 00 and have a 
definite value. This error in case of a function of x is a function of ewX which 
rapidly decreases as x increases.” 

Corollary 1. As x tends to CO, 

c (- lJk- lXk k! k 
-Logx+ 

k=l 

where y denotes Euler’s constant. 

Proof. By Corollary 2 in Section 2 of Chapter 3, 

f (-l)k-lxk =e-* 
k=l k! k 

(9.2) 

By either Example 4 in Section 10 of Chapter 3 or by the third version of 
Example 2 in Section 10 of this chapter, the right side of (9.2) is asymptotic to 
Log x + y as x tends to CO. 

Ramanujan claims that the difference between the left and right sides in 
Corollary 1 is between eFX/x and ewX/(l + x). This is, indeed, correct, and a 
proof is deferred until Section 44 of Chapter 12 in the second notebook where 
Ramanujan returns to the function on the left side of (9.2). 

Corollary 2. Let n be positive. Then as x tends to CO, 

FI (- ljk-lxnk k(k!) 
-nLogx+ny. 

k=l 

For n = 1, Corollary 2 follows from Corollary 1. However, for at least 
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those values of n which are greater than 2, Corollary 2 is false. TO show this, 
first define 

Then 

By (9.3) and (10.8) below, 

f (- ljk-lxnk k(k!)” - 
nLogx-ny 

k=l 

s 
x e-’ - G,(t) =n dt + o(l), 

0 t 

(9.3) 

as x tends to 00. If Corollary 2 is correct, then the integral on the far right side 
of (9.4) is o(l) as x tends to 00. But from Olver’s text [l, p. 3093, for n 2 2, 

G,(x) = 

2 exp(xn cosO-44) 

&?nx)(n-1)i2 

as x tends to CO. Thus, for n > 2 and cr > 0, 

lim 
s 

x G,(t) 
x+a! 01 

t dt 

does not exist. In particular, the integral on the far right side of (9.4) does not 
tend to 0 as x tends to 03, which disproves Ramanujan’s claim. 

We are grateful to Emil Grosswald for informing us that our original 
published proofs of Corollaries 1 and 2 are incorrect. 

Ramanujan expresses Corollary 2 in the words, “If x becomes greater and 
greater 

In more precise terminology, Ramanujan is saying that the two series above 
are asymptotic to the same function as x tends to CO. If Corollary 2 were 
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correct, this would be the case, but we have just seen that, in general, 
Corollary 2 is false. 

If n is a nonneg.ative integer, the next entry is trivial with no hypotheses 
needed for cp. Ramanujan “proves” Entry 10 by the technique described 
in the ninth section. The starting point of his argument is the identity 
(1 + x)” = ~“(1 + l/.~),. We employ the same notation and conventions for 
circular contours as in Section 9. 

Entry 10. Let n be complex and let cp be an entire function. Suppose that there 
exists a sequence rj, 1 5 j < 00, of positive numbers tending to CC such that 

s 
~C~I(Z) cot(nz) cet {7c(z - n)} 

r(z + l)r(n - z + 1) 
dz = o(l) 

121 =rj 

as rj tends to 00. Then 

provided each series converges. 

Proof. Since the theorem is trivial when n is a nonnegative integer, we assume 
the contrary in the remainder of the proof. 

The integrand of Ij has simple poles at z = k, where k is a nonnegative 
integer, and at z = n + r, where r is a nonpositive integer. Easy calculations 
yield 

Rk= - dk) cot(4 
T(k + l)r(n - k + 1) ’ 

k 2 0, 

and 

R 
cp(n + r) cet {7c(n + r)} cp(n - k) cet(m) 

“+’ = r(n + r + l)r( - r + 1) = r(n - k + l)I(k + 1) ’ 
k= -1.20. 

Applying the residue theorem, letting j tend to CO, and invoking the 
hypothesis on Ij, we find that 

cp(n - k) cet(m) 

- r(k + l)T(n - k + 1) + T(k + l)T(n - k + 1) 
= 0, 

from which the theorem’s conclusion follows. 

Corollary. Let the hypotheses of Entry 10 be satisjïed with n replaced by r and 
q(z) replaced by xr-‘~(z), where x > 0. Let 

(10.1) 

represent a function f in a neighborhood of 00. Then f(0) = q(r). 
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Proof. Replacing <p(z) by X*~“C~(Z) and letting n = Y in Entry 10, we find that 

Setting x = 0 on the far right side above, we complete the proof. 

Example 1. Let the hypotheses of the Corollary above be satisjed with r = - 1 
and qn(z) replaced by cp(z + 1). Then f(0) = <p(O). 

Proof. The conclusion above is a direct consequence of the Corollary. 

It is clear that the conditions in the Corollary and Example 1 are rarely 
satisfied. In many instances (10.1) does not converge but may be an 
asymptotic expansion for a function f. The Corollary and Example 1 then 
become ambiguous because many functions have the same asymptotic series, 
when that series diverges. Ramanujan calls f “the generating function of the 
series” (10.1) (p. 43). In the examples which follow, Ramanujan gives appli- 
cations of his theory above. However, as we have intimated, his formulations 
are usually ambiguous and his proofs generally are not rigorous. In each case, 
we shall offer a precise statement of Ramanujan’s example and give a 
rigorous proof. 

Example. The function represented by 

(10.2) 

has the value 742 as x tends to 0, x > 0. 

Proof. The series (10.2) is the Maclaurin series for tan-l(l/x), Ix!> 1, and SO 
there is no ambiguity in this example. Since lim,,,, tan- ‘(1/x) = 7~12, the 
result is established. 

Ramanujan made his deduction by setting C~(Z) = sin(7cz/2)/z in Example 1. 

Example 2 (First Version). As x > 0 tends to CO, 

f(x)z ‘=,-1& f k$!$ s 0 x+t k=O 
(10.3) 

and lim,,,, f(x) = ~3. 

Proof. The asymptotic series in (10.3) is readily obtained by successive 
integrations by parts. This result was actually first obtained by Euler, and a 
very thorough discussion of it cari be found in Hardy’s book [15, pp. 26-271. 
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Integrating by parts (in a manner different from that indicated above), we 
get 

f(x) = i + 
s 

m e-’ Log(x + t) dt, 
0 

from which the latter conclusion of Example 2 follows. Ramanujan deduces 
this result by setting q(z) = T(z) in Example 1. 

Example 2 (Second Version). With f as above and x > 0, 

f(x) = 1 12 22 32 
x+1 -x+3 -x+5 -x+7 - . ..’ 

and lim,,,, f(x) = 00. 

Proof. This continued fraction expansion for f is fairly well known and cari 
be found in Wall’s book [l, p. 3561. 

TO show that J(O+) = 00, Ramanujan evidently reasoned as follows. Set 
x = 0 in the nth convergent of the continued fraction expansion above. 
Now there exists a standard algorithm, which cari be found in Wall’s treatise 
[l, pp. 17-181, for converting continued fractions into series. Accordingly, we 
find that 

1 l2 22 (n =k$l;. 
j-3- 5 _... - 2n-1 

Letting n tend to GO, we find that f(O+) = CO. 

Example 2 (Third Version). Let 

for x>O. Then 

f(x) = ex 
s 

m $ dt 
x 

.f W)xk --e”(y+Logx)=f(x)- T w, 
k=l k! k=O 

(10.4) 

as x tends to CO, where Il/(k) = Cnsk l/n and y denotes Euler’s constant. Also, 
j-(0+) = CO. 

Proof. The value for f(0 +) is immediate from the proposed formula (10.4). 
From Corollary 2 of Entry 2 in Chapter 3, 

2 W)xk = ex f  (-llk-lxk 

k=l k! k!k ’ 
1x1 < CO. 

k=t 
(10.5) 
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Now, 

fi (- l)k-‘2 

k=l k! k 
=k~l~~~tl’df=Sol-~e-tdf. (10.6) 

Secondly, from the well-known evaluation (e.g., see Gradshteyn and Ryzhik’s 
book [1], p. 946), 

y= -r’(l)= - 
s 

me-‘Logtdt, 
0 

it is easily shown, by an integration by parts, that 

(10.7) 

l l-e-’ 
Y= s ~ dt - 

0 t s 

m e-’ 

1 

t dt. 

Using (10.5), (10.6), and (10.8), we find that 

f W)xk 
k=l k! 

- e”(y + Log x) 

(10.8) 

s 
m e-t = #y 

x 
t dt. 

Successively integrating the integral on the far right side above by parts, 
we readily obtain the desired asymptotic series. 

Example 3. For Re n > - 1 and x 2 0, j-(x)= a2 s m r(n + 1)~“~~ 
e-‘(x + t)” dt - c 

0 k=O T(n-k+ 1) 

as x tends to CO. Furthermore, f(0) = r(n + 1). 

Proof. The proposed value for f(0) is immediate. Ramanujan deduced this 
value by letting q(z) = T(z + 1) and r = n in the Corollary. 

Applying Taylor% theorem, we find that for each nonnegative integer N 
and for some value t,, 0 < t, = to(t, N) < x, 

f(x) = xn Sue-t{k~o(~)(~~+(~:l)(~~‘l(l+~)‘-N-l}dr 

=kio ;y;+;; 
+,(,x,....-l~~e-ttN+l(l+~~e”-N-ldf) 
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as x tends to 00. In the penultimate equality we estimated the integral as 
follows. If Re IZ -N - 1 I 0, replace 1 + t,/x by 1. If Re n - N - 1 > 0, divide 
the interval of integration into [0, l] and Cl, CO). The integral over [0, l] is 
obviously bounded as a function of x. Use the inequality 1 + t,/x < 2t, for x, 
t 2 1, to show that the second integral is also bounded. The desired 
asymptotic series now follows. 

Example 4. For x 2 0, let 

f(x)= 
s 

m sin(t -x) dt 

x t . 

Then 

m (- l)k$(2k + l)xzk+ ’ 5 COS x + (y + Log x) sin x - 1 
k=O (2k + l)! 

=f($- f (,!1")!, 
k=O 

as x tends to 00, where $ is dejned in the third version of Example 2. 
Furthermore, f (0) = 42. 

Proof. The proposed value for f  (0) follows either from the definition off or 
the proposed equality for f .  Ramanujan evidently put C~(Z) = T(z) sin(rcz/2) in 
Example 1 to achieve the value of f(0). 

TO establish the desired equality for f, first replace x by ix in (10.5) and 
equate imaginary parts to obtain 

f, (- l)kt,b(2k + l)xZk+’ 
k=O (2k + l)! 

= COS x z (-l)kX2k+l 
k=O (2k + l)! (2k + 1) 

(10.9) 

Now, 

57 (- ljkxZk+l k=O (2k + l)! (2k + 1) =k~o&j-;t2kdt=j;~dt. (10.10) 

Similarly, 

f (-1)kx2k= 
k=l(2k)! (2k) s 

“cost-ldt 
’ o t 

(10.11) 
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Thus, employing (10.9)-( 10.1 l), we find that 

m (- l)kt,+(2k + l)xZk+’ 
I COS x + (y + Log x) sin x - 1 

k=O (2k + l)! 

n = - 
2 

cosx+(y+Logx)sinx-cosx 

s 

w sin t 
=cosx 

x 
t dt + sin x { 

s a sin t 
t dt - sin x 

s 

m COS t 
=cosx 

x x 
t dt 

= 
s 

a> sin(t -x) dt 

x t ’ 

The penultimate equality was achieved by using a familiar formula for the 
cosine integral. (See Gradshteyn and Ryzhik’s book [l], p. 928.) 

Finally, the asymptotic series representation for f is easily established by 
repeated integrations by parts. 

After the examples, Ramanujan points out the “advantage” of his method 
by remarking, “Thus we are able to find exact values when x = 0, though the 
generating functions may be too difficult to find.” 

Entry 11. Zf n > 0, then 

s 

00 
xn-l m rpW( - 4” 

= k! 
dx = 1-(n)cp( - n). 

0 k=O 

Corollary 1. If n > 0, then 

s 

cc 

0 

x”-l ,zo cp(k)(-x)kdx = n’(-n) 
sin(nn) ’ 

Corollary 2. If n > 0, then 

m x”-1 
c 

(p(2k)( - x2)k 
dx = r(n)p(-n) COS 

k=O (2k)! 

Corollary 3. Zf n is real, then 

s m m cp(k)(-x)k 
’ k! 0 k=O 

COS(~~) dx = kzo cp( - 2k - l)( - n2)k. 

Corollary 4. Zf n is real, then 

s om ,zo d2k)(-x2)k COS(~~) dx = ; ,zo cp(-k ;:)(-“)‘. 
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Ramanujan’s deduction of the five equalities above is strictly formal. First, 
he deduces a familiar integral representation for I(n + 1) by employing 
successive integrations by parts and Example 3 of Entry 10, not the corollary 
of Entry 10 as was claimed. TO establish Entry 11, Ramanujan considers 

where r, n > 0. Invert the order of summation and integration. Then expand 
exp( -rkx) in its Maclaurin series and invert the order of summation to 
obtain 

s 
m y-1 f f(rk)( - 4” 

k! 
dx = l+)f(r-"). 

0 k=O 

Replacing f(rj) by q(j), j = -n, k, 0 I k < CO, Ramanujan completes his 
derivation. 

Corollary 1 is obtained from Entry 11 by replacing C~(X) by I(x + ~)V(X). 
TO establish Corollary 2, replace C~(X) by C~(X) COS(ZX/~) in Entry 11. TO 
deduce Corollary 3, expand COS(U) in its Maclaurin series and invert the 
order of integration and summation for this series. Appealing to Entry 11, we 
complete the argument. Corollary 4, which also appears as Corollary (vii) in 
Ramanujan’s second quarterly report, is more difficult to prove. We defer a 
proof and full discussion of Corollary 4 until our examination of the 
quarterly reports. 

In the introductory chapter of his book [20, p. 151 on the work of 
Ramanujan, Hardy quotes Corollary 1 and remarks that this “particularly 
interesting formula” was one of Ramanujan’s favorite formulas. Later, in 
Chapter 11, Hardy discusses Entry 11, Corollary 1, and Corollary 3 very 
thoroughly and establishes their validity for certain classes of the functions cp. 
In regard to Ramanujan’s possible proofs of these formulas, Hardy remarks, 
“but he had not ‘really’ proved any of the formulas which 1 have quoted. It 
was impossible that he should have done SO because the ‘natural’ conditions 
involve ideas of which he knew nothing in 1914, and which he had hardly 
absorbed before his death.” Complete proofs of Ramanujan’s formulas may 
also be found in Hardy? paper [13], [21, pp. 280-2891. For some appli- 
cations of Corollary 1 to the Riemann zeta-function, see H. M. Edwards’ book 
[l, pp. 218-2251. Another forma1 application of Corollary 1 has been given 
by Hill, Laird, and Cerone [l]. 

Corollary 5. Zf m, II > - 1, then 

s 

1 

x”‘(l- x)” dx = 
r(m+ i)r(n + 1) 

0 r(m+n+2) . 

Of course, Corollary 5 is an extremely well-known formula for the beta- 
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function B(m + 1, n + 1). This example is also given in Ramanujan’s first 
quarterly report, and we defer Ramanujan’s proof until then. 

Entry 12. If 

s 

cc 
$(n) = q(x) COS(~~) dx, 

0 

then 

0) 
s 

m I++(X) cos(nx) dx = 5 q(n) 
0 

and 

s 

om $‘(x) dx = ; 
s 

a cp2(x) dx. 
0 

The first part of Entry 12 gives the inversion formula for Fourier cosine 
transforms. Sufficient conditions for the validity of(i) and (ii) cari be found in 
Chapters 3 and 2, respectively, of Titchmarsh’s book [2]. We defer 
Ramanujan’s “proof” until our examination of his quarterly reports wherein 
several applications of Entry 12 are given. 

Entry 13(i). If m, n > - 1, then 

sin” x COS” X dx = 

r(~)r(~) 
2,(?+1) . 

The result above is well known and is an easy consequence of Corollary 5 
of Entry 11. The formula below is also well known. One of the simplest proofs 
is found in Whittaker and Watson% treatise [Il, exercise 39, p. 2631. 

Entry 13(ii). If m > - 1 and n is any complex number, then 

s 

ni2 
COS”’ x COS nx dx = 

nr(m + 1) 
0 2m+T(qJ+,>,(~+,>~ 

Entry 14. If x is any complex number, then 

jj(l+$-)= sinh(2nx) - 2 sinh(nx) COS(~~,,/!?) 
4n3x3 
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Proof: Letting w = exp(2zi/3) and employing the familiar product represen- 
tation for sinh x, we find that 

gil (1 +g = 
sinh(rcx) sinh(nxw) sinh(nx&) 

X3X3 

=~{sinh2(~)cos2($) +cosh2(y)sin2($)} 

= s { (cosh(nx) - l)(cos(rcx$) + 1) 

+ (cosh(nx) + l)(l -COS(~~,/‘?)}, 

from which the desired evaluation follows. 

Entry 15. For each positive integer k, let G, = &,< 2n+ 1 ik 1/(2n + 1). Then for 
a11 complex x, 

ex T (-2)k-1Xk 
k=l k! k 

(15.1) 

Proof. We have 

I E ex 

s 

1 l-,-Zxz 

dz = eX 
Xk( - 2zy - l 

0 22 s lf k! 0 k=l 

dzzex -f ‘-$;lxk. 
k=l 

On the other hand, 

(15.2) 

I= 
s 

1 ex -ex(1-2z) l1-(1-2z)k 

0 22 
dz=f- 

k=l k! s 

dz 
o 22 

l l-tk -dl= f - m GkXk 

PI l-t k=lk! s 
t2j dt = c - 

0 Oij<(k-1)/2 k=l k! ’ 

(15.3) 

Combining (15.2) and (15.3), we deduce (15.1). 

Note that by equating coefficients of x” in (15.1), we find that 

n2 1. 



CHAPTER 5 

Eulerian Polynomials and Numbers, Bernoulli 
Numbers, and the Riemann Zeta-Function 

Chapter 5 contains more number theory than any of the remaining 20 
chapters. Of the 94 formulas or statements of theorems in Chapter 5, the great 
majority pertain to Bernoulli numbers, Euler numbers, Eulerian polynomials 
and numbers, and the Riemann zeta-function. As is to be expected, most of 
these results are not new. The geneses of Ramanujan’s first published paper 
[4] (on Bernoulli numbers) and fourth published paper [7] (on sums 
connected with the Riemann zeta-function) are found in Chapter 5. Most of 
Ramanujan’s discoveries about Bernoulli numbers that are recorded here 
may be found in standard texts, such as those by Bromwich [l], Nielsen [S], 
Norlund [L], and Uspensky and Heaslet [l], for example. 

The notations for the Eulerian polynomials and numbers are not partic- 
ularly standard, and SO we shall employ Ramanujan’s notations. Define the 
Eulerian polynomials G,,(p), 0 I n < CO, p # - 1, by 

1 g (- l)“$,(P)X” 
e”=p=n=on!(P+l)“+” 1x1 < lmd-P)I. (0.1) 

It Will be shown in the sequel that, indeed, G,,(p) is a polynomial in p of degree 
n - 1. In the notation of Carlitz’s paper [3], which is perhaps the most 
extensive source of information about Eulerian polynomials and numbers, 
R,[ -p] = $,(p). The Eulerian numbers Ank, 1 I k I rr, are generally defined 
by 

$V(P) = j, &c(-P)k-l. 

In Ramanujan’s notation A,, = F,(n); see (6.1) below. The Eulerian poly- 
nomials and numbers were first introduced by Euler [l] in 1755. Carlitz [3], 
[6], [7], and jointly with his colleagues Kurtz, Scoville, and Stackelberg [l], 
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Riordan [l], and Scoville [3], [4], has written extensively about Eulerian 
polynomials and numbers and certain generalizations thereof. See also a 
paper of Frobenius [l], [2, pp. 809-8471, for much historical information, 
and Riordan’s book [l], which contains combinatorial applications. In 
particular, A,, is equal to the number of permutations of { 1, 2, . . . , n> with 
exactly k rises including a conventional one at the left. Some of Ramanujan’s 
theorems on Eulerian polynomials and numbers appear to be new. Also, 
since most results in this area are not well known and the proofs are very 
short, we shah give most proofs. 

In Entries l(i), l(ii), and 3 it is assumed that, for lhl sufficiently small, fcan 
be expanded in the form 

f(x) = ngo dfk+“)(4, (1.1) 

where a,,, 0 I n < 00, is independent of cp. 

Entry l(i). Letf(x + h) -f(x) = ~C$(X). 7% en, in the notation of( 1. l), a, = B,/n !; 
0 I n < CO, where B, denotes the nth Bernoulli number. 

ProOf. SinCe a,, 0 I n < CO, is independent of cp, let C~(X) = ex. Then, by (l.l), 

he” =f(x + h) -f(x) = ex(eh - 1) “gO a,h”, 

i.e., 

Comparing (1.2) with (Il), we complete the proof. 

Entry l(ii). Let f(x + h) +f(x) = hep’(x). Then a, = (1 - 2”)B$n!, 0 5 n < ~0. 

Proof. Again, without loss of generality, we take q(x) = ex. Then, from (l.l), 

he” =f(x + h) +f(x) = ex(eh + 1) g a,#‘. 
n=O 

Thus, from (Il), 

“z. a,$” = -& = h - 2h = nro (l - ;lBnhn, 
eh- 1 eZh - 1 (1.3) 

and the desired result follows. 

Suppose thatfis a solution of either the difference equation of Entry l(i) or 
of Entry l(ii). Then, in general, the series on the right side of (1.1) diverges. 
However, Norlund [2, pp. 58-601 has shown that under suitable conditions 
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the series on the right side of (1.1) represents the function asymptotically as h 
tends to 0. 

Let cp be any function defined on (- GO, GO). In anticipation of Entries 2(i) 
and 2(ii), define 

where n is a nonnegative integer. 

Entry 2(i). Letf(x + 1) -f(x - 1) = ~V’(X), where cp is a polynomial. Then there 
exists a polynomial solution f of the form 

(2.2) 

where F2,,+ 1 is dejïned by (2.1). 

Entry 2(ii). Letf(x + 1) +f(x - 1) = ~V(X), where cp is a polynomial. Then there 
exists a polynomial solution f of the form 

(2.3) 

where F,, + 1 is dejined by (2.1). 

Before embarking upon the proofs of these theorems we shall make several 
comments. 

First, the series on the right sides of (2.2) and (2.3) are, in fact, finite series. 
This Will be made evident in the proofs of (2.2) and (2.3). In some cases, the 
restrictions thatf and <p be polynomials may be lifted. However, in general, iff 
is a solution of the difference equation in Entry 2(i) or Entry 2(ii), the series on 
the right side of (2.2) or (2.3), respectively, does not converge. 

Ramanujan actually considers the seemingly more general difference 
equations f (x + h) -f (x - h) = 2hq’(x) and f (x + h) + f (x - h) = 244x) in 
Entries 2(i) and 2(ii), respectively. However, it is no loss of generality to 
assume that h = 1. For suppose, for example, that Entry 2(i) has been 
established. Put y = xh, f(x) = g(y), and C~(X) = $(y). Then the difference 
equation of Entry 2(i) becomes g(y + h) - g(y - h) = ?h$‘(y). 

We are very grateful to Doron Zeilberger for suggesting the following 
method of proof for Entries 2(i) and 2(ii). Since the proofs use operator 
calculus, we need to define a couple of operators. As customary, let D denote 
the differential operator and define E by Ef(x) =f(x + 1). Note that E = eD. 
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Proof of Entry 2(i). We shah first derive another formulation of Fz,+ 1(x). 
From (2. l), 

= (nY(-EY '" 2n (-E-l)2n-jq 

Xc ) (2n)! j=O j 

= (n!12( - 1) 
(2n)! 

enD( 1 - eëD)2”cp 

= (- lYYn9’ 
(2n)! ( 2 sinh (g)yn” (2.4) 

In operator notation, the given difference equation is (E - E - ‘)f= 2D43, 
or f= 2Dq/(eD - eëD). Hence, in operator notation, the proposed identity 
may be written as 

f (- 1)“(n92 n=~ (2n + l)! (2 sinh ($)‘““v = eD,:freD,2. (2.5) 

Set y = sinh(D/2) = ($ - l/fi)/2. (Note that (fi - l/$)“(p = 0 if n 
exceeds the degree of cp, and SO the series in (2.9, indeed, does terminate.) A 
short calculation shows that Jm = (eDi2 + eeDj2)/2. Hence, it suffices to 
prove that 

m ( l)“(nt)2(2y)2n+1<P 
&Tic- . 

(2n + l)! 
= 2(sinh-‘ y)cp. 

n=O (2.6) 

Obviously, (2.6) is valid for y = 0. Thus, it suffices to show that the derivatives 
of both sides of (2.6) are equal. After taking derivatives in (2.6) and 
multiplying both sides by $Jm, we find that it is sufficient to prove that 

T (- l)“(n!)222”y2”+2q + ty2 + 1) -f (- l)“(n!)2(W2”~ = ~. (2 7) 
n=O (2n + l)! n=O (2n)! 

Combining the series together on the left side of (2.7), we easily obtain cp after 
a short calculation. This completes the proof. 

ProofofEntry 2(ii). Using (2.4), we find that the left side of (2.3) may be written 
as 

’ = 1 + 2 sinh2(D/2) ’ 

1 
= -cp. 

cash D 

Since the given difference equation in operator notation is (E + E -I)f= 2cp 
or f= cp/cosh D, the desired result follows. 
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Entry 3. Letf(x + h) + pf(x) = q(x), where p # - 1. Then, in the notation of 
U.l), 

a = (-lYvn(P) 
” n! (p+l)“+” 

Oln<m, 

where 1+9,(p) is dejned by (0.1). 

Proof. As before, since a,,, 0 I n < CO, is independent of cp, we shall let 
C~(X) = ex. Using (1.1) and proceeding in the same fashion as in the proof of 
Entry l(i), we find that 

(3.1) 

Comparing (3.1) with (O.l), we deduce the desired result. 

Appel1 [ 11, Brodén [ 11, [2], and Picard Cl] have studied periodic solutions 
of f(x + h) + pf(x) = C~(X). For a discussion of solutions to many types of 
difference equations and for numerous references, see Norlund’s article in the 
Encyklopüdie [l]. 

(P + 1)“-1W9=k~o(k+ l)“(-plk. 
ProoJ For le-“pi< 1, 

(4.1) 

e”:p -k~oe-“+lby-p)‘= f (vP)k f E+L;F 
k=O n=O 

kro (k + l)“(-~)~. (4.2) 

If we now equate coefficients of x”, n 2 0, in (0.1) and (4.2) we deduce (4.1). 
However, this procedure is valid only when the series in (0.1) and (4.2) have 
a common domain of convergence in the complex x-plane. Put p = rein, 
0 < r < 1, - n < CI I 7~. Then the series in (0.1) converges if and only if 
/xl2 < (Log r)2 + ~1~. The double series in (4.2) are absolutely convergent 
when Re x > Log r. Thus, there is a common domain of convergence, and the 
proof is complete. 

Entry 5. We haue tjo(p) = 1, while for n 2 1, 

(-‘)“+‘p(p + ‘)-“ti,(d = ,io (- ljk 0 ; (p + l)-k$,(p). (5.1) 
Proof. From (O.l), 

l =iP+~o~}~on;fp+:r:. 
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Equating coefficients on both sides, we find that Il/e(p) = 1 and that (5.1) holds 
for n 2 1. 

For n 2 1, the recursion formula (5.1) may be written in the form 
n-l 

$tl(P)= jJlo (bl)’ j: 1 (P+l)‘11/“-]-l(p), ( ) (5.2) 

where we have setj = n - k - 1 in (5.1). Note that $l(p) = 1. By inducting on 
n, we see that I++,(P) is a polynomial in p of degree n - 1. Thus, after 
Ramanujan, we Write 

n-1 

$,(P) = & F, + M-P)“. 

Entry 6. Let 1 < r I n. Then 

0) F,(n) = F,-,+ l(n), 

(ii) 

and 

(iii) 

F, -k(n) = r”, 

r-1 

F,(n) = kgo ( - llk 

(6.1) 

Proof of(i). Since tio( p) = 1, (0.1) yields 

ex- 1 1 1 f (- l)“-‘IL”(P)x” 
(p+ l)(e”+p) =p+l-e”+p=.=~ n! (p+ l)“+’ ’ 

Replacing x by -x and p by l/p, we obtain 

F (-1)“-‘ll/,(p)x” ex- 1 f p”-‘$,(l/p)x” Z---T 
n=1 n! (p + 1) ex + p n=l n! (p+ 1)” ’ 

Equating coefficients of x”, we find that 

(-Yv,(P)=P”-v” 5 3 
0 

n2 1. (6.2) 

Using (6.1) in (6.2) and equating coefficients of p’- ’ on both sides, we 
complete the proof of(i). 

Proofof(ii). By (4.1) and (6.1), if IpI < 1, 

Equating the coefficients of p’- ’ on both sides, we deduce (ii). 
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Proof of (iii). Again, by (4.1) and (6.1), for JpI < 1, 

k=O 

Equate coefficients of prp 1 on both sides to deduce (iii). 

The statement of (ii) in the notebooks, p. 48, is incorrect; replace n by n + 1 
on the left side of (ii). Entry 6(ii) is due to Worpitzky [l] while (iii) is due to 
Euler [l]. 

l+bn(x - 1) = g 
n! 

ii ) 

1 Il+1 

Log ~ 
1-X 

+(-1)” kr$+l k(k-;- l), . (Logil;:T-.ljY (7.1) 

where B, denotes the kth Bernoulli number. 

This formulation of Entry 7 is not the same as Ramanujan’s version. 
Ramanujan claims that $,,(x -- 1) is the “integral part” of 

Xn+l n! 

i< ) 

B 

l-x 1 
n+l +(-l)“$ . 

Log ~ 
l-x 1 

(7.2) 

Since $“(x - 1) is generally not an integer, we are not sure what Ramanujan 
intends. Perhaps Ramanujan is indicating that the primary contribution to 
$.(x - 1) in (7.1) is (7.2), especially if x is small. 

Proof. By (Il), if 0 < x < 27c, 

kg1 emkx= epx -=&=k~o$*k-l. 
1 -emX (7.3) 

Differentiate both sides of (7.3) n times with respect to x and multiply both 
sides by (- 1)” to get 

k~l~e-k”=~+(-l)“t=~+lk(k_BnX-l~xk-n-l. (7.4) 

Now replace x by - Log( 1 - x) in (7.4). We then observe that the left side of 
(7.4) is (1 - x)x-“-1$,(x - 1) by Entry 4. This completes the proof of (7.1). 
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Entry 8. For n 2 1, $,( - 1) = n! and G,(l) = 2”+l(2”+l - l)B,+,/(n + 1). 
Furthermore, 

$O(P) = $I(P) = 1, 

$L(P) = 1 - P, 

$3(P) = 1 - 4P + PZY 

and 

$4(p) = 1 - llp + llp2 - p3, 

$5(p) = 1 - 26p + 66p2 - 26p3 + p4, 

$Jp) = 1 - 57~ + 302~~ - 302~~ + 57p4 - p5, 

$,(p) = 1 - 120~ + 1191~’ - 2416~~ + 1191~~ - 120~~ + p6. 

Proof. Since tiO( - 1) = 1, the values for $,( - l), n 2 1, follow immediately 
from (5.2) and induction on n. 

Next, by (Il), for 1x1 < 71, 

m (l-2k)B&’ 1 2 c---z---= k=O ex - 1 ezx - 1 

1 
ex + 1 

_ f (-l)“~,U)x” 
n=O 2”+‘n! ’ 

The formula for $,(l) now readily follows from comparing coefficients of xn 
above. 

By Entry 5 and (5.2), we previously had shown that t,bo(p) = til(p) = 1. TO 
calculate the remaining polynomials, we employ Entry 6(i) and the recursion 
formula 

F,(n)=kF,(n-l)+(n-k+l)F,-,(n-l), (8.1) 

where 2 < k I n. Ramanujan does not state (8.1), but he indicates that he was 
in possession of such a formula. 

TO prove (Kl), we employ Entry O(iii) to get 

kF,(n - 1) + (n - k + l)F,- l(n - 1) 

k-l 

=kj~oW)' 
0 

7 (k-j)“-‘+(n-k+ l)yil(-l)j(l)(k-j--l).-’ 

k-l 

=k”+ c (-l)j(k-j)“-’ k y -(n-k+l) 
j=l io 

(k -j)” = F,(n). 
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Corollary 1. Let f(x) denote the solutionfound in Entry 3. Then f(x) is the term 
independent of FI in 

kro cp’k’(xYnk 
enh + p ’ (8.2) 

where it is understood that the series in the numerator above does, indeed, 
converge. 

Proof. Expand l/(enh + p) by (0.1). Upon the multiplication of the two series in 
(8.2), the proposed result readily follows. 

Corollary 2 is a complete triviality and not worth recording here. 

Corollary 3. Zf n is even and positive, then Il/,(p) is divisible by 1 -p. 

Proof. The result follows readily from (6.1) and Entry 6(i). 

Corollary 4. For 1x1 < (Log( -p)(, 

COS x + p 

pz + 2p cas x + 1 
= f (-V\l/,,(P)x2” 

n=O (2n)! (p + 1)2”+” 

Corollary 5. For 1x1 < ILog(-P)I, 

sin x 
p2 + 2p COS x + 1 

= f (- l)nti2”+l(Pwn+1 

“=o (2n + l)! (p + 1)2n+2’ 

Proofs of Corollaries 4 and 5. Replacing x by ix in (O.l), we have 

1 eë’“+p _-= 
erx + p p2 + 2p COS x + 1 

Equating real and imaginary parts on both sides above, we deduce Corol- 
laries 4 and 5, respectively. 

In the hypothesis of Corollary 6, which consists of four parts, Ramanujan 
attempts to define a sequence of numbers {A,}. However, these numbers, as 
defined by Ramanujan, are not uniquely determined. It is preferable to define 
A, by Corollary 6(iv) and then deduce the equality of the hypothesis. Hence, 
we have taken the liberty of inverting (iv) and the hypothesis below. Thus, put 

n-1 
~“(P-l)=kCA”-I<(-P)k. (8.3) 

Ramanujan’s notation is unfortunate because A, depends upon n. 
For Re s > 1, the Riemann zeta-function i(s) is defined by QS) = ZZZ 1 KS; 

in Ramanujan’s notation, c(k) = S,. 
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Corollary 6. Let 1 < r < n. Then 

(i) 

r-1 

(ii) A,= 1 (-l)k 
k=O 0 

Q (r - kJ”, 

(iii) A&! is the coeficient of x” in (ex - l)‘, 

and 

(iv) krl (- l)k+‘W(k + l)- 1) 

=(-l)“+(-1)“2 

where 11/,(l) is determined in Entry 8. 

Proof of(i). By (6. l), 

“-‘t),(l)+ t (-l)k+lAk[(k+ l), 
k=l 

n-l 

bh(pml) =c Fk+l(n)(l -P)“. (8.4) 

Equating coefficients of p “-j in (8.3) and (8.4), we find that, for 1 <j I n, 

F, + lb’). 

Thus, using Vandermonde’s theorem below, we find that 

iJ~)Aj=j~l(~)kl.j(nkj)Fk+l(n) 

n-1 

where we have employed Entries 6(i) and 6(ii). 

Proof of (ii). The proposed formula follows from the inversion of (i). (See 
Riordan’s book [2, pp. 43, 441.) 

From (ii) it is seen that A, =A,(n) = r! S(n, r), where the numbers S(n, r) are 
Stirling numbers of the second kind. For the definition and basic properties of 
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these numbers, see the work of Abramowitz and Stegun [l, pp. 824, 8251 as 
well as Sections 6-8 in Chapter 3 here. Because (iii) is such a familiar property 
of Stirling numbers of the second kind and because its proof is similar to that 
of Example 2, Section 8, of Chapter 3, we omit the proof. 

Proofof(iv). Using successively Entry 4, (6.2), and (8.3) below, we find that 

~~l(-l)x”k”(i(k+l)-l)= f f (-1;::‘“” 
j=Zk=l 1 

from which 

Examples 1 

=(-1)“-’ j~2(jy:+, 

n-l 

=(-1)“-‘1 (-1)?4-,{~(n-k+1)-1-2k-“-‘}, 
k=O 

the desired formula follows with the use of (8.3). 

and 2. We have 

kzl $ = 1082 and ,zl $ = y. 

Proof. By Entry 4 and (6.2), 

,$ ; = *A - l/P) P$?I(-P) 
p(1 - 1/+),+1 = (p- 1)“+i. (8.5) 

From Entry 8, $,( -2) = 541 and $& -3) = 1456. Putting these values in 
(8.5), we achieve the two given evaluations. 

Entry 9 is simply the definition (Il) of the Bernoulli numbers, and Entry 10 
is the expansion given on the right side of (1.3). 

Entry 11. For Ix( < 274 

Log -YY- 
( > ex - 1 

=$, (- yox”. 
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Proof. Using (Il), we have, for 1 x I< 2rc, 

Entry 12. For 1x1 < TC, 

2 
Log ~ 

( ) e”+ 1 
= J (- *Y;;,- 1)4x” 

Proof. Observe that 

Log(sT) = LOP(&) -Log(e&) 

and then use Entry 11. 

The conclusions of Examples l-3 below are written as equalities in the 
notebooks, but Ramanujan clearly realizes that his results are approxi- 
mations. Put eP=l+p, eQ=l+q, eR=l+r, es=l+s, and e’=l+t, where 
p, 4, r, s, and t are to be regarded as small. In the first example below, 
Ramanujan has incorrectly written - 1/2 instead of 1/2 on the right side. 

Example 1. IfeP+eQ+eR=2+eP+Q+R, then 

Proof. In terms of p, 4, and r, we are given that 3 + p + q + I’ = 2 + (1 + p) 
(1 + q)(l + r), which may be written as 

,I-A+L+‘-‘+++--!+A Q 1 
P 2 12 Q 2 12 R 2 12’ 

where we have used (Il) and ignored a11 terms with powers of P, Q, and R 
greater than the first. The desired approximation now follows. 

Example 2. Zf 

eP+Q+R+S _ eP+eQ+eR+es-2 
- 

e-P+e-Q+e-R+e-S-2' 



5. Bernoulli Numbers and the Riemann Zeta-Function 121 

then 

Proof. The given equality is equivalent to 

(1 +p)(l+4)(1 +r)(l +s)=;‘;T;T;‘j. 

Now cross multiply and ignore a11 products involving p2, q2, r2, and s2. After 
a tedious calculation and much simplification, we find that 

41 +‘+!+A 
P 4 r s’ 

Proceeding as in Example 1, we achieve the sought approximation. 

Example 3. If 

zeP+Q+R+S+T 

=(eP+eQ+eR+eS+eT-2)2-(eZP+e2Q+e2R+e2S+e2T~2) 

e -"+e-Q+e-R +emS+ëT-2 
> 

then 

Proof. The proof is straightforward, very laborious, and along the lines of the 
proofs of Examples 1 and 2. Rewrite the given equality in terms of p, 4, r, s, 
and t. Cross multiply and ignore a11 terms involving p’, q2, r2, s2, and t2. After 
a lengthy calculation and considerable cancellation, we arrive at 

1 1 1 1 1 
-+-+-+-+;z-2. 
P 4 r s 

Now proceed as in Example 1. 

Entry 13. For 1x1 <n, 

m (- 1)“B2”(2X)2” 
x cet x = c 

n=O (2n)! ’ 

Entry 14. For (xl < TC, 

m (- 1)“(2 - 22”)B2”X2n 
x csc x = c 

n=O (2n)! 

Entry 15. For (x ( < 742, 

O3 
x tan x = C 

(- l)n22”( 1 - 29.?2nX2” 
n=l (2n)! ’ 
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Entries 13-15 are very familiar, and SO there is no point in supplying 
proofs here. 

Entry 16. For 1x1~ n, 

Proof. For (xl < rc, 

Log & = 
( )S 

;;(l -t cet t) dt. 

Now employ Entry 13. 

Entry 17. For 1 x I< 42, 

orI (- 1)“22”(1 - 22”)BZnX2” 
Log(sec x) = C 

n=l (2n)(2n)! . 

Proof. For 1x1~ rc/2, 

s 

x 
Log(sec x) = tan t dt. 

0 

Now employ Entry 15. 

Ramanujan now makes three remarks, the first of which is trivial and the 
second of which is a special case of the third, 

B 

B2Lh 

(- l)h(2n)! -N 
(27c)2h(2n - 2h)! 

as n tends to 00, where 0 I h I FI - 1. This asymptotic formula is a simple 
consequence of Euler’s formula for [(2n); see Entry 25(i). 

The following recurrence relation is due to Euler [l]. 

Entry 18. Let n be an integer exceeding 1. Then 

-(2n + l)B,, = $i 
0 

ik &dL-2k. 

Ramanujan’s first published paper [4], [15, pp. l-141 is on Bernoulli 
numbers. and Section 2 of that paper contains a proof of Entry 18. After 
Entry 18, Ramanujan lists a11 of the Bernoulli numbers with index I 38. 
Al1 of the values are correct and agree with Abramowitz and Stegun’s tables 
[l, p. 8101. The next result is contained in (16) of Ramanujan’s paper [4]. 

Entry 19(i). For each positive integer n, 2(22” - l)B,, is an integer. 
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Proof. We give a somewhat easier proof than that in [4]. By the von 
Staudt-Clausen theorem, the denominator of B,, is the product of a11 those 
primes p such that (p - 1)12n. Let p be such an odd prime. Then by Fermat’s 
theorem, PI(~~-’ - 1). But since (p- 1)12n, we have PI(~‘“-- l), which 
completes the proof. 

Entry 19(ii). The numerator of B,, is divisible by the largestfactor of 2n which is 
relatively prime to the denominator of B,,. 

Entry 19(ii) is contained in (18) of Ramanujan’s paper [4] and is originally 
due to J. C. Adams. (See Uspensky and Heaslet’s book [l, p. 2611.) In fact, in 
both Entry 19(ii) and (18) of [4], Ramanujan claims a stronger result, viz., the 
implied quotient is a prime number. However, this is false; for example, the 
numerator of B,, is 8545 13 = 11.13 1.593. (See, for example, Wagstaff’s table 
in [l, p. 5891.) 

Entry 19(iii) is a statement of the von Staudt-Clausen theorem, which we 
mentioned above and which is (19) of Ramanujan’s paper [4]. 

Entry 20. For each nonnegative integer n, (- l)“-‘B,, + (- l)“(l - F,,) is an 
integer IZn, where F,, is the sum of the reciprocals of those primes p such that 
(P - 1)12n. 

Of course, Entry 20 is another version of the von Staudt-Clausen theorem. 
Ramanujan next lists the following values for Z,,: Z,, = 0, 0 I n I 6, Z,, = 1, 
1,,=7, 1,,=55, Z,,=529, 1,,=6192, 1,,=86580, and 1,,=1425517. Al1 
of these values are correct. 

In Example 1, Ramanujan calculates Bz2, partly with the aid of the von 
Staudt-Clausen theorem. However, his reasoning is fallacious because 
Ramanujan thought that the numerator of B,, divided by 11 is prime. We 
pointed out above that this is false. 

Example 2. The fractional part of B,,, is 216641/1366530. 

Proof. The given result is a direct consequence of the von Staudt-Clausen 
theorem. 

Several of the results in Ramanujan’s first paper [4] are not completely 
proved or are false. Wagstaff [2] has made a thorough examination of 
Ramanujan’s paper and has given complete proofs of a11 the correct results in 
L-41. 

Entry 21 consists of two tables. The first is a table of primes up to 211. In 
constructing the table, Ramanujan makes use of the fact that any prime other 
than 2,3, and 5 is of the form p + 30n, where n 2 0 and p is either 7,11,13,17, 
19,23,29, or 3 1. The second table lists a11 primes up to 4969. The numbers at 
the extreme left of the table give the number of hundreds in the primes 
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immediately following; and the inked vertical strokes divide the hundreds. 
The table was presumably constructed as follows. First insert the primes 
(constructed in the first table) up to 211. Then use the fact that any 
prime other than 2, 3, 5, and 7 is of the form q + 210n, where n 2 0 and q is 
one of the numbers 11, 13, 17, . . . . 199, 211. Thus, increase each of these 
primes already in the table by multiples of 210 until we reach the prime 
2,3.5.7.11 + 1 = 2311. Then proceed in a similar fashion with the arithmetic 
progressions r + 23 1 On, where n 2 0 and r is any of the numbers 13,17,19, . . . , 
2309, 2311. 

Entry 22. Zf n is a natural number, then 

22”(22” - l)B,, = 2n “il 
k=O 

where Ej denotes the jth Euler number. 

Proof. By (12) and Entry 15, 

d 
=Sec2 x=&tan x 

Now equate coefficients of x~“-~ on both sides to achieve the proposed 
formula. 

Next, Ramanujan records the Euler numbers E2,, 0 < n < 7. Al1 values are 
correct. 

Entries 23(i)-(iv) give the well-known partial fraction decompositions of 
cot(rrx), tan(rcx/2), csc(rcx), and sec(rrx/2). Ramanujan has also derived these 
expansions in Chapter 2, Entry 10, Corollaries l-3. Entries 24(i)-(iv) offer the 
familiar partial fraction expansions of coth(nx), tanh(rcx/2), csch(r-cx), and 
sech(nx/2). 

After Entry 24, Ramanujan makes three remarks. In the first he claims that 
the last digit of E,, is 5 and that E,, _ 2 + 1 is divisible by 4, n 2 1. Ramanujan 
probably discovered these results empirically. The latter is due to Sylvester. 
Moreover, they are, respectively, special cases of the following congruences 

E,, = 5 (mod 60) and E,, _ 2 = - 1 (mod 60), 

normally attributed to Stern. (See Nielsen’s text [S, p. 2611.) 
The second remark is a special case of the third, namely, 

E 2n+ 2h (- l)h22h(2n + 2h)! -‘v 
E 2n 7c2h(2n)! 

as n tends to CO, where h is a nonnegative integer. This asymptotic formula is 
an easy consequence of Entry 25(iv) below. 
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For Re s > 1, let Â(s) = ~km,O (2k + l)-“, and for Re s > 0, define q(s) = 
cg1 (- l)k+lP and L(s) = CF= o (- l)k(2k + l)-“. 

Entry 25. If n is a positive integer, then 

(ii) 

(iii) 

1(2n) = ( - 1)“- YWZ” B 

2(2n)! 2nr 

Â(2n) = (- 1)“-‘(1 - 2-2nw42n B 

2(2n)! 2m 

r(2n) = (- 1)“-‘(1 - 21-2”)(27r)2”B 
2(2n)! 2m 

and 

L(2n _ I) = (- Y1w)2n-1 E 

2(2n - 2)! 
2n 2. 

_ 

The first equality is Euler’s very famous formula for [(2a). For an 
interesting account of Euler’s discovery of this formula, see Ayoub’s paper 
[Z]. A proof of (i) that uses only elementary calculus is found in Berndt’s 
article [2], which also contains references to several other proofs. Observe 
that Â(s) = (1 - 2-“)C(s) and that q(s) = (1 - 2l -‘)[(s), and SO (ii) and (iii) both 
follow from (i). Formula (iv) is also well known and is an illustration of 
the following fact. If x is an odd character, then the associated Dirichlet 
L-function cari be explicitly evaluated at odd, positive integral values; if x is 
even, then the associated L-function cari be determined at even, positive 
integral values. See Berndt and Schoenfeld’s work [l] for a verification of this 
remark. 

Ramanujan next uses (i) and (iii) to define Bernoulli numbers for any index. 
Thus, for any real number s, he defines 

B* = 2m + 1) 
s 0” w (25.1) 

(We now employ Ramanujan’s convention for the ordinary Bernoulli 
numbers.) Note that BT,+r # 0, n 2 1, in Ramanujan’s definition, which 
conflicts with (Il). It is curious that Euler [l], [7, p. 3501 also defined 
Bernoulli numbers of arbitrary index by (25.1) but apparently made no 
significant use of this idea. 

Similarly, Euler numbers of arbitrary real index s may be defined by 
interpolating (iv) above. Thus, Ramanujan detînes ES by 

for any real number s. Observe that E&+, = (- l)nEZn, where n is a 
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nonnegative integer and E,, denotes the 2nth Euler number. (Ramanujan did 
not adjoin a suffix * to B, or E,; we have done SO to distinguish the ordinary 
Bernoulli and Euler numbers from Ramanujan’s extensions.) The next two 
corollaries give numerical examples. 

XW) 
Corollary 1. BT = 00, B3,2 = -, 

4n$ 
and B3 =z. 

Corollary 2. Bg = - 1, B1,2 - * - -(1+1/&1/2), E,*=oo, ET,2=2@L(1/2), 
and Ez = 8L(2)/7c2. 

Proof. The value for BX arises from the extension (25.1) and the fact that 
C(O) = - 1/2. The value for Eg arises from the fact that T(s) has a simple pole 
at s = 0. Al1 other tabulated values are easily verified. 

Let 

f(a) = kg, (a + bk)-“, 

where a, b > 0 and n > 1. Note that f(a) = b-“[(n, a/b) -a-“, where ((s, a) 
denotes Hurwitz’s zeta-function. 

Entry 26. As bJa tends to 0, 

O(a) - &-;+k~,~(n+;;-2)(;)2k-1, (26.1) 

Proof. A simple calculation shows thatf(a -b) -f(a) = a-“. In the notation 
of Entry l(i), h = -b and <p(a) = l/{a”-‘b(n - 1)). If Entry l(i) were appli- 
cable, we could readily deduce (26.1) with the asymptotic sign - replaced by 
an equality sign. But, the series on the right side of (26.1) does not converge. 
However, by appealing to the theorem in Norlund’s text [2, pp. S-60] that 
we mentioned after the proof of Entry l(ii), we cari conclude that the right side 
of (26.1) represents the function ay asymptotically as b/a tends to 0. 

Example. For n > 1, as the positive integer r tends to 00, 

r-1 
i(n)-k~l k-“+ (n- :)rn-l +$ 

(26.2) 

Proof. Apply Entry 26 with a = r and b = 1. Thus, as r tends to 00, 

k~l(r+k)m”- ’ (n - l)r”-’ 
--&+k$ls (n’:,M2)rp~d*k+l. 

Adding ci= r k-” to both sides above, we obtain (26.2). 
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Asymptotic series like those in Entry 26 and the Example above were 
initially found by Euler. See Bromwich’s book [l, pp. 324-3291 for a very 
complete discussion of such asymptotic series and their applications to 
numerical calculation. Indeed, like Euler, Ramanujan employs (26.2) to 
calculate c(n), where n is a positive integer with 2 I n I 10, to the tenth 
decimal place and provides the following table. 

2 1.6449340668 6 
3 1.202056903 1 17.19624 
4 1.0823232337 30 
5 1.0369277551 39.34953 
6 1.0173430620 42 
1 1.0083492774 38.03538 
8 1.0040773562 30 
9 1.0020083928 20.98719 

10 1.0009945781 13.2 

For c(3), the tenth decimal place should be 2; for c(lO), the ninth decimal place 
should be 5. Euler used this same method to calculate c(n), 2 I n I 16, to 18 
decimal places. (See Bromwich’s book [l, p. 3261.) A different method was 
used by Legendre Cl, p, 4321 to calculate c(n), 2 I n I 35, to 16 decimal places. 
Stieltjes [l], using Legendre’s method, calculated Qn), 2 I n I 70, to 32 
decimal places. For even n, the values of l/Bn above are determined from 
Ramanujan’s table of Bernoulli numbers. For odd n, Ramanujan employs 
(25.1) and his previously determined values of i(n). In the far right column 
above, the last recorded digit for l/Bf should be 3; the last digit for l/BT 
should be 6; and the last two digits for l/B$ should be 20. 

Corollary 1. The Riemann zeta-function has a simple pole at s = 1 with 
residue 1, and the constant term in the Laurent expansion of i(s) about s = 1 is 
Euler’s constant y. 

Of course, Corollary 1 is very well known. (For example, see the books 
of Landau [l, p. 1641 or Titchmarsh [3, p. 161.) Ramanujan’s wording 
for Corollary 1 is characteristically distinct: “n S,+ 1 = 1 if n = 0 and 
s “+i - I/n = 0.577 nearly.” In the sketch following Corollary 1, Ramanujan 
gives the first three terms of the asymptotic series 

(26.3) 

The symbol N here means that the first n terms from the series on the right 
side approximate the left side with an error less than the magnitude of the 
(n + 1)th term. In fact, this asymptotic series for y was first discovered by 
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Euler and used by him to calculate y. (See Bromwich’s book [ 1, pp. 324-3251.) 
It is curious that Ramanujan’s approximation 0.577 to y is better than any 
that cari be gotten from Euler’s series. Bromwich [l, p. 3251 points out that 
the best approximation 0.5790 is achieved by taking four terms on the right 
side of (26.3). If we take just three terms and average the two approximations, 
we get the mean approximation 0.5770. Perhaps this is how Ramanujan 
reasoned, or possibly he calculated y by using the Euler-Maclaurin sum- 
mation formula to approximate a partial sum of the harmonie series. 

Corollary 2 is merely a reformulation of the latter part of Corollary 1 in 
terms of Ramanujan’s generalization (25.1) of Bernoulli numbers. 

Entry 27. Suppose that 1 a,1 I p-‘for each prime p and for some constant c > 1. 
Then 

n(l -aJt = 1 + 2 apl...upk, 
n=2 

where the product on the left is over a11 primes p, and where the su@ixes on the 
right side are the (not necessarily distinct) primes in the canonical factorization 
ofn. 

Proof. Expand the product on the left side and use the unique factorization 
theorem. 

Entry 28. For Re s > 1, 

[(s)=fl(l-p-S)-‘. 
P 

Entry 28 is the familiar Euler product for i(s) and, in fact, is a special 
instance of Entry 27. The next two corollaries are simple consequences of 
Entry 28. 

Corollary 1. For Re s > 1, 

Y(1 +p-q=J@. 
KW 

Corollary 2. For Re s > 1, 

Corollary 3. For Re s > 1, 

where the sum on the left is over a11 positive integers which have an odd number 
of prime factors in their canonical factorizations. 
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Proof. By Entry 28 and Corollary 1, 

from which the desired result follows. 

Examples l(i), (ii), and (iii) record the familiar results c(2) = 7c2/6, 
L(3) = n3/32, and A(4) = rc4/96, respectively, deducible from Entry 25. 

Example 2. We have 

and 

(ii) 

4 1+p-2 5 

P 
1-p-2 =z 

> 

Proof. Equality (i) follows from Corollary 2, and (ii) follows from Corollary 1. 

Example 3. We have T(2) = 7c2/20 and T(4) = n4/1260, where T(s) is given in 
Corollary 3. 

Proof. The proposed values follow from Corollary 3 and Entry 25(i). 

Corollary 4. For Re s > 1, 

Corollary 4 is simply the Euler product for L(s), and is an instance of 
Entry 27. Corollary 5 below is a well-known result arising from the logarith- 
mit derivative of the Euler product in Entry 28. 

Corollary 5. For Re s > 1, 

k$l k-” Log k = T(s) ; z. 
Example. The series 1, sin(np/2)/p converges. 

Although the result above is a special case of a well-known theorem in the 
theory of L-functions (see Landaus text [l, pp. 446-449]), its proof is 
considerably deeper than the other results in Section 28. Ramanujan supplies 
no hint of how he deduced this result. 
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Entry 29. For IX~< 1, 

k-1 (1 -X)(l -x2) .*. (1 -Xk)’ 
(29.1) 

where pl, p2, . . . denote the primes in ascending order. 

Entry 29, in fact, is canceled by Ramanujan. Let c, and d,, 2 s n < 00, 
denote the coefficients of x” on the left and right sides, respectively, of (29.1). 
Then, quite amazingly, c, = d, for 2 I n I 20. But cZ1 = 30 and dz1 = 31. 
Thus, as indicated by Ramanujan, (29.1) is false. 

G. E. Andrews [3] has discussed Entry 29 and has posed the following 
problem. Define a “Ramanujan pair” to be a pair of infinite, increasing 
sequences {ak} and {bk} such that 

k=l(l -X)(l -x2) ... (1 -Xk)’ 
(29.2) 

Had Ramanujan been correct, {ak} = {bk) = {pk} would have been a Raman- 
ujan pair. If ak = m + k - 1 and b, = m, 1 I k < CO, where m is a positive 
integer, then (29.2) is valid by a theorem of Euler. Also if 

i 

m+k-1, l<k<m, 
ak = 

2k- 1, k > m, 

and b, = m + k - 1, 1 5 k < CO, (29.2) is satisfied by another identity due to 
Euler. If 

{ak} = {m > 0: m z f 1 (mod 5)} 

and b, = 2k - 1, 1 I k < GO, or if 

{ak} = {m > 0: m 3 k 2 (mod 5)) 

and b, = 2k, 1 5 k < CO, (29.2) is again valid. The equalities in these two cases 
are the Rogers-Ramanujan identities, which are found in Chapter 16. 
Andrews conjectured that these four pairs exhaust a11 possibilities. However, 
Hirschhorn [l] found two additional Ramanujan pairs, and Blecksmith, 
Brillhart, and Gerst [l] discovered four more Ramanujan pairs. Blecksmith 
[Il] has thoroughly examined this problem, and his computer assisted results 
strongly suggest that no further Ramanujan pairs exist. 

Acreman and Loxton [l] have examined Andrews’ problem from another 
point of view. For what they cal1 regularly varying sequences {ak} and {bk}, 
Acreman and Loxton derive asymptotic formulas for the coefficients of the 
power series on both sides of (29.2). A comparison of the two asymptotic 
formulas shows that severe restrictions are placed on the sequences {ak} and 
{bk} in order for them to be a Ramanujan pair. Furthermore, it is shown that 
the known Ramanujan pairs correspond to the known values of the 
dilogarithm, which is defined by (6.1) in Chapter 9. 
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Entry 30. Suppose that la,/ I p-‘for each prime p andfor some constant c > 1. 
Then 

n(1 +a,)= 1 + C ap, . . . apk. 
P n 

The sum on the right side is over a11 squarefree integers n = p1 . . . pk, where 
pl, . . . , pk are distinct primes. 

Proof. Expand the product on the left side above. 

Corollary 1. For Re s > 1, 

f m n-s _ 
n=1 KW. 

nsquarefree 

Proof, Let ap = p-” in Entry 30 and apply Corollary 1 of Entry 28. 

Corollary 2. For Re s > 1, 

;  n-s = i2(s) - 5(W 
xmm) ’ 

where the sum on the left is over ail squarefree integers n which contain an odd 
number of prime factors. 

Proof. By Entry 28 and Corollary 1 of Entry 28, 

--‘=n(l+p-S)-fl(l-p-q, m 
KW i(s) p P 

from which the desired equality follows, 

Corollary 3. For Re s > 1, 

E 

n-s = iMim) -  1) 

Il=1 KW ’ 

n no* squaref ree 

Proof. By Corollary 1, the series on the left side is i(s) - [(s)/5(2s). 

Entry 27, Entry 28, Corollaries 1 and 3 and Examples 2(ii) and 3 in 
Section 28, and Entry 30 and its first three corollaries are found in 
Ramanujan’s fourth published paper [7], [15, pp. 20-211. 

Corollary 1. The sum of the reciprocals of the primes diverges. 

As is well known, Corollary 1 is due to Euler, and Ramanujan’s proof is 
similar to Euler’s proof, which cari be found in Ayoub’s text [l, p. 6). 
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Corollary 2. lim, _ 1 + {Leg(s - 1) + C, p-“} exists. 

Proof. By Entry 28, for s > 1, 

But by Corollary 1 of Entry 26, Log QS) N - Leg(s - 1) as s tends to 1 from 
the right. The sought result now follows. 

Corollary 3. lf pn denotes the nth prime, then p,/n - Log n tends to a limit as n 
tends to CO. 

Ramanujan has rightly struck Corollary 3 out, for (see Landau’s book 
Cl, p. 2151) 

P. -=Logn+LogLogn+O(l) 
n 

as n tends to 00. 



CHAPTER 6 

Ramanujan’s Theory of Divergent Series 

In a letter written to A. Holmboe on January 16,1826, Abel [3] declared that 
“Divergent series are in general deadly, and it is shameful that anyone dare to 
base any proof on them.” This admonition would have been vehemently 
debated by Ramanujan. Much like Euler, Ramanujan employed divergent 
series in a variety of ways to establish a diversity of results, most of them valid 
but a few not SO. Divergent series are copious throughout Ramanujan’s 
notebooks, but especially in Chapter 6 of the second notebook, or in 
Chapter 8 of the first notebook. Since Ramanujan always uses equality signs 
in stating identities that involve one or more divergent series, one might be 
led to believe that Ramanujan probably made no distinction between 
convergent and divergent series. However, the occasional discourse in 
Chapter 6 is firm evidence that Ramanujan made such a distinction. 

The life of Ramanujan and his mathematics have frequently been en- 
shrouded in an aura of mystery. In particular, Ramanujan’s theory of 
divergent series in Chapter 6 has normally been ensconced in mysticism. 
However, as we shall see in the sequel, Ramanujan’s ideas on this subject are 
not as strange or as deep as we may have been led to believe. Ramanujan’s 
theory focuses upon the “constant” of a series. This constant is rather 
imprecisely defined by Ramanujan, but Hardy [15, Chapter 121 has removed 
its fuzziness and ambiguities. Ramanujan constructs a very tenuous theory 
based upon his concept of a constant. We shah describe Ramanujan’s theory, 
but readers should keep in mind that his findings frequently lead to incorrect 
results and cannot be properly described as theorems. Nonetheless, we think 
it is important to realize how Ramanujan arrived at his results, and SO we 
frequently shall also relate Ramanujan’s arguments, even though they are not 
mathematically rigorous. In fact, some of Ramanujan’s “proofs” are sketched 
in Chapter 6. 
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As usual, i(s) = X7= 1 k-“, Re s > 1, denotes the Riemann zeta-function. 
When we Write xf(k), the limits Will always be assumed to be 1 and 00. 

Ramanujan’s theory of divergent series emanates from the 
Euler-Maclaurin summation formula (13). In Entry 1, Ramanujan states the 
following special case of (13): 

,& f(k) = c + SO/(i) dt + ff(x) + ,cl $$,,(zk- “(4. (1.1) 

The limits on the integral are not specified by Ramanujan, but presumably, 
from his exposition following Entry 1, they are as given above. It is tacitly 
assumed by Ramanujan thatfis such that R,, defined by (14), tends to 0 as n 
tends to CO. Comparing (13) and (Ll), we further see that 

c = - $f(()) - -f B,,f@k- “(0). 
k = 1 (2k)! 

(1.2) 

Ramanujan calls c the “constant” of the series xf(k), which may converge or 
diverge. He claims that the constant of a series “is like the centre of gravity of 
a body” (p. 63). 

Before proceeding further, we shall make several comments about (1.1) 
and (1.2). Ramanujan’s definition of c is normalized in the sense that, in (13), CI 
is always taken to be 0. Thus, for example, when examining partial sums of 
the harmonie series, we should let f(t) = l/(t + 1) rather thanf(t) = l/t. 

Secondly, it is a trivial consequence of Euler’s formula for 1(2n), which is 
Entry 25(i) in Chapter 5, that 

2(2n)! 
1 f32n 1 N 02” 

as n tends to 00. Thus, in general, the infinite series on the right sides of (1.1) 
and (1.2) do not converge. However, in many instances the infinite series on 
the right side of (1.1) is an asymptotic series as x tends to CO. The infinite series 
in (1.2) is frequently semiconvergent in the sense that the error (in absolute 
value) made in terminating the series with the nth term is numerically less 
(in absolute value) than the (n + l)th term. See, for example, Bromwich’s book 
[Il, articles 106, 107) and Hardy’s treatise [S, p. 3281 for conditions un&r 

which this is the case. When an asymptotic series arises in (1.1) or a 
semiconvergent series arises in (1.2), we shall use the symbol N instead of an 
equality sign. 

When xf(k) diverges, the constant of this series is normally the constant 
in the asymptotic expansion of x;=lf(k) as x tends to 00. For example, the 
constant of 1 l/k is y. Barnes [l J, [2], [3] and Hardy [S], [18, pp. 3934271 
have used the constants of asymptotic series for certain sums to define certain 
zeta-functions and gamma functions. 

If xf(k) converges, we would like the constant to be the value of the sum 
of the series. However, in Ramanujan’s definition of c, this is hardly ever the 
case. 
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The difficulties in Ramanujan’s definition of a constant for a series have 
been overcome by Hardy [15, Chapter 133. Write (13), with c( = 0 and fi = x, 
in the form 

where, for n 2 0, 

c,= =f(t)dt-ff(0)-~~l~f(2k-l)(0) 
s 0 

s 

m  

+ P2n+l(t)f(2”+1)(t) dt. (1.3) 
0 

It is assumed that a11 indicated integrals exist. The constant C, does not 
depend upon n, and SO we may Write C, = C. Hardy [15, p. 3271 calls C the 
Euler-Maclaurin constant off: Of course, C depends upon the parameter 
a. The introduction of the parameter a allows more flexibility and enables one 
to always obtain the “correct” constant; usually, there is a certain value of a 
which is more natural than other values. If If(k) converges, then normally 
we would take a = CO. Although the concept of the constant of a series has 
been made precise, Ramanujan’s concomitant theory cannot always be made 
rigorous. 

Example 1. The constant of c 1 is -f. 

Proof. Let f (t) = 1 in (1.2). 

We remark that the Abel and Cesaro sums of 1 1 are both 00. (See Hardy’s 
book [IS, p. 9-J.) 

Example 2. The constant of c k is --A. 

Proof, Set f (t) = t in (1.2) and use the value B2 = &. 

It is curious that Ramanujan reasons quite differently in Example 2. He 
writes 

and SO 

c=1+2+3+4+ . . . . 

4c= 4 +8+ . ..> 

1 1 
--3c= l-2+3-4+ ... =(1=1)2= (1.4) 
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Hence, c = --A. Note that in (1.4) Ramanujan is finding the Abel sum of 
x(-l)k+lk. Both E xample 2 and (1.4) were communicated by Ramanujan 
[15, p. 3511 in his first letter to Hardy and were discussed by Watson [l]. 

The constants in Examples 1 and 2 cari also be determined from (1.3). 
Entry 2 is simply another form of the Euler-Maclaurin summation 

formula. 
Entry 3 is used only to make a definition. Putting C~(X) = xi= If(k), x 2 1, 

Ramanujan defines cp( -x) by cp( - x) = - ci= i f( - k + 1). For example, if 
f(t) = t, then (p(5) = 15 and cp( - 5) = 10. 

For some of Ramanujan’s results in Chapter 6 it is more natural to employ 
a somewhat different definition of cp. Define C~(X) to be a solution of the 
difference equation 

d4 - dx - 1) =fW (3.1) 

Of course, cp is not uniquely defined by (3.1). For example, if cp is any solution 
of (3. l), the sum of cp and a function with period 1 is also a solution. However, 
there are two important instances when additional assumptions yield unique 
solutions. Suppose first that f is a polynomial and we desire cp also to be a 
polynomial. Then rp is determined up to an additive constant which cari be 
uniquely determined by a boundary condition. Secondly, suppose that f (x) 
tends to 0 as x tends to CO, and we wish C~(X) to tend to c as x tends to CO. 
Then 

C~(X) = c - ,gl f-(x + 4, (3.2) 

provided that this series converges. 
In Entry 4(i), Ramanujan discusses sums with a fractional number of 

terms, which, if we interpret him properly, we would cal1 partial sums. What 
Ramanujan seems to be saying is as follows. Suppose that we want to sum 
~~=,f(k), a sum with a fractional number of terms. Write 

kil f(k) = ktl f(k) - k $+ 1 f(k), 
where n is “large.” Then, in Ramanujan’s language, find the constant of 
x:=,f(k) as n tends to 00. 

Entry 4(ii). lf h and n are positive integers with h > n and gf is analytic for a11 
real numbers, then 

q(h) = q(n) -,&f(k + h) + F f k’f”‘o. 
j=Ok=l j! 

Proof. The right side of (4.1) is 

(4.1) 
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Example 1. Let h and n denote positive integers with hjïxed. Then as n tends to 

n-h 1 
y+Logn- C -, 

k=lk+h 

where y denotes Euler’s constant. 

Example 1 is an illustration of Entry 4(i) and is simply a consequence of 
(1.4) in Chapter 2. 

Example 2. Zf h is not a negatiue integer, then 

nhn! 
‘(h+1)=,!!ff(h+l)(h+2)S..(h+n). 

This is, of course, a well-known product formula for the I-function. 
Ramanujan actually assumes that h is a nonnegative integer, and his proof is 
straightforward. 

Perhaps Ramanujan has something more profound in mind, but 
Entry 4(iii) offers the trivial identity 

v(h) = kzl x’?-(k) - f X~+!I-@ + h), 
k=l 

where the notation of Entry 3 is employed andf(t) has been replaced by xtf(t). 
Ramanujan commences Section 5 by defining a series to be corrected if its 

constant is subtracted from it. It is difficult to describe the remainder of 
Section 5 in mathematically precise language. Ramanujan now considers 
C~‘(X). If we strictly adhere to the definition C~(X) = &<x f(k), the proposed 
study is not very interesting. A different interpretation must be given. In 
many instances, Ramanujan evidently intends C~‘(X) to mean the derivative of 
an asymptotic equivalent to C~(X) as x tends to 00. Or, possibly, we must 
require <p(x) to be an appropriate solution of (3.1). In the forma1 arguments 
below we use equality signs; in some particular instances, asymptotic 
notation must be employed instead. 

First, after (3.2) Ramanujan sets 

C~(X) = c - f f(x + 4, 

and SO 
k=l 

q’(x) = - 2 f’(x + k). 
k=l 

If c’ is the constant of the derived series xf’(k), then from (5.1) we cari also 
conclude that 

C~‘(X) = k&W - c’. (5.2) 

We emphasize that these arguments are not rigorous. 
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Example 1. Let <p(x) = ‘&,<* l/n. Then 

40’(x) - k$ (x + k) - 2 (5.3) 

as x tends to CO. 

Since, by (1.4) in Chapter 2, C~(X) N Log x as x tends to cc, the function 
C~‘(X) on the left side of (5.3) is more appropriately replaced by 1/x. By 
Ramanujan’s reasoning, (5.3) is an immediate consequence of (5.1). However, 
(5.3) cari be established rigorously. In fact, it is a direct consequence of 
Entry 26 of Chapter 5. If we define cp(x)for a11 real x by the left side of (5.4) 
below, then, by (5.5) (5.3) is valid with an equality sign. 

Example 2. 1fx is a nonnegatiue integer, then 

T’(x + 1) 
l-(x + 1) 

=-y+c’, 
nsr n 

where y denotes Euler’s constant. 

Since Log I(x + 1) = cc= 1 Log k, Ramanujan obviously established (5.4) 
by appealing to (5.2), since y is the constant for the derived series c l/k. 
However, the equality (5.4) cari be rigorously and immediately deduced from 
the well-known relation (see Whittaker and Watson% treatise [l, p. 2471) 

ryz + 1) ---= 
l-(2 + 1) -Y+kzl il-& ’ 

( ) 
(5.5) 

which is valid for those complex numbers z that are not negative integers. 
Examples 3-6 involve special instances of the sum 

S,(x) = 1 k”. (5.6) 
k<x 

In particular, if n and x are positive integers and Bk(x) denotes the kth 
Bernoulli polynomial, then, from Knopp’s text [l, p. 5261, 

S”(x)=B”+l(x+wn+l 
n+l ’ 

Suppose, however, that we define S,(x) by (5.7). Since (see Abramowitz and 
Stegun’s compendium [l, p. 8041) 

B,(x + 1) - Bk(X) = kxk- ‘, k 2 0, 

C~(X) = S,(X) satisfies (3.1) with C~(O) = 0 andf(x) = x” for every real number x. 
Thus, in Examples 4 and 5 which follow, we shall define S,(x) by the right side 
of (5.7) for a11 x. 
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Example 3. For x 2 0, 

s 

x 
Se l(t) dt = Log I(x + 1) + yx. (5.8) 

0 

Proof. If we use (5.6) to define S_ r(x) and integrate by parts, we find that 

s 

x 
S-,(t) dt=S-,(t)tx- 

/ s 

x 
t d%,(t) 

0 0 0 

=X~-,(X)- 1 k.; 
kcx 

= xs- l(X) -[xl 

= x Log x + (y - 1)x + O(l), (5.9) 

as x tends to CO, where we have used (1.4) in Chapter 2. 
By Stirling’s formula for Log I(x + l), which is found in Chapter 7, 

Entry 23, 

Log I-(x + 1) + yx - (x + 3) Log(x + 1) - x + yx + O( 1) 

= (x + $) Log x + (y - 1)x + O(l), (5.10) 

as x tends to 00. Clearly, (5.9) and (5.10) are incompatible. Thus, with this 
interpretation of S 1(x), (5.8) is not even valid asymptotically. 

Possibly, Ramanujan achieved his evaluation by integrating the equality 
of (5.4). The fault with this approach stems from the fact that (5.4) is valid only 
for positive integral x, as cari be seen from (5.5). 

However, motivated by (5.4) suppose that we define S,(x) by 

S-l(X) = y + 
1-‘(x + 1) 

r(x + 1) 
Then a simple calculation shows that C~(X) = S_ 1(x) is a solution of (3.1) with 
fé:/h;l/x. With this definition of S,(x), Ramanujan’s result is readily 

Example 4. Zf S,,(x) is dejined by (5.7) with n = 13, then 

s 

x 
S,,(x) x 

0 

S,,(t) dt = 14 - E. 

Proof. By (5.7), 

(5.12) 
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In the calculation above we used the facts (see Abramowitz and Stegun’s 
tables [l, pp. 804, 8101) B,, = 7/6, B,(l) = B,, n 2 2, and 

B;(x) = nB, 1(x), n2 1. (5.13) 

If we adhere to the definition (5.6) of S,(x) and integrate by parts, as in (5.9), 
the left side of (5.12) is found to equal X~,,(X) - S14(x). 

Example 5. Ifs,,(x) is dejined by (5.7), then 

S\a(x) = lOS,(x) + &. 

Proof. By (5.7) and (5.13), 

B’I,(x + 1) 
s;,(x)= 11 = B,,(x + 1) = 10&,(x) + B,,. 

Since B,, = &, the proof is complete. 

TO properly interpret Example 6, we shah need the concept of Bernoulli 
numbers of fractional index which are defined by Ramanujan in Section 25 of 
Chapter 5. Taking derivatives in (5.7) and using (5.13), we find that 

S;(x) = ns,- 1(x) + B,, n2 1. (5.14) 

For the proof of Example 6, we shah define S\,*(x) by (5.14) with n = 3/2 and 
B3,2 replaced by Bzil. There is a misprint in Example 6 in the notebooks; 
Ramanujan has written 4 for 2s on the right side of (5.15). 

Example 6. For any real number x, 

s 
x Si,z(t) dt =5&,,(x) - -% (% 

0 27143 
(5.15) 

Proof. By (5.14), 

s 

x 

0 
S,,,(t) dt = ; 

s 
* (s;,,(t) - B;,z) dt 

0 

= +(S,,,(x) - xB:,z). 

From Corollary 1 of Entry 25 in Chapter 5, Bz,2 = 3@)/(4&). This 
completes the proof. 

Entry 6. Suppose that <p is analytic ut the origin. If c, denotes the constant of 
c f (“)( k), then in some neighborhood of the origin, 
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Proof. By the definition of cp given in Entry 3, C~(O) = 0. Extending (5.2), we 
have 

q+“‘(x) = z: f’“‘(k) - C”, n2 1. 
k=l 

Hence, <p’“‘(O) = - cnr n 2 1, and the result follows. 

Example 1. For 1x1 < 1, 

O3 
LogI-(x+1)=-yx+c 

( - l)k[( k)Xk 
k=2 

k . 

The expansion above is well known. (See Henrici’s text [2, p. 371.) 

Example 2. For 1 x 1-c 1, 

With S- 1(x) defined by (5.6), Example 2 is obviously false, because the left 
side of (6.2) is identically 0 for )x 1 < 1. However, if we define S- r by (5.1 l), 
then we see that (6.2) arises from the differentiation of (6.1). 

The complete proof of the following result is given by Ramanujan in the 
notebooks. For brevity, put 

where n and x are positive integers. 

Entry 7. Let ci be the constant of cf (k/n); in particular, ci = c. Then 
I)(X) - nc = q(x) - ch. 

ProoJ Since $(k)--$(k - l)=f(k/n), we find that 

Thus, Il/(x) differs from n(x) by a constant, namely I+~(O). This constant cari be 
found by determining the constants of $(x) and q(x), which are, respectively, 
nc and ck. The result follows. 

Corollary 1. 

Proof. The left side above is $(O), and SO the result was obtained in the proof 
of Entry 7. 

The next five corollaries are simple consequences of previous definitions 
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and Corollary 1. There is a misprint in Corollary 2(v) in the notebooks; 
Ramanujan writes ci for ~6. 

Corollary 2(i). <p(-f) = 2c - c;. 

Corollary 2(ii). 

Corollary L(iii). 

c=c,=c;. 

rp( -4) + cp( -8 = 3c - c;. 

Corollary 2(iv). <p( -+) + cp( -2) = 2c + c’z - c;. 

Corollary 2(v). +~)+<p(-~)=c+c;++c~. 

Entry 8 is a particular instance of the Euler-Maclaurin summation 
formula. 

The sole purpose of Entry 9 is to assign notation for certain types of 
infinite series, but the notation is never used in the sequel. 

Entry 10(i) constitutes a warning that the constant of a series cari only be 
found from a “regular” series, although Ramanujan does not define a regular 
series. Different values of c may arise from irregular series, which are 
termwise equal to regular series. 

Entry lO(ii). In general, 

1 

# c hk- 1 - %k) 

Cw)k+lak fa,-m,,-%,+J 

=a,-C(-l)k+luk+l. 

Of course, the principles enunciated above are well known. Ramanujan 
illustrates the two inequalities with the example 

x(-l)k+‘k=$, C ((2k - 1) - 2k) =+, l-z(2k-(2k+l)}=$. 

The first equality above was shown in (1.4), while the latter two equalities 
follow from Example 1 of Entry 1. 

Entry lO(iii) merely gives the definition for adding two alternating series. 

Example 1. 

Example 1 is a simple consequence of Entry lO(iii) and the equality in 
Entry lO(ii), which is also used to establish Examples 3 and 4 below. 
Example 2 follows from Example 1, Example 3 follows from Example 2, and 
Example 4 follows from Example 3. 

Example 2. ~(-l)k+lak=$a, +~~(-l)k+l(ak-ak+l). 
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Example 3. 

~(-l)k+~uk=$(3a,-a,)+~~(-l)k+~(uk-2uk+l+uk+2). 

Example 4. 

Entry 11. Put Aa, = uk - uk+ 1 ~ndA”a,=A(A”-‘u,),n>2.If~(-1)~+~a~is 
convergent, then 

Entry 11 is known as Euler’s transformation of series. (See Knopp’s 
treatise [l, p. 2441.) Examples 24 serve as motivation for Entry 11. 

In Entry 12, Ramanujan claims that if u2/u3 lies between ~,/a, and ~,/a,, 
then x(-l)k+l uk lies between m, = &(a, + a,) and m, = 1 - &a2 + u3). 
Because no restrictions are placed on the terms uk with k 2 5, it is to be 
expected that Ramanujan’s assertion is false. Even if we assume that uk/uk+ r 
is monotonically increasing or monotonically decreasing for k 2 1, the pro- 
posed theorem is false. For example, define a sequence {uk} by a, = 5, u2 = 4, 
u,=3, a‘$= 1, and uk=(4.5...(k- l)))‘, kr5. It is readily checked that 
uk/uk+ i is strictly increasing, m, = 2519, m2 = - 917, and c (- l)k+ ‘uk > 3. 
Thus, we clearly have established a counterexample to Ramanujan’s 
assertion. 

Ramanujan illustrates his purported theorem with three examples. In the 
first, he considers C (- l)k+’ k which by (1.4) has the “value” 4. The 
hypotheses are seen to be satisfied, m, = j, and m2 = 4. Thus, the conclusion 
of the “theorem” is independently verified in this instance. 

For his second example, Ramanujan examines X2= 0 (- l)kk!. The hy- 
potheses are easily checked, while ml =3 and m, =s. Ramanujan claims that 
the constant for this series is 3 “very nearly.” In fact, in his [15, p. 3511 first 
letter to Hardy, Ramanujan gave the value 0.596 . . . for the aforementioned 
series. Moreover, this constant was also calculated by Euler to be approx- 
imately 0.5963. (See Bromwich’s text [l, p. 3241.) Therefore, this example 
also fits Ramanujan’s “theorem.” 

For a thorough discussion of this example and for some historical 
references, see Watson% paper [l]. 

The third example is meaningless because Ramanujan assumes that the 
converse of his assertion is true. This would be false even if his assertion were 
true. 

We are unable to offer a corrected version of Ramanujan’s assertion. 
However, H. Diamond has kindly pointed out the following result. Let 
{a,}, 1 < k < CO, be a sequence of positive numbers tending to 0. Define 
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a0 = 2a, - a, and assume that ak- Jak 2 akJak+ 1, k 2 2. Then by a theorem in 
Katznelson’s text [l, p. 223, 

a, + 2 f uk cos(k0) 2 0, 0 real. 
k=l 

Putting 0 = 7t, we deduce that 

kg (- llk+’ Uk I3(2a, - a2). 

Section 13 provides a very general discussion on how to accelerate the 
convergence of a series. Ramanujan then offers several examples in illus- 
tration. The first, in fact, is a special case of Euler’s transformation of power 
series. (Consult Bromwich’s book [l, p. 621.) 

Example (a). Zf y = x/( 1 + x/2), 1 x 1 < 1, and 1 y 1 < 2, then 

Proof. The left side above is 

Log(l+x)=Log(l+&J =Lo,(l+i) -Log(l-;) 

= k$l (- l)k;‘M2)* + kfl y, 

and the desired equality follows. 

Example (bl). For 1x1 < z2/4, 

m 22722k - l)B,,xk x x x c 
k=l (2k)! =1+3+3+..: 

Example (bl) is due to Lambert and cari be found in Wall’s book [l, 
p. 3493. The series on the left side above is, in fact, the Maclaurin series of 
fi tanh &. The continued fraction expansion on the right side converges 
for a11 x. 

Example (b2). Let x be any complex number which is not nonpositioe. Then 

00 (-l)kk! 1 l2 22 
c 

-=- ~ - 
Xk+l 

k=O x+1 -x+3-x+5-...’ 
(13.1) 

Of course, the infinite series in (13.1) converges for no value of x. However, 
if we consider 

I(x) = 
s 

m eP 
- du, 

0 x+u 



6. Ramanujan’s Theory of Divergent Series 145 

formally expand 1/(x + U) in powers of a, and integrate termwise, we obtain 
the asymptotic expansion in (13.1). (See Hardy’s book [15, pp. 26-291 for a 
more complete discussion of this.) The continued fraction expansion in (13.1) 
is a continued fraction expansion of I(x). (See Wall’s text [l, p. 3561.) Thus, in 
this sense, Example (b2) is valid. 

Example (c). As x tends to CO, 

(-l)k+r - f (-l)“+‘B(k) 
,=,(x+l)(x+2)...(X+k) k=l Xk ’ 

where B(k) is the kth Bell number. 

Example (c) is an immediate consequence of Entry 3 in Chapter 3 and the 
discussion following Example 5(i) of Section 8 in the same chapter. 

Example 1. As x tends to CO, 

c 
m (-l)k+l 1 f (4k- l)B,, -w-- 

k=l X+k 2X k=l 2kx2k ’ 

Example 1 is readily obtained by letting f(t) = 1/(x + t) in Boole’s 
summation formula, which cari be found in Berndt and Schoenfeld’s paper 
[l, p. 311. The details are quite straightforward. 

Example 2 gives the well-known partial fraction decomposition for 
cot(7cx). 

In Example 3, Ramanujan, in essence, attempts to calculate Euler’s 
constant y by using the fact that 

More details may be found in Hardy’s book [15, pp. 332-3331. 

In contrast to the formulations in the notebooks, the right sides of (14.1) 
and (14.4) below are expressed as finite sums with remainders instead of as 
infinite series. The derivatives of the functions to which we shall apply the 
Euler-Maclaurin summation formula are not of constant sign on [0, GO). 
Hence, the aforementioned general theorem on the remainder in the books of 
Bromwich [l, pp. 327-3291 or Hardy [15, p. 3281 does not apply. Thus, in 
order to make the applications which follow Entries 14(i) and (ii), finite 
versions with bounds for the remainders are needed. A complete proof of 
Entry 14(ii) cari be found in Schlomilch’s book [l, Band 2, pp. 238-2411. 
Entry 14(i) cari be derived from Entry 14(ii). 

Entry 14(i). Let x > 0. Then,for n 2 1, 

,rl & = T - ; + k$‘l (22k ;:;2k;2k-1 + R,, (14.1) 



146 6. Ramanujan’s Theory of Divergent Series 

where 

IR,,I 5 ‘“zn;;;ÿ’“‘” {$ + ; + 22n+1 ($ + $)}. (14.2) 

Proof. The desired results (14.1) and (14.2) follow from Entry 14(ii) upon 
realizing that 

1 1 2 =--- 
ey+ 1 ey- 1 e2Y - 1’ 

If we use a method of proof similar to that in Schlomilch’s book 
[l, Band 2, pp. 238-2411, we cari obtain the better estimate 

(14.3) 

for the remainder. 

Entry 14(ii). Let x > 0. Then, for n 2 1, 

where y  denotes Euler’s constant and where 

Example 1. The constant for the series 1 k”“’ is - 0.4909.. . . 

Proof. Put f(t) = t”“’ and a = 0 in (1.3) and let n tend to 00. Then 

c (14.5) 

This is in contrast to what would be obtained from (1.2). A calculation on an 
HP-35 shows that the first five terms on the right side of (14.5) total 
-0.490912753.. . . The sixth term is equal to 0.00000580788.. . . By a general 
theorem on the remainder in the Euler-Maclaurin formula (consult the 
books of Bromwich [l, p. 3281 or Hardy [15, p. 328]), the magnitude of this 
sixth term is greater than the error made by approximating C by the first five 
terms. The result now follows. 

In fact, Ramanujan claims that the constant in Example 1 is equal to 
- 0.4909100 (approximately). This alleged accuracy apparently cannot be 
obtained from (14.5), because the sixth term appears to be the smallest one in 
(14.5). Calculations show that the next three terms are successively greater in 
magnitude. 
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Example 2. We have 

f Ls-+- 3 Log 2 
k=12k+1 4 48 * 

Proof. Apply Entry 14(i) with x = Log 2 and II = 1. The indicated approxi- 
mation then arises with an error less than 0.0135617002..., by (14.3). 

Example 3. We have 

kzl (10/9)k + 1 z 6.331009. f l 
Proof. Apply Entry 14(i) with x = Log(lO/9) and n = 2. We then obtain an 
approximation 6.331008696.. . with an error less than 0.000000221..., by 
(14.2). 

Example 4. We have 

k= 1 (l()/$))k _ 1 = “27 nearb.” a l 
Proof. Apply Entry 14(ii) with x = Log (10/9) and n = 1. We then get the 
approximation 27.08648507.. . , with an error less than 0.00030438.. . This 
justifies the quoted approximation of Ramanujan. 

Entry 15(i). For IX~> 1, 

Entry 15(i) was first stated by Clausen [l] in 1828 and first proved in print 
by Scherk [l] in 1832. 

Proof. We have 

= “gl xn2(xt - 1) + ,zl xk2(;k- 1)’ 
from which the desired equality follows. 

Entry 15(ii). For 1x1 > 1, 
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Proof. The proof is completely analogous to that of Entry 15(i). 

Entry 16. For each positive integer n, 

+ C ak-l (rxk-l)k-(rxk-l)n+l 

k=l l-rxk-1 ’ 

Proof. If k is any positive integer, then 

rkaj- lXk(j- 1) _ 
rk (arxk)” ~ 

j=l 1 - axk 1 - axk’ 
(16.1) 

Summing both sides of (16.1) on k, 1 I k 5 n, we get 

(arxk)k 

l-axk 
= k& j$l rkajdlxk(j-l) 

= j$ aj- ’ zj rkx(j- lJk. 

Upon summing the inner sum on the far right side above, we complete the 
proof. 

Corollary. Let [ri < 1 and 1x1 I 1. Zf 1x1 = 1, we further assume that larI< 1. 
Then 

Proof. Let n tend to CO in Entry 16. 

Entry 17. Let a and b be arbitrary, 1x1 I 1, and In/ < 1. If IX~= 1, assume that 
(mn1 < 1. Then 

z (a + kb)nk k=O 1 -mxk 

= ,gO (a + kb)(l - mnx2k)(mnxk)k 
(1 - mxk)(l - nxk) 

Proof. If suffices to show that 

mnx2k)(mnxk)k 

kEo (1 - mxk)(l - nx”) 

and 

k( 1 - mnx2k)(mnxk)k 

s,, mknk + lXk(k + 1) 

+ k?,J (1 - nx”)’ ’ 

(17.1) 

(17.2) 
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In the Corollary of Entry 16 put a = m and r = n to get 

(17.3) 

By combining the two series on the right side of (17.3) into one series, we 
readily achieve (17.1). 

Differentiating both sides of (17.3) with respect to n, we find that 

If knk-’ 
m kmknk - lx.@ 
c 

ca kmknkxk’k + 1) 
-= 

k=O 1 -mxk k=O l-mxk +c 
k=O 1 - nxk 

m mknkXW + 1) 00 mknk+lXk(k+2) 

+,& l-nxk +k?O (1 -nx”)’ ’ 

On the right side above, combine the first and second series together and 
combine the third and fourth series together. Upon multiplying both sides by 
n, we arrive at (17.2). 

We shall not state Corollary 1 which is simply the special case m = n of 
Entry 17. 

Corollary 2. For 1 x 1 > 1, 

where d(n) denotes the number of positive divisors of n. 

Corollary 2, which follows easily from the identity 

is well known and cari be found in the classic text of Hardy and Wright 
[l, Theorem 310, p. 2581. 



CHAPTER 7 

Sums of Powers, Bernoulli Numbers, and the Gamma 
Function 

The principal topics in Chapter 7 concern sums of powers, an extended 
definition of Bernoulli numbers, the Riemann zeta-function i(s) and allied 
functions, Ramanujan’s theory of divergent series, and the gamma function. 
This chapter thus represents a continuation of the subject matter of Chapters 
5 and 6. Perhaps more SO than any other chapter in the second notebook, 
Chapter 7 offers a considerable amount of numerical calculation. The extent 
of Ramanujan’s calculations is amazing, since he evidently performed them 
without the aid of a mechanical or electrical device. 

In this chapter, we shall frequently state and prove results for complex 
values of a variable. This is in contrast to Ramanujan who evidently intended 
his variables to be real. However, to give rigorous proofs, we have frequently 
needed to use analytic continuation, and SO we state theorems in more 
generality than originally intended. We denote complex variables by s with 
o = Re(s), by r with u = Re(r), and by z. 

As might be expected, several of the results in Chapter 7 are not new. For 
example, Ramanujan rediscovered the functional equation of c(s), found in 
Entry 4 in somewhat disguised form. As was the case with Euler, Ramanujan 
had no real proof. It is fascinating how he arrived at this result, with 
reasoning based on his tenuous theory of the “constant” of a series. 

Entry 1. Let 

where r is any complex number. Then ifr # - 1, as x tends to co, 

(1.1) 

m B,J(r + l)x’-2k+1 
k=l (2k)!T(r-2k+2) ’ (1.2) 
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Proof. Applying the Euler-Maclaurin summation formula (13) with f(t) = t*, 
CI = 1, and fi = x, we find that 

Xl+l n B,,I-(r + 1)X’-=+ l 
q,(x) = c + r+l + 5 + c 

k=l (2k)!l-(r-2k+2) 

1-(r + 1) 

s 

Oo p 
-I-(r-2n) x 

2n+l(t)tr-2n-1 dt, 

where 

B,,w + 1) 
(2k)! T(r - 2k + 2) 

r(r+ 1) m p 
+r+-2n) 1 s 

2,+l(t)t’-2”-1 dt (1.3) 

and n is a positive integer with 2n > u. Note that 

s 

m 
P 2,+l(t)t’-2n-1 

x 
dt=O(~~t”-2n-1dt)=O(x”~2”), 

as .X tends to CO. Thus, it remains to show that 

c = [(- r). (1.4) 

From the Euler-Maclaurin formula (13), we have, for o > 1, 

i(s) = -& + ; + i “2k;;;);&- l) 
k=l 

r(s+2n+ 1) m p 

s w 1 
2,+l(t)t-s-2n--1 dt. 

By analytic continuation, (1.5) holds for o + 2n > 0. Putting s = -Y in (1.5) 
and using (1.3) we obtain (1.4). 

The analogue of (1.2) for r = - 1 is due to Euler and is stated by 
Ramanujan in Chapter 8, Entry 2. 

If r is a nonnegative integer, the series in (1.2) is finite, and we may replace 
the asymptotic sign by an equality sign. Moreover, (1.2) reduces to the 
familiar formula 

<p 
r 

(x) = B,+ lb + 1) - B,+ 10) 

r+l 
(1.6) 

where B,(x) denotes the nth Bernoulli polynomial. 
In Chapter 5, Section 25, Ramanujan defines a Bernoulli number BF of 

arbitrary index by 

c(r) = (2n)’ 
2r(r + 1) 

BT. (1.7) 
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In particular, if r = 2n is an even positive integer, Bf, = (- l)n-rBz,, and (1.7) 
reduces to Euler’s famous formula for [(2n). Using the functional equation for 
c(s) (see Entry 4), we find that 

H-4 = 
Il;+ 1 cos{71(2 + 1)/2} 

r+l 

In Ramanujan’s version of (1.2), c( - ) r is replaced by the right side of (1.8). 
After Entry 1, Ramanujan makes some remarks about the “constant” of a 

series. This concept was introduced by Ramanujan in Chapter 6. The 
“constant” in Entry 1 is merely the constant term [(-r) in the asymptotic 
expansion (1.2). 

Now define, for o > 0, 

q(s)= f (-l)k+ik-S. 
k=l 

Note that 

r(s) = (1 - z1 -“K(s), (2.2) 

which, by analytic continuation, is valid for a11 complex values of s. 

Entry 2. For each complex number r, 

q(-r) = V+I - lPI+l sin@-P). 
r+l 

Proof. Set s = - r in (2.2) and use (1.8). 

We now wish to extend the definition of C~,(X) to encompass complex 
values of x. First, for u < 0, redefine 

<p,(x) = krl P’ - 6 + 4% (2.3) 

Observe that, if u < - 1, 

cp,(x)=i(-r)-$(-r,x+ 11, (2.4) 

where $(- r, x + 1) = cp= i (k + x)l. Note that $(s, x) is very closely related to 
the Hurwitz zeta-function c(s, x), except that the latter function is usually 
defined only for 0 < x < 1. The methods for analytically continuing i(s, x) 
(see, e.g., Berndt [l], Titchmarsh [3, p. 371, or Whittaker and Watson 
[l, p. 2681) normally cari be easily adapted to establish the analytic continua- 
tion of +(s, x) as well. Thus, by analytic continuation, we shah now define 
C~,(X), for a11 complex values of x and r, by (2.4). Moreover, if u < 0 and x is a 
positive integer, we find from (2.3) that 

q,(x) = f k’. 
k=l 

(2.5) 
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By analytic continuation, (2.5) is valid for a11 complex values of r. Thus, the 
new definition (2.4) agrees with our former definition (1.1) if x is a positive 
integer. If r is a nonnegative integer and - 1 < x 5 0, then by (2.4) and the 
well-known fact $(-r, x + 1) = -B,+ i(x + l)/(r + l), we find that 

rp 
* 
(x) = B,+ 16 + 1) - B,+ l(l) 

r+l 

By analytic continuation, this holds for a11 x, and SO we see that (2.4) is in 
agreement with (1.6) if r is a nonnegative integer and x is complex. 

Corollary. Zfr is complex and r # - 1, then 

cp (_ ‘) = (2 - 2-‘PI+ 1 Cos {4r + 1Wj 
r 2 r+l 

Proof. By (2.3), if u < 0, we easily find that 

cp,(-+)= -2-‘q(-r), (2.6) 

where n(s) is defined by (2.1). By analytic continuation, (2.6) is valid for a11 
complex r, r # - 1. Using Entry 2 in (2.6), we complete the proof. 

If r is a positive integer, then, by (1.6), the Corollary is equivalent to 
the well-known fact B,, ,($ = -(l - 2-‘)B,+ r (Abramowitz and Stegun 
Cl, P. f3051). 

Entry 3. Let q,(x) be dejined by (2.4) and let a and b be complex numbers with 
b # 0. Then 

& (a + kb)’ = b’ { (x+;) -%($}. cpr 

Proof. For r < 0, the desired formula follows easily from (2.3). The result for 
a11 r follows by analytic continuation. 

Entry 4. For any complex number r, 

sin(rrr/2)BT-, 
l-r 

= i(r) = (2n)’ 
2r(r + 1) 

BF. (4.1) 

Proof. We present Ramanujan’s interesting argument, which is not rigorous. 
Rewriting (1.6) in Ramanujan’s notation, we have 

cp 
r 
(x) = 4, 1(x + 1) - sin(nr/WI+ 1 

r+l > 

where r is a natural number. We now suppose that this formula is valid for ail 
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r. The “constant” in this representation for C~-,(X) is 

sin(nr/2)BT-, 
l-r . 

On the other hand, from (1.4) and (1.7), the “constant” is also equal to 

i(r) = P)‘K+ 
2lY(r + 1) . 

These constants must be equal, and hence (4.1) follows. 

The equalities in (4.1) imply that 

c(r) = 2(27c)‘-‘r(1 - r)[(l -r) sin T . 
0 

Mirabile dictu, Ramanujan has derived the functional equation of 5(r) 
(Titchmarsh [3, p. 251) in a most unorthodox manner! 

Corollary 1. We haue BT2 = 2((3), Ed = -45(5), BT, = 6[(7), and 
BT 8 = -Y$(S). 

Proof. The proposed equalities are special instances of the first equality in 
(4.1). 

Corollary 2. r(4) = &. 

Corollary 3. For euery complex number z, T(z)T(l - z) = rc/sin(nz). 

Corollary 2 is the special case z =$ of the well-known Corollary 3 for 
which we give Ramanujan’s proof. 

Proof. Letting r = -z and r = z + 1 in the extremal sides of (4.1), we find, 
respectively, that 

- sin(7rz/2)BZ+ 1 = (27~)‘B*, 
z+l 2r(i - Z) 

and 

- c0s(7c2/2)B*. = (27c)“+‘B:+, 
Z 2r(z + 2) . 

Multiplying these two equalities together, using the equality T(z + 2) 
= (z + l)zT(z), and simplifying, we obtain the desired result. 

Corollary 4. We haue 

Qofi;-;& =/$o(2&“. 



7. Sums of Powers, Bernoulli Numbers, and the Gamma Function 155 

Ramanujan gives essentially the following faulty proof of Corollary 4. 
From (2.1) with s = - 4, (2.2), and (4.2), it follows that 

= 7cJz( 1 - 23’2)Q - 3) 

= (1 - 2-3’2)#) 

= $0 (2k : 1)3’2 ’ 

Corollary 4, in fact, is the special case p = 3 of the identity 

7F+’ kro (- lJk{(k + 1Y - kP} = 4 sin 
( > 

9 r(p + 1) kzo (2k +lljp+ 1 , 

proved in Titchmarsh’s text [l, p. 1541, where 0 < p < 1. 
Ramanujan [ 111, [ 15, pp. 47-491 has established some other results which 

are akin to Corollary 4. Kesava Menon [l] has given simpler proofs of 
Ramanujan’s results and has proved additional results of this type as well. 

Corollary 5. Let q(s) be dejined by (2.1). Then 

(27c)2’3& = (1 + 2t’3)r($)r](+). 

Proof. Using (2.2), we rewrite the functional equation (4.2) for c(r) in terms of 
44 to get 

(1 - 2’)q(r) = 2(27c)‘-I(l - 2l-‘) sin 
( > 

T l-(1 - r)q(l -r). 

Putting r =3 and simplifying, we achieve the desired result. 

Corollary 6. As x tends to CO, 

1 m B,, 1.3 ‘-(4k-3)x-2k+1/2 -- - 
zl -$ - 2$ + ‘(+’ + 2Jx zl (2,J$ 22k-1 . (4.3) 

This asymptotic formula is a special case of (1.2) but is different from that 
claimed by Ramanujan (p. 79), who asserts that, as x tends to CO, 

(4.4) 

Formulas (4.3) and (4.4) are incompatible since 

J2+4;=2~+--+&+ . . . . 
X 
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the leading two terms above agree with (4.3), but the third term does not 
coincide with the corresponding term -x - 3’2/24 in (4.3). Ramanujan gives 
no indication as to how he arrived at the approximation ,/m. 

Corollary 7. As x tends to CO, 

m B,, 1.3 “‘(4~-~)x-2~+3,2 
22k-1 (4.5) 

Using the functional equation (4.2), we observe that Corollary 7 is a special 
instance of Entry 1, but (4.5) is not the result claimed by Ramanujan. Instead, 
he has proposed that 

k~lJk”:J(x+i)(x+t)(x+i)-~iU), 

as x tends to 00. Since the infinite series in (4.5) diverges while 

(4.6) 

converges in a neighborhood of x = 00, (4.5) and (4.6) are certainly not 
compatible. However, note that the right side of (4.6) does provide a good 
approximation for the left side. 

A similar type of approximation for cpli2(x) has been obtained by Gates 
[Ill. 

Corollary 8. As x tends to CO, 

,g k312 -+x5/2 ++x3~2 +~~li2 

-3 ,r2 f$ la3 ;;:y; - 7)X2k+5P. (4.7) 

Corollary 8 follows from Entry 1 and the functional equation (4.2). In 
contrast to (4.7), Ramanujan claims that 

k$ k312 N f(x(x + i)(x +4)(x + 3)(x + 1) + &(x + f)p2 

(4.8) 

as x tends to 00. By the same reasoning used in conjunction with Corollary 7, 
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(4.7) and (4.8) are incompatible. However, 

3(x(x + &(x +4)(x +2)(x + 1) + &x + $))“2 
= 5x5/2 + ix”‘2 + ixl/2 + . . . . 

Entry 5. Let a and b be complex numbers with b # 0 and a/b not a negative 
integer. Then if u < - 1, 

,zl (- l)“+l(a + kb)’ = (2b)’ (5.1) 

Proof. We have 

~~I(-l)k~1(a+kb)‘=k~I(a+(2k-l)b)’-k~I(a+2kb~, 

and the desired equality follows immediately from the definition (2.3). 

There is a misprint in the notebooks, p. 79; Ramanujan has written br 
instead of (2b)’ on the right side of (5.1). 

Entry 6(i). Let x be a positive integer and assume that n > 0. Then 

tx2 + x)” = 2 ,ro 

Proof. The proof is indicated by Ramanujan. Expanding by the binomial 
theorem, we have, for IzI 2 1 and n > 0, 

(z2 + z)” - (z2 - z)” = 22” {(1+$(1-f)“} 

(6.1) 

Now set z = j in (6.1) and sum both sides on j, 1 I j I x, to get 

The required formula follows upon inverting the order of summation and 
employing (1.1). 

Entry 6(ii). Under the same hypotheses as Entry 6(i), we have 

(x +3)(x’ + x)” = k$o 
{ (2,: 1) + (;k)}m2n-2k(x’* 

2 
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Proof. Proceeding in the same fashion as in the previous proof, we find that, 
for IzI 2 1 and it > 0, 

(6.2) 

Letting z =j in (6.2) and summing both sides on j, 1 5 j < x, we arrive at the 
formula that we sought with no difficulty. 

Note that if n is a positive integer, then Entries 6(i) and 6(ii) are valid for a11 
x because they yield polynomial identities. 

Corollary 1. Let y = x2 + x and a = x + 5. Then 

cpl(4 = tv, cp2c4 = SaY? (P3b) = au23 

<p4(4 = hY(Y - 3>? cp,(x) = iY’(Y -99 

%Cd = 3UY(Y2 - Y + 3>, (P,(x) = $Y2(Y2 -$Y + 3>, 

(PS(X) = &(y3 - 2y2 + ;y - ?), 

cpdx) = hY’(Y - l)(Y2 -2Y + %), 

(PlO(X) = ï+Y(Y - l)(Y3 -SY2 + YY - 3>, 

und 

qp1 l(X) = &y2(y4 - 4y3 + yy - 1oy + 5). 

Proof. The proposed odd indexed formulas for q,(x) follow from Entry 6(i) by 
successively letting n = 1, 2, . . , 6. The proposed even indexed formulas arise 
from Entry 6(ii) by successively setting n = 1, 2, . . . . 5. 

Although the formulas in Corollary 1 have long been known and are 
instances of (1.6), Ramanujan’s method for determining them by means of 
Entries 6(i) and (ii) is particularly brief and elegant. For other formulas and 
methods for finding q,(x) when r and x are positive integers, see a survey 
paper by D. R. Snow [l] which contains several references. 

Corollary 2. For each positive integer n, we huve 

(4 

und 

(ii) 
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If p and n are positive integers with n even, then 

k& (2k - 1)” = 2”cp,(P - 5). 

Proof. Applying Entry 3 with r = 9, x = n, a = (fi - 1)/2, and b = 1, we find 
that 

However, by Corollary 1, it is easily seen that ($ - 1)/2 is a root of C~,(X). 
Hence, part (i) follows. 

Part (ii) follows in the same fashion as part (i), except now we use the fact 
that cp,,((fi - 1)/2) = 0. 

TO prove (iii), apply Entry 3 with r = n, x = p, a = - 1, and b = 2 to get 

k~l(2k-l)“=2”jrp,(p-t)-yl.(-~)J. 

By the Corollary to Entry 2, cp,( - 4) = 0, and the proof is complete. 

Entry 7. If Y is a positive integer, then 

cp,(x - 1) + ( - l)‘cp,( -x) = 0. 

Proof. By (1.6), 

‘P(x~l)+(~l)ïrp(~x)~~‘+l(x)+(-~)’B,+l(~-x) 
r r 

r+l 

By a very familiar property of Bernoulli polynomials (Abramowitz and 
Stegun [l, p. 8041) the right-hand side above is equal to 0. 

Corollary. If r is a positive integer exceeding 1, then <p,(x) is divisible by 
x2(x + 1)2 or x(x + 4)(x + 1) according as r is odd or even. 

Proof. This result follows easily from Entries 6(i) and (ii) by induction on r. 

Entry 8. If r is a positive integer, then 

B Xr+l-k+Xr 
k 

Q’(l _ 2k)xt’+ l -2k. 
(8.1) 



160 7. Sums of Powers, Bernoulli Numbers, and the Gamma Function 

Proof. Using the well-known formula (Abramowitz and Stegun [l, p. 8043) 

B,(x) = i: r 0 k=O k 
Bkxr-l’, r 2 0, 

in (1.6), we find that 

B Xr+l-k 
k 

from which the first equality of (8.1) readily follows. 
The latter equality of (8.1) follows from (4.1). 

Entry 9 is simply a restatement of (2.3). 

Entry 10. For each complex number r ad each positive integer n, 

CPAX) - n’ ,C cp, =(l -d+‘)c(-r) 

= (n’+’ - 1) sin(7rr/2)BF+ r 
r+l . 

(10.1) 

Proof. For u < - 1, (2.3) yields 

n-l 
C~,(X) - n* kzo A 

=i(r)-j~l(i+x)‘-nr+l~(-r)+“~l f (nj-k+x) 
k=O j=l 

=(l -d+‘)c(-r). (10.2) 

By analytic continuation, the extremal sides of (10.2) are equal for a11 r. The 
second equality in (10.1) follows from (4.1). 

Corollary. Under the hypotheses of Entry 10, 

n-l 

kgl cp,( - W = (n - n-70 - 9. 

Proof. Put x = 0 in Entry 10 and use the fact that q,(O) = 0 for each r. 
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Entry 11. Zf r is a positive integer, then 

<p-,(x - 1) + (- l)‘<p-r(-4 

={l+(-l)‘)i(r)+~g&ccot(nx)). (11.1) 

where if r = 1, thejrst expression on the right side of (11.1) is understood to be 
equal to 0. 

Proof. By (2.3), 

cp-r(x - 1) + (- l)‘cp-A-4 

Since 

equality (11.1) now easily follows. 

In the notebooks, p. 81, Ramanujan gives (11.1) with r replaced by 
-r and states that the result is obtained by differentiating the equality 
p . i(x - 1) - cp _ i( - x) = - rc cot(rcx) a total of r times. The correct number 
of differentiations is -r - 1, however. Ramanujan then indicates that (11.1) 
holds for negative as well as positive values of r and that Entry 7 cari thus be 
deduced. If we interpret 

C-1) ci-’ cot(nx) 
(r - l)! dx’-l 

as being identically 0 for r < 0, then, indeed, we obtain Entry 7 (but this does 
not proue Entry 7). 

Ramanujan next indicates a method for calculating the derivatives of 
cot(nx). We are not certain what Ramanujan’s method is, but it seems to be a 
more complicated version of the simple method which we describe below. 
This method has been judiciously applied and generalized by Carlitz and 
Scoville [1], [2]. Set y = cot(nx). Then tan-‘(l/y) = ZX. Upon differentiating 
both sides of the latter equality with respect to x, we find that 

dy z- - -4y2 + 1). (11.2) 

Further derivatives of cot(nx) cari be found by successively differentiating 
(11.2). In this manner, the following table of derivatives of cot(rcx) may 
rapidly be calculated. Al1 formulas are correctly given by Ramanujan, except 
that he has written 2385 for 2835 in the last denominator of the last entry. 
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k 
(-l)k dyk 
nkk! dx’ 

y"+2Y'+gY'+iTj 

7 77 17 
Y’+jY5+zY3+zY 

8 12 248 17 
Ys+3Y6+jY4+~Y2+~ 

16 88 62 
Yg+3Y7+yY5+~Y3+~Y 

Corollary. If r is any complex number, then 

0) %(4-2r{4%(~) +%(y)} =(l-2’+‘)l(-r), 

(ii) cp,( - 3) = (2 - 2 - 73 - r), 

(iii) cp,(-3)+cpl(-5)=(3-3-‘)i(-r), 

(iv) cp,(-$)+cp,(--$>=(2+2-‘-4-‘)1(-r), 

and 

09 cp,(--i)+cp,(--2)=(1+2-‘+3-‘-6-‘)[(-r). 

Proof. Part (i) is the case n = 2 of Entry 10. Parts (ii)-(v) follow from the 
Corollary to Entry 10 by successively setting n = 2, 3,4, and 6, respectively. 

Examples. If r is a positive, odd integer, then 

0) cp,(-~)=(3-3-‘)r(-r)/2, 

(ii) cp,(-b)=(1+2-‘-‘-2-“-‘)r(-r), 

(iii) c~,(-6)=(1+2-‘+3-‘-6-‘)c(-r)/2, 

(iv) cp,(-f)+cp,(-5)=(5-5-‘)r(-r)/2, 

(4 cp,( - $) + cp,( - i) = (2 + 2-2r-1 - 2-3’-1)(( -r), 
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(vii) p,( - ft) + <p,( - &) = (4 - 2-* + 4-’ + 6-’ - 12-‘)[( -r)/2. 

Proof. Al1 of these formulas are easily established with the use of the 
Corollary of Entry 10 and Entry 7. For illustration, we shall give the proof of 
part (vii). By the aforementioned results, 

(12-12-~)1(-r)=x~Iq, =k =2 i cp 2 +cp,(-3). 
(12) k=l r( 12) 

Using Examples (i), (ii), and (iii) and Corollary (ii), we find that 

<p,(-~)+4%(-~)=W- 12-rK(-w 

-(3-3-r)[(-r)/2-(1+2-r-‘-2-2r-1)c(-r) 

-(1+2-‘+3-‘-6-‘)[(-r)/2-(2-2-‘)<(-r)/2, 

which, upon simplification, yields (vii). 

Ramanujan has incorrectly given the right sides of (vi) and (vii) (p. 83). The 
examples above are more commonly expressed in terms of values of Bernoulli 
polynomials. For example, see the handbook of Abramowitz and Stegun 
[l, pp. 805, 8063. 

Entry 12. For every complex number r, 

2’~(Pr(-~)-~r(-~)~=(2’+~){cpr~-~)-50r(-~)). (12.1) 

Proof. Putting n = 2 and x = - 3 and x = -s in Entry 10, we find that, 
respectively, 

cpr(-Q)-2’{(pr(-~)+cpr(-5)~=(1-2’+’)i(-r) (12.2) 

and 

cp,(-3)-2’{(p,(-3)+cp,(-2)) =(l-T+‘)l(-r). (12.3) 

Subtracting (12.3) from (12.2) and rearranging terms, we deduce (12.1). 

The proof above is given by Ramanujan in the notebooks, but he has 
inadvertently multiplied the right sides of (12.2) and (12.3) by - 1. 

Example 1. 

Example 2. 

2 l =&3). 
k=O (2k + l)j 
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Example 3. 

Example 4. 

f l k=O (4k + 1)3 
=;+Ai@). 

+ 2911s l(3). 

Al1 of these examples follow from well-known general formulas. Example 1 ’ 
is trivial. Examples 2-4 follow from general formulas for <p _ 2n- r( - *), 
(~-~~-r(-$), and ~-~~-i(-2) that cari be found in Hansen’s tables 
[l, formulas (6.3.10), (6.3.18), and (6.3.23), pp. 118, 1191. 

Entry 13. For each nonnegative integer k, dejine 

Then for a11 s, 

i(s)=&+ f qpqs- 
k=O 

In particular, if A, = (- l)kck/k!, 0 I k < 00, then 

A, = y = 0.5772156649, 

A, = 0.0728 158455, 

and 
A, = -0.00485, 

A, = -0.00034, 

where y denotes Euler’s constant. 

1)k. (13.2) 

(13.3) 

(13.1) 

Ramanujan did not explicitiy define ck by (13.1). Instead, he says that ck is 
the constant of cy= i (Logk j)h, but this is equivalent to (13.1). The values of A,, 
0 I k < 3, are correct to the given number of decimal places. 

The Laurent series (13.2) has been independently discovered several times 
in the literature. Apparently, Stieltjes [2] first established (13.2) in 1885. 
Furthermore, Stieltjes [2, letters 73,74,75,77] and Hermite have thoroughly 
discussed this result in an exchange of letters. Not surprisingly, the constants 
A, are now called Stieltjes constants. In 1887, J. L. W. V. Jensen [l] 
rediscovered (13.2). Hardy [7], [18, pp. 475-4761 and Ramanujan [ 143, [ 15, 
p. 1341 himself each stated (13.2) without proof. Briggs and Chowla [l] 
rediscovered (13.2) again in 1955. Later proofs have been given by Verma Cl] 
and Ferguson [l] in 1963 and Lammel [l] in 1966. Kluyver [l] has 
established an infinite series representation for ck. Zhang Cl] rediscovered 
(13.2) and obtained other formulas involving ck. 

Wilton [l], Berndt [l], and Lavrik [l] have evaluated the Laurent 
coefficients of the Hurwitz zeta-function. Further generalizations to other 
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Dirichlet series have been found by Briggs and Buschman [ 11, Knopfmacher 
[l], and Balakrishnan [2]. 

Numerical calculations of the constants ck were first carried out by Jensen 
[l] who calculated the first 9 coefficients to 9 decimal places. In 1895, Gram 
[l] published a table of the first 16 coefficients to 16 decimal places. The most 
extensive calculations to date have been by Liang and Todd [l] who 
calculated the first 20 coefficients to 15 decimal places. 

Briggs [l] and Mitrovic [l] have proved theorems on the signs of the 
coefficients ck. Uniform bounds for 1~~1 have been established by Briggs [l]. 
Improvements were later made by Berndt [ 11, Israilov [ 11, and Balakrishnan 
Pl. 

Example 1. For In1 sujiciently small, we haoe 

((1 + n) + C(l - n) = 2Y 
1 + 0.00839n2 - 0.0001n4 + ... ’ 

Proof. From Entry 13, for In1 sufficiently small, 

i(l+n)+[(l-n)=2y+2A2nZ+2A4n4+... 

2Y = 
I-!$2+ Lj-$ n4+... ( > 

Using the values of A,(y), A,, and A, given by Liang and Todd [l] and 
employing a calculator, we complete the proof. 

In Example 1, Ramanujan, in fact, has written +0.0001n4 instead of 
-0.0001n4. Several of the following examples also need corrections. 

Example 2. c(g) = 10.58444842. 

Example 3. ((3) = 2.6123752. 

Example 4. (($) = 1.341490. 

Example 5. Bz,, = 0.4409932; By12 = - 1.032627. 

Example 6. BTIJ = -0.9420745; BT 1,3 = - 1.3841347. 

Example 7. BE l,2 = - 1.847228. 

According to Gram’s [2] table of values for i(s) which has been 
reproduced in Dwight’s tables [l], the last recorded digit for c(B) should be 6 
rather than 2. These same tables indicate that the last recorded digit for c(S) is 
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3 and not 2 and that the last two digits of i(2) are 87 instead of 90. In an 
earlier table of Glaisher [l], the values of l(H) and c(3) are found to six 
decimal places. 

The five particular values of BT given by Ramanujan cari be found by 
employing (4.1) in conjunction with tabulated values of the Riemann zeta- 
function. Using the value of i(j), we find that the last digit of B$2 should be 3 
rather than 2. The given values of BTiz and BT,,, are correct. TO calculate 
BT,, and B? 1,3 we need the values of c(3) and 1($) which are not found in the 
aforementioned tables but which have been calculated by Hansen and 
Patrick [l]. Accordingly, the last digit of BTi3 should be 3 rather than 5. 
Ramanqan’s value of BTl13, in contrast to his other calculations, is 
somewhat off from the correct value - 1.3860016. 

For a list of a11 tables of the Riemann zeta-function before 1962, consult 
the Index of Fletcher, Miller, Rosenhead, and Comrie [ 11. The most extensive 
computations of i(s) appear to have been done by McLellan in 1968; see 
Wrench’s review [l] for a description of these tables. 

Entry 14. Let n > 0. Then as n tends to 0, 

a, - Log n 
+a, + f ak+ln2k-1, (14.1) 

n k=l 

where 

~ - Log Log m = 0.7946786, (14.2) 

and 

a 1 = f(1 - y) = 0.2 113922, 

Bzdzk - 1 
ak+l = - 2k ’ 

k> 1, 

where Bj denotes the jth Bernoulli number and Aj is dejned in Entry 13, 
0 I j < 00. In particular, a2 = -0.0060680 and a3 = -0.000000475. 

The numerical value for a, + Log Log 2 is found in an article of Boas 
[2, p. 1561. Boas records the first six digits of a0 + Log Log 2 in [l, p. 2441. 
The numerical values for a,, a2, and a3 may be determined from (13.3), or, 
more accurately, from the table of Liang and Todd [Il]. While Ramanujan 
correctly gives a, and az, his value -0.0000028 for a3 is incorrect. 

Proof. Let t 2 1, x 2 0, and suppose that 0 < n < A, where A is fixed and 
positive but otherwise arbitrary. Define 

f(t)= -J--9 t(t” - 1) h(t) =f 0) - & > and g(x)=&-;. 

Then h(t) = g(n Log t)/t and 

h’(t)= t-‘{ng’(n Log t)-g(n Log t)}. (14.3) 
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Fix an integer N 2 1. Applying Taylor’s theorem to g and to g’, we see from 
(14.3) that 

+ tn L"gt)N+' {ng(N+2)(el)-g(N+l)(~ 

(N + l)! 

)} 
2 ) (14.4) 

where 0 I 8,, 0, I IZ Log t. By the definition (Il) for the Bernoulli numbers, 

d"(o) Bj + 1 

-=(j+ j! 
j 2 0. (14.5) 

Thus, as x tends to 0, gCN’(x) tends to BN+l/(N + 1). Using the fact that 

g(x)= -; + f  @+1)x, x > 0, 
k=O 

we find that gCN’(x) tends to 0 as x tends to 00. Hence, g@“(x) is bounded for 
each fixed N, and SO the last expression in (14.4) is O({n Log t}N+l), where the 
implied constant is independent of II and t. Using (14.5), we deduce from (14.4) 
that 

N g(j)(O) 

t2h’(t) = 1 jr {nj(n Log ty-’ - (n Log t)j) + 0( {n Log tjN+ ‘) 
j=O . 

+O({n Log t}N+‘). (14.6) 

Next, apply the Euler-Maclaurin formula (13) with 0, h(t), 1, and m playing 
the roles of n, f(t), c(, and fi, respectively. Since h(1) = - $, we find that 

kt2 h(k) = j-; h(t) dt + f + y + f Pl(+i(t) dt. (14.7) 

From (14.6) and (14.7), it follows that kt2 h(k)= s h(t) dt + ; + F 

+~o~~~p,(t)~(~)di+O(nN+l), (14.8) 

where the implied constant is independent of n and m. We now evaluate the 
integrals on the right side of (14.8). First, 

s 
m 

1 
h(t) dt = ; Log 

m” - 1 
=iLog ~ - 

( > 

Log Log m Log n 
--. 

m” 
(14.9) 

n n 
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By the Euler-Maclaurin formula (13) 

Logj m -~ 
2m ’ j > 0, 

= 
m 1 
z--j 

“dt 1 --- 
k=lk 1 t 2 

1 - ; 1,; ) 
( > 

j = 0. (14.10) 

Using the integral evaluations (14.9) and (14.10) in (14.8) and then letting m 
tend to CO, we find that 

k~2f(+!!!-k!?.?+a+B,(y-+)+ 5 !!%.?ki+O(nN+'), 

n n j=l (j+l)! 

where Ci is defined in (13.1). The asymptotic formula (14.1) now readily 
follows. 

Corollary 1 is a restatement of (14.2). 

Corollary 2. For s > 0, 

m A,-,sk = -Logs+C+(l-y)s- 1 -, (14.11) 
k=2 k 

where 
* A,-, -1+y+ c- 

k=2 k ’ 
(14.12) 

and where A,, 1 I k < CO, is dejned in Entry 13. Furthermore, C = 0.2174630, 
1 - y = 0.4227843, -+A, = - 0.0364079, -+A,= 0.001615, -$A3 
= 0.000086, and - fA, = - 0.00002. 

Proof. Replacing s by x + 1 in (13.2) and integrating over Cl, s], we find that, 
for s > 0, 

= 
s 

‘[(x+l)dx=Logs+y(s-l)+ f Ak-l~k-l). 
1 k=2 

Hence, (14.11) and (14.12) follow immediately. 
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The numerical coefficients of sk, 1 I k I 5, are now found by employing the 
table of Liang and Todd Cl]. The value 

f l k=2 k2 Log k 
= 0.605521788883 

was calculated by J. R. Hi11 on his PDP11/34 computer. Using this 
computation along with the tables of Liang and Todd [l] and the bounds 
]A,( < 4/(knk), 1 I k < CO, of Berndt [l], we derive the proposed value of C. 

Ramanujan’s version of Corollary 2 contains some minor discrepancies; 
his coefficients of s3 and s4 are 0.001617 and 0.000085, respectively. 

Entry 15. Let u > - 1 and 0 < x < 1. Then 

4x-- 1)-%(-X) = 
4r(r + 1) 

Proof. Recall, from Titchmarsh’s treatise [3, p. 371, Hurwitz’s formula 

ih a) = 2r(1 - ‘) 

0 m sin(2rrka) 
+cos - 1 

2 k=l (2nk)‘-” ’ 
(15.1) 

where o < 1 and 0 <a I 1. By (2.4) and (15.1) the desired formula readily 
follows. 

Entry 16. Let u> -1 and 0 <x < 1. Then 

cp,(x-l)+cp,(-x)-21(-r) - m cos(2zkx) 

’ 4qr + 1) 
= sin 

0 2 k=l 1 (2nk)‘+’ 

Proof. The proof is completely analogous to the previous proof. 

Corollary 16(i). Let p and q be integers with 0 < p < q. Then ifr is any complex 
number, 

= -sin(F):$ sin($@){[(r)--q-,(:-l)}. (16.1) 
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Proof. Using Entry 15 and putting k = mq + j, 1 <j 5 q, 0 5 m < ~0, we find 
that, for r > 1, 

0 a> sin(2rckp/q) 
= - sin 7 q’ C 

k=l 
k’ 

= -Si$) jil sqy$o(m+;,q)‘. 
The result now follows from (2.4) for r > 1 and by analytic continuation for 
a11 r. 

Corollary 16(ii). Let p and q be integers with 0 < p < q. For any complex 
number r, 

= -cos(~>ucos(~)~(r)-q-,(:--l)}. (16.2) 

Proof. The proof is similar to the previous proof, but, in addition, uses the 
functional equation (4.2). 

For the next few results we shah need Ramanujan’s extended concept of 
the Euler numbers from Chapter 6, Section 25. Define 

(17.1) 

where r is any complex number, and where 

L(s) = f (- 1)“(2k + l)-“, 
k=O 

0 > 0. (17.2) 

It is well known (e.g., see Davenport’s book [1, Chapter 93) that L(s) cari be 
analytically continued to an entire function. 

Entry 17. For each complex number r, 
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Proof. Put x = $ in Entry 15 to get, for u > - 1, 

(A(-2)- a-a> = 
4r(r+ 1) -COS 0 

- m sin(nk/2) 
2 k=l 1 (2rck)‘+l 

cos(7cr/2) 
= - (2q+l Jw + 1) 

cos(7cr/2)E;+ 1 =- 
4’+‘2r(r + 1) ’ 

by (17.2) and (17.1). The desired result now follows for u > - 1. By analytic 
continuation, the proposed formula is valid for a11 r. 

Corollary. For u < 0, 

Proof. By Entry 17 and (2.3), with u < 0, 

2 cos(7w/2)EF+ 1 
4r+l =cp,(-a>-%<-a> 

=k$l Uk-$‘-(k-il’, 

=4-‘k$0(-l)*(2k+ l)‘, 

and the result follows. 

Entry 18. For each complex number r, 

7c 

0 

’ E,* 
ET-, = 2L(r) = T To. 

The equalities in (18.1) yield the functional equation of L(r), 

7L r-l 
L(r) =COS F 2 (JO I?(l - r)L(l -r), 

found, for example, in Davenport’s book [1, p. 691. 

Proof. We present here Ramanujan’s argument, 
By (17.1), the “constant” for the series L(r) is 

(18.1) 

L(r) = $E:. 
r 
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But by the last corollary, the “constant” for L(r) is also equal to 

f COS 

Since these two constants must be equal, (18.1) follows at once. 

Ramanujan’s derivation of the next corollary was evidently very similar to 
his argument for Corollary 4 in Section 4. 

Corollary. We bave 

Proof. Since the proof is very similar to that of Corollary 4 in Section 4, we 
shah present only a brief sketch. If we replace f(x) by f(x + 7r/2) in 
Titchmarsh’s text [l, pp. 153-1543, we find that 

nP+l +71P+1 kgl (- l)k{(2k + 1)P - (2k - l)P} 

= 2pi2 COS 
( > 

f UP + 1MP + 11, 

where 0 < p < 1, after a completely analogous argument. Putting p = *, we 
complete the proof of the Corollary. 

Entry 19(i). Assume the hypotheses of Corollary 16(i) with the additional 
assumption that q is odd. Then 

Proof. On the right side of (16.1) replacej by q -j in that part of the sum with 
(q+ 1)/2IjIq- 1. 

Entry 19(ii). Suppose that a11 hypotheses of Corollary 16(ii) hold. Assume also 
that q is odd. Then 
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Proof. Using (16.2), proceed in the same fashion as in the previous proof. In 
addition, the functional equation (4.2) must be employed. 

Ramanujan’s version of Entry 19(ii) is incorrect (pp. 86, 87). 

Corollary 1. Let u > 0 and suppose that 0 I x < 1. Then 

2*-tnr+l 
T(r + ,) cp,( _ x) = f SlrWx) c;$kx + 42). 

k=l 

Proof. By (2.4), (4.2), and (15.1), we find that for u > 0 and 0 5 x < 1, 
2*-171r+1 

T(r + ,) 4%(-x) = r,::;)' {Fr) - T(-r, 1 - 4> 

=ikzl--&{-sin(F)+sin(lnkx+T)} 

= k.fl sinW4 c;$kx + 42), 

upon using the identity - sin A + sin(A + 2B) = 2 sin B ~OS(A + B). This 
completes the proof. 

Corollary 2. If 0 < x < 1, then 

kfo (& - J&) =2&J1 sinF. 

Proof. Set r = -9 in Entry 15 and use (2.3). 

Entry 20. If r is any complex number, then 

Proof. Put p = 1 and q = 3 in Entry 19(i), and the result follows. 

Section 21 appears to have no relation to the other material in Chapter 7. 
In Entry 21, Ramanujan writes 

=(1 +x)-” $ n cp(k)xk, 
0 k=O k 

(21.1) 
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where 

with C~~(X) = q(x), and where 

Pr= f (-l)k+ikrXk, 
k=l 

We have been unable to discern the meaning of this result, since the 
recursively defined functions C~,(X) have not been connected with (2 1.1) in any 
way. We shall regard (21.1) as the definition of cpm. Setting u = nx/(l + x) and 
p = u/n, we find that (21.1) becomes 

cpco(u) = : n 
0 k=O k 

cp(k)PkU - PYk. (21.2) 

In the following corollary, Ramanujan gives a formula for C~,(U) in terms 
of the derivatives #j’(u), 0 <j < CO. Note that C~,(U) is the expected value of 
C~(U) if u denotes a random variable with binomial distribution b(n, k; p). 
Ramanujan alludes to Entry 10 of Chapter 3, where he gives a formula for the 
expected value of C~(U) in terms of #j’(u), 0 5 j < 00, where u denotes a Poisson 
random variable. However, the latter result appears to be considerably 
deeper than the present corollary. 

Corollary. Let u and n be$xed, where 0 I u I n and n is an integer. Let q(z) be 
analytic in a disc centered at u and containing the segment [0, n]. Zf q,(u) is 
dejined by (21.2), then 

<p”(u)=j$o$@ -f ’ (k-uypk(l -P)“-~. 
0 . k=O k 

(21.3) 

Proof. Expanding C~(Z) in its Taylor series about u, we find that 

(k-uypk(l -P)“-~. 

The equality (21.3) now follows by inverting the order of summation. 

Observe that the Corollary even holds when n is an arbitrary positive 
number, provided that p < 3 and cp is a polynomial. It would be interesting to 
find more general conditions under which (21.3) holds. 

Entry 22. Let A, = 0. For each nonnegatioe integer r, r # 1, set A,. = 
(1 +(-lY}Ur). 1. n is a natural number, then 

= t A.-*( -;). 
k=O 
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Proofs of Entry 22 have been given by Glaisher [3], Kesava Menon [2], 
and Djokovic [l]. Entry 22 is identical with Entry 35 in Chapter 9. The 
following example is the special case IZ = 3 of Entry 22. 

Example. k=l k3(k + 1)3 = l” - Y?’ f l 

Entry 23 offers Stirling’s well-known asymptotic expansion of 
Log F(z + 1). (E.g., see Whittaker and Watson% treatise [l, p. 2521.) 

Entry 23. Let larg z/ < 71. Then as IzI tends to CO, 

Log r(z + 1) - (z + 4) L”g ’ - ’ + 3 L”g(271) + kfl 2k(2k 8,;)z2k- 1 ’ 

R.amanujan remarks that $ Log(2n) = 0.918938533204673, which is cor- 
rect (Abramowitz and Stegun [l, p. 31). 

We quote the following corollary exactly as it appears in the notebooks, 
p. 88. This approximation for the gamma function is remindful of Corollaries 
6-8 in Section 4. 

Corollary. When x is great eT(x + 1)/x” = Jm~ nearly. 

Pro($ From the familiar asymptotic expansion (16) for I(x), as x tends 
to CO, 

e-T@ + 1) - 
XX 

(23.1) 

But, on the other hand, 

Thus, Ramanujan’s approximation is reasonable, but observe that the 
coefficients of x-’ in (23.1) and (23.2) are of opposite sign. 

Entry 24 and its corollary are restatements of Corollaries 3 and 2, 
respectively, of Section 4. 

Entry 25. For every complex number z and positive integer n, 

fil r(q) =(271)("-1)'2n-'-1'2r(z+ 1). 

Entry 25 is a version of Gauss’s famous multiplication theorem for the 
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gamma function (Whittaker and Watson [l, p. 2401). Corollary 1 is the 
special case z = 0 of Entry 25. 

Corollary 2. r(4) = m$m. 

Proof. Put n = 2 and z = - 3 in Entry 25 to get I($)l-(z) = ,,1%2~‘~I(3). By 
Corollary 3 of Section 4, r(%)r($) = 27c/$. Combining these two equalities, 
we achieve the desired result. 

Corollary 3. For every complex number z, 

Corollary 3 is Legendre’s duplication formula and is the special case n = 2 
of Gauss’s multiplication formula, Entry 25. 

Corollary 4. Let larg z[ -C K. Then as IzI tends to CO, 

m B2,(21-2k - 1) 
Log r(z + $IN z Log z - z + 3 L”g(2x) + kzl 2k(2k _ 1)z2k- 1 . 

Proof. Replacing z by 22 in Corollary 3, we find that 

qz +L) = &r(2z + ‘1 
2 22=r(z+ 1) . 

Take logarithms on both sides and apply Entry 23. 

Ramanujan inadvertently multiplied the infinite series above by - 1. 
The Maclaurin series in Entry 26 is well known (Abramowitz and Stegun 

CL P. 2561). 

Entry 26. For IzI < 1, 

m tlW(-4k 
Logr(z+i)=-y~+ C k , 

k=2 

where y denotes Euler’s constant. 

Corollary. For IzI < 1, 

Log{+T(z + 3)) = 0.9227843351~ + 0.1974670334~~ 

- 0.0256856344~~ + 0.0049558084~~ 

-0.0011355510z5 + 0.0002863437~~ 

-0.0000766825z’ + 0.0000213883z8 

-0.0000061409z9 + 0.0000018013z’” + . . . . (26.1) 
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Proof. Using Entry 26, we find that, for Izl < 1, 

Log{$I-(z + 3)) = Log(4z + 1) + Log(z + 1) + Log 1-(z + 1) 

The given numerical values for the coefficients of zk, 1 I k 5 10, now follow by 
direct calculation. Numerical values of i(k), 2 < k I 10, may be found in the 
tables of Abramowitz and Stegun [l, p. 81 l] or Dwight [l, p. 2241. 

In Ramanujan’s formulation of (26.1) he replaces the tenth and a11 
succeeding terms by the single expression 0.0000054047z’“/(3 + z). 

Our calculations below were determined from the values of I(s), I(s), and 
I(A) found in Fransén and Wrigge’s tables [l]. Ramanujan inexplicably 
gives the value 0.5341990853 for Log I($). 

Example 1. Log 1-($) = 0.303 1502752. 

Example 2. Log I-(s) = 0.1211436313. 

Example 3. Log I(h) = 0.0663762397. 

Entry 27(i). Suppose that n is a natural number and that IzI > n. Then 

(27.1) 

Proof. Using Euler’s definition of the gamma function (Whittaker and 
Watson [l, p. 2371) 

r(z) = lim 
(k - l)! k’ 

k+‘,,z(z+l)“‘(z+k-1)’ 

which is also Example 2, Section 4 of Chapter 6, we find that 

r2(n + 1) 
r(n + 1 + iz)T(n + 1 - iz) 

=lim {(n+1)2+z2){(n+2)2+z2)...{(n+k)2+z2} 
k-m (n + 1)2(n + 2)’ ... (n + k)2 

= (27.2) 
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On the other hand, 

2TTzP(n + 1) 
r(n + 1 + iz)T(n + 1 - iz) 

27czP(n + 1) 
= ~~“(1 + i2/z2)(i + 22/~2) . . . (1 + n2/z2p-(i + izp-(i - iz). (27.3) 

Using the Maclaurin series for Log(1 + y) with y = k2/z2, 1 5 k 5 n, we fi& 
that 

k~l(l+f)~‘=ev(-k~lLog(l+~)) 
= exp f (-lYV2jCn) 

( j=l > 
jz2j ’ 

provided that 1zI > n. Also, by Corollary 3 of Section 4, 

27cz 2rc 

r(i + qr(i - iz) = iT(iz)I(l - iz) 
= 2 sinh(rcz). 

(27.4) 

(27.5) 

Now substitute (27.4) and (27.5) into (27.3). Comparing the resulting equality 
with (27.2), we readily deduce (27.1). 

In Ramanujan’s formulations of Entries 27(i) and (ii), pp. 89,90, instead of 
2 sinh(rrx), there appears enx - e -‘X0, but eënXtI is struck out. In a footnote, 
which is also struck out, Ramanujan says that “0 = COS 2rcn exactly or very 
nearly according as 2n is an integer or not.” A two-line solution to Entry 27(i) 
is also crossed out. 

Entry 27(ii). Under the same hypotheses as Entry 27(i), we bave 

27c(z2 + n2)n + ‘12 
a(l+&) 

=2(n!)’ sinh(nz)exp 2n-2z tan-’ i + c 
0 

m (- l)QZjSZj 
. 2j-1 ’ 

j=l .lZ 
(27.6) 

where 

s2j = f (- llkP + Y - l)! 
0 
n 2k+l 

k=O (2j- l)! (2k + l)! z ’ j2 1. 

Proof. First, 

(z2 + n2)n+ 1/2/, = Z2ne(n+ 1/2) Log(l +nw)~ (27.7) 
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Multiplying both sides of (27.1) by (z2 + n2)n+112/z and utilizing (27.7), we find 
that, for lz/ > II, 

2x(z2 + n2)n + li2 

= 2(r~!)~ sinh(rcz) exp 
a> (- l)k+l$k 

(n + 4) 1 
k=l kzzk 

(27.8) 

Comparing (27.6) with (27.8), we see that it remains to show that 

=2n-2ztan-’ (27.9) 

By Entry 1 and the remarks prior to (1.6), since [( - 2k) = 0, k 2 1, 

f (- 1)kq2k(n) 

k=l kzzk 

+ .f (-l)k C BZj(2k)! n2k-2j+1 

k= 1 kzzk j= 1 (2j)! (2k - 2j + l)! ’ (27.10) 

Now a short calculation shows that 

f (- l)W+ ’ + f (- l)W 
k=l k(2k + 1)~‘~ k=l 2kzzk 

=2zk~l((~~~;;~2~~ir =2n-2ztan-l(n). 
Z 

Thus, we only need yet to examine the double sum in (27.10). Inverting the 
order of summation by absolute convergence, we find that this double series 
becomes 

f B,i .f (- l)k(2k)! nzke2j+l 

j=: 1 (2j)! k= j k(2k - 2j + l)! zzk 

=j~l(;J~2j 2 (-1YVP+2j)! (f)2p+1. 
p=o CG)! (p + j)(2p + l)! z 

After a slight amount of simplification, the double series above is easily seen 
to be equal to the series on the right side of (27.9). This completes the proof of 
(27.9) and hence of (27.6). 
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Entry 27(iii). Let n be a positive integer and suppose that x > 0. Write 
r2 = n2 +x2 with r > 0 and put /J = tan-‘(x/n). Then as x tends to CO, 

Log 2x(x2 + n2)n- 1’2 X2 

(n 

m B,, COS { (2k - l)p} 
-2b3W4+2n+W-k~l kt2k-l)r2k-l . 

Proof. Using (27.2) and Entry 23, we find that, as x tends to 00, 

Log 2x(x2 + n2)n-1/2 

= Log 
i 

27c{(n - l)!}‘(x’ + n2)n+l12 
T(n + 1 + ix)r(n + 1 - ix) 1 

= Log(2z) + 2 Log r(n) + (2n + 1) Log r 

-LogT(n+l+ix)-LogT(n+l-ix) 

- Log(2n) + 2 Log r(n) + (2n + 1) Log r 

- (n + ix + $) Log(n + ix) 

- (n - ix + 3) Log(n - ix) - Log(2z) + 2n 

_ k$ Bdn ik;;- %fkr”‘“- ‘> . 

The desired result now follows since n +-ix = reiP. 

We are very grateful to J. W. Wrench, Jr. for supplying several references. 



CHAPTER 8 

Analogues of the Gamma Function 

The first 14 sections of Chapter 8 comprise but 45 of the 12 pages in this 
chapter. Initial results are concerned with partial sums of the harmonie 
series and the logarithmic derivative I,+(X) of the gamma function. As 
might be expected, most of these results are very familiar. Ramanujan 
actually does not express his formulas in terms of 9(x) but instead in terms of 
<p(x) =C;=i l/k. As in Chapter 6, Ramanujan really intends <p(x) to be 
interpreted as $(x + 1) + y, for a11 real x, where y denotes Euler’s constant. 
These 14 sections also contain several evaluations of elementary integrals of 
rational functions. Certain of these integrals are connected with an interesting 
series cpZl l/{(kx)3- kx}, which Ramanujan also examined in Chapter 2. 

Sections 17-24 constitute the focus of Chapter 8 and are rather more 
mathematically sophisticated than the initial 14 sections. Essentially a11 of the 
results in these last sections appear to be new. Ramanujan studies several 
intriguing analogues of the gamma function. In particular, he derives 
numerous analogues of Stirling’s formula, Gauss’s multiplication theorem, 
and Kummer’s formula for Log T(x). Ramanujan continues this study in 
Sections 27-30 of Chapter 9. The results in especially Chapter 9 are related to 
a generalization of T(x) studied by Bendersky [l] and Büsing Cl]. Post [l] has 
considered another type of generalization of T(x), but this appears to be 
unrelated to Ramanujan’s work. One of the difficulties in examining Sections 
17-24 is that Ramanujan initially defines an analogue q(x) of Log I(x + 1) 
for only positive integral values of x by a finite sum with Upper index x. He 
then develops properties of an analytic extension of q(x), but he invariably 
does not share with us his more general definition of q(x). 

Recalling Lerch’s formula for Log I’(x) in terms of the Hurwitz zeta- 
function, for some of Ramanujan’s extensions, we have defined q(x) by 
similar types of formulas involving the analytic continuation of the Hurwitz 
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zeta-function. Although Ramanujan had no firm grasp of analytic continu- 
ation, we think that Ramanujan somewhat nonrigorously used an approach 
like this. It is interesting to note that this circle of ideas has independently 
been observed by H. M. Stark [2]. However, whereas Ramanujan was 
primarily interested in analogues of Log I(x), Stark’s interest is in using the 
Hurwitz zeta-function and its analytic continuation to determine values of 
zeta and L-functions at nonpositive integers. It also might be remarked that 
Berndt [4] and Milnor [l] have shown that the main properties of the 
gamma function may be established by using only knowledge about the 
Hurwitz zeta-function. 

If L(s, x) denotes the classical Dirichlet L-function associated with the 
character x, then there is a classical formula for L’(O, x) that depends upon 
Lerch’s formula for Log I(x). Analogues have recently been established for 
other L-functions, e.g., p-adic L-functions, and analogous of Lerch’s formula 
naturally arise. (See papers of Ferrero and Greenberg [l], Gross and Koblitz 
[l], Moreno [l], and Shintani Cl].) It is hoped that some of the analogues in 
Chapters 8 and 9 might have similar applications. 

Throughout this chapter, the real part of a complex variable s shall be 
denoted by (T. 

Ramanujan begins Chapter 8 by stating “B: cos($rr)/r + l/r, when r 
vanishes, is a finite quantity which is invariably denoted by ce; it is the 
constant of S, . ...” In order to understand this claim, we must recall 
Ramanujan’s definition of Bernoulli numbers. Interpolating Euler’s formula 
for 1(2n), Ramanujan, in (25.1) of Chapter 5, defined extended Bernoulli 
numbers BI by 

B* = Wr + 1) 
I (2X)’ @J-), (1.1) 

where now we assume that r is any complex number. In Chapter 7, Entry 4, 
Ramanujan showed that c(r) = BT-, sin&r)/(l - r), for any complex number 
r. Thus, Ramanujan’s opening remark may be expressed as 

lii{[(l-r)+i}=cO. 

Of course, this is well known, and c. = y, Euler’s constant. In Ramanujan’s 
notation, S, = c l/k. We remark that in Chapter 7 Ramanujan derived the 
full Laurent series of C(l - r) about r = 0 in Entry 13. 

Next, Ramanujan remarks that y = 0.577215664901533 and eëy = 
0.56145948356. The former calculation is correct, while in the latter, the 
last recorded digit should be 7. (See Abramowitz and Stegun [l, pp. 3, 21, 
respectively.) 

Entry 2. As x tends to 00, 
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This asymptotic expansion is well known and is due to Euler. For the 
usual proof, via the Euler-Maclaurin summation formula, see Bromwich’s 
book [l, pp. 324, 3251. 

Entry 3. If x is real, then 

(3.1) 

Now if x is a positive integer, Entry 3 is a complete triviality. In essence, 
Ramanujan defines a function C~(X) (xksx l/k in Ramanujan’s notation) for a11 
real x by (3.1). Ramanujan adopts this convention in Chapter 7, equation 
(2.3), as well. 

Entry 4. For 1x1 < 1, 

(4.1) 

This result again needs interpretation. From the Weierstrass product of 
the gamma function (see, e.g., Whittaker and Watson’s treatise [l, p. 247]), 

(4.2) 

where x is any complex number. In particular, if x is a positive integer, then 

I-(x + 1) 
I-(x+ 1) +‘=k&i’ 

Thus, in place of the left side of (4.1), it is more natural to take the left side of 
(4.2), which is in agreement with (3.1), and with this alteration (4.1) is valid. In 
fact, Entry 4 is identical to Example 2 of Section 6 in Chapter 6. See also (5.4) 
and (5.11) in Chapter 6. 

Entry 5. For any complex number x, 

1 
-~ 

k-x 
= 7c cot(nx). (5.1) 

Entry 5 simply records the familiar partial fraction decomposition of 
cot(nx). (Ramanujan incorrectly multiplies the right side of (5.1) by - 1). A 
very short proof may be given as follows. Logarithmically differentiate the 
reflection formula I(x)I( 1 - x) = rc/sin(nx) to obtain 

r’(x) ry i - X) ~- 
r(x) r(l -x) 

= - 71 cot(7tx). (5.2) 

Then employ (4.2). 
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In the sequel, we shall employ the familiar notation $(x) = I?(X)/~(X), 
whereas Ramanujan expresses his results in terms of 

T’(x + 1) 
d4 = ~ T(x.+ 1) +y 

(which he regards as zksx l/k). 

Entry 6. Let n denote a positive integer and suppose that x is any complex 
number. Then n-l 

Mx+ l)-c(lr ‘+n+’ ( > =nLogn. 

This result is well known (see Gradshteyn and Ryzhik [Il, p. 9451) and 
arises from the logarithmic differentiation of Gauss’s multiplication theorem. 

Corollary 1. Let larg XI < 7~. Then as 1x1 tends to 00, 

I)(x + f) - Log x + z B2$;x;; p2k) 
k=l 

Proof. Differentiate both sides in Corollary 4, Section 25 of Chapter 7. 

Corollary 2. If n is a positive integer, then 

= -(n - 1)~ - n Log n. (6.1) 

Proof. Setting z = x + 1 in Entry 6 and letting z tend to 0, we find that 

By using (4.2), we easily find the foregoing limit to be -(n - l)y, and this 
completes the proof. 

Corollary 3. We haue 

(9 l+q+> = - y - 2 Log 2, 

(ii) l#)= -y-5Log 3-n 
2fi’ 

(iii) $($)= -y-3 Log2$ 

(iv) 4 $($-y-2Log2-5Log3-7, 

and 

(4 311/(# - 2$(i) = - y + 71. 
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Proof, Part (i) follows from putting n = 2 in Corollary 2. Part (ii) follows from 
Corollary 2 with n = 3 and (5.2) with x = 1/3. The proofs of (iii) and (iv) are 
similar. 

Corollary 4. Zf n is a positiue integer, then 

,$ $(Y) = - ny -n Log(4n). 

Proof. Replacing n by 2n in (6.1), we find that 

= - (2n - 1)y - 2n Log(2n). (6.2) 

Subtracting (6.1) from (6.2), we achieve Corollary 4. 

Entry 7. If x is a positive integer and a and b are arbitrary complex numbers, 
then 

Proof, This result is an easy consequence of (4.2). 

Entry 8. If a and b are arbitrary complex numbers, then 

Proof. The desired formula follows easily from (4.2). 

Entry 9. If Re x > 0, then 

+(;+1) =+++Log2+xJ;&du. (9.1) 

Proof. By (4.2), 

and 

Hence, 

Oo (- l)kf ‘X 
=-Log2+k;l kx+l-’ (9.2) 
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Now, if Re x > 0, 

8. Analogues of the Gamma Function 

Combining (9.2) and (9.3), we obtain (9.1). 

Entry 10. Zf Re x < 0, then 

s 

l l-u 
-X 

0 u(uX- 1) du = x 
s 

o1 ,g {u-kx - u-kx - ‘} du 

m  
= 

Ii k=l 

Appealing to (4.2) we complete the proof. 

Observe that the integral in Entry 10 diverges if Re x > 0. In the integrand 
Ramanujan has incorrectly squared the expression 1 - u in the notebooks, 
p. 92. 

For brevity, in the sequel we shall put 

dx) = ’ + ,$ (kx)i kx’ (11.1) 

Entry 11. Zf x is any complex number, then 

4 ++-3 = -2y-xq(x). 

Proof. Using (4.2) below, we get 

Y(;) +i(d) =-x+$(1+$ +i(d) 
m 2 =-+x+kgl 

i 
&&-& 7 

1 
from which the desired result follows after a slight amount of simplification. 

Entry 12. 1fRe x > 1, then 

s 1uX-2(1-U)î&q(X)-1 
0 1 - uX 
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Proof. We have 

187 

and the result follows. 

Entry 13. If Re x > 0, then 

<p(2x)-&4x)-1;Log 2= 1 -&,sc - - 
0 s 

1 UX 
-du. (13.1) 

X 0 l+u” 

Proof. By Entry 11 and (5.2), 

<p(x)= -;{+(;) +$(1-b) +27} 

= -;{2*(;) ..,,t(;) +2?] 

= -;{2(1+;) -2x+n cot(g +2+ 

Thus, using this last equality and Entry 9, we find that, for Re x > 0, 

+f-{cet(t) -cot(&)] 

s 

1 ux 
=l- -du-;csc 

0 l+u” 0 
n . 
X 

In the notebooks, p. 92, in place of the right side of (13.1), Ramanujan has 
written 

“logarithmic part of kzo &.” 

Now, for Re x > 0, 

s 

1 

l- zdu=kzos, 
0 l+ux 

but this provides only a partial explanation for Ramanujan’s formulation. 
The next two examples are easily established by expanding the integrands 

into geometric series. 
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Example 13(i). Zf 1x1 < 1 and Re n > 0, then 

s 

x du m (-l)kX”k+l 

,-,~=,pO c nk+l ’ 

Example 13(ii). Zf 1 x ) < 1 and Re n > 0, then 

s 

x du m  yk+l 

-= 
0 l-u” c- 

k=O nk + 1’ 

The next two examples are trivial. 

Example 13(iii). If 1x1 < 1 and n is odd, then 

{:ï$=[(yl+:uuy 

Example 13(iv). Zf 1 x ( < 1 and n is euen, then 

Example 13(v). Let 1 and n be positive integers with 1-c n + 1. If n is even, then 

(4 s x1-l dx 1 
~ = i Log(x - 1) + C-1)’ 
x”- 1 

--Log(x + 1) 
n 

If n is odd, then 

(b) 
s 

$$ = qLog(x + 1) 

1 N-1) 
-- c cos (@+y) Log(x2-2x cos((2r;l)n) 

n r=~ 

+~i~~11)sin((2r~1)zn) tand’~,~~~~~$~~). 

fl 
> 
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Example 13(G). Let 1 and n be positive integers with 1 < n + 1. Ifn is odd, then 

(4 s xl-’ dx 
--=ALog(x-1) 
~“-1 n 

+~~~~11)cos(~)Log(x~-2x c,,(F) + 1) 

s x’-l dx 
(‘4 ~ x” + 1 

= -;;lcos((2r;1)1K) Log(x’-2xcos((2r;l)~) +1) 

The integrals in Examples 13(v), (vi) may be routinely evaluated by 
expanding the integrands into partial fractions. Moreover, these four in- 
tegrals may be found in the tables of Gradshteyn and Ryzhik [l, pp. 64,651. 
Ramanujan inadvertently omitted the latter summation sign in 
Example 13(vi), (b). 

Entry 14. Let 

s x du A,= - 
0 l+u” 

n2 1. 

Then 

(i) A, = Log(1 + x), 

(ii) A, = tan-’ x, 

1 
(iii) A, = - Log 

6 

(iv) A, = 1 Log 1+xJ2+xz 

4Jz l-x$+x2 
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(vi) A, =$tan-lx+itanW1x3+ 

and 

+2 tan-‘rT)l, 

(viii) A,, =i tan-’ x + Ttanel(xc) 

+ -tan-l (“z) 

+ =GLog 
( 

1 +)xJGq7+x2 

+ ALog 

1 -$xJKFq5+xz > 

1 ++xJGz$+xz 
40 1 -~x&Cq?+x2 

Proof. Parts (i) and (ii) are elementary. 
TO prove (iii) we put n = 3 and 1= 1 in Example 13(v), (b) to get 

s x du 
3 = 3 Log(x + 1) - $ Log(x2 - x + 1) 

ou fl 

+-j$(,an-l(y) +tan-l(s)}, 

and the desired formula for A, follows upon simplification. 
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Before applying Example 13(vi), (b) to prove (iv), it is perhaps best to 
employ the fact 

tan-‘(1 ~~~o~ 0) - tan-l(“.~o~ “) =$r-8 (modrr). (14.1) 

Putting n = 4 and 1= 1 in Example 13(vi), (b) then yields 

A,= -~ l {Log(x2-xJz+ l)-Log(x2+xJ2+ 1)) 
44 

+&{tan-l(-$-) +tan-i(e)}. 

Part (iv) now readily follows. 
The remaining calculations are similar to those above but are somewhat 

laborious. Al1 computations are facilitated by using (14.1). TO prove (v), put 
n = 5 and I = 1 in Example 13(v), (b). Parts (vi)--(viii) follow from putting 
1= 1 and n = 6, 8, and 10, respectively, in Example 13(vi), (b). 

There are two discrepancies between our formulation of Entry 14 and that 
of Ramanujan, p. 94. In the second expression on the right side of (v), 
Ramanujan has written $4 - 1) in the denominator instead of $($ + 1). 
In the formula for A,,, Ramanujan has replaced the three terms involving the 
inverse tangent function by 

$ tan-’ 
1 

x-%tan -lx5+ -& tan-‘(Kg). 

Example 14.1. We haue 

(-llk 7T 
k=O (3k + 1)23k+’ = - +$Log3, 

(ii) 
f (-l)k($-1)3k+l 

k=O 3k+l 

and 

(iii) 
f (-l)k(2-fi)Zk+’ =(J3-l)7rJ&1)Log 

k=O 4k+1 16 4 

Proof. TO establish (i), put x = 4 and n = 3 in Example 13(i) and use 
Entry 14(iii). 

TO prove (ii), set x = $ - 1 and II = 3 in Example 13(i) and employ 
Entry 14(iii). 
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Lastly, put x = (a-- I)l$ and n = 4 in Example 13(i) and employ 
Entry 14(iv). After multiplying both sides by x and observing that x2 = 2 

-a, we find that 

f (-qk(2-$)2k+l 

k=O 4k+ 1 

+(&l)n 
16 ’ 

from which (iii) follows. 

On the right side of (iii) Ramanujan inadvertently omitted the factor $ in 
the denominator. 

Example 14.2. With q(x) defined by (11. l), we haue 

(i) <p(2) = 2 Log 2, 

(ii) (p(3) = Log 3, 

(iii) (p(4) = 5 Log 2, 

(iv) q(6) =) Log 3 + 5 Log 4, 

(v) (p(5) = $ Log 5 + 

(vi) 
G (p(8) = Log 2 + 4 Log($ + l), 

(vii) (o( 10) = 5 Log 2 + $ 
Log 

5 + - 3 J 5+1 

2JJ 
Log -y-’ 

(viii) (~(12) = + Log2+$Log3-‘Log(&l), 
J3 

(ix) (~(16) = 2 Log 2 + 
1 

- Log(Jz + 1) 
4Jz 
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and 

(x) 3 (p(20)=& Log 2+$ Log 5+- 
0 

+JGiTQLog 4+JiG-g 
+ALog 

( 4-JiiGQT > 
( 
4+JGiQp 

40 > 4-&Cg . 

Proof. Parts (iHiv) have been proved in Chapter 2, Corollaries of Entries 1,2, 
4, and 5, and SO we shall forego proofs here. 

If n is a natural number, then by Entry 12, 

q(n) = 1 + 
s 

l u”-2(1- u)2 du 

0 1 - u” 

=l+ s 11 +U”-2-2u”-l 
du- s ll--U” 

-- 
0 1 u” - o 1-u” 

du 

= s 0 11 +u”p2-2u”-1 1 -un du. (14.2) 

Thus, in the sequel, we shall be making several applications of Examples 
13(v), (a) and 13(vi), (a) with 1= 1, n - 1, n. Note that when 1= n, the sum 
involving inverse tangents is identically equal to 0. Also observe that the sum 
of the inverse tangent contributions of the terms with I = 1 and 1 = n - 1 to 
p(n) is also equal to 0. 

We now prove (v). By (14.2) and Example 13(vi) with n = 5, we find that 

970(5> = - ; $ , 1 (cos(q - 1) Log(2-2cos@) 

=-2 s-5 J 5+1 -~ 
i ( 

>+S 

Log Js - Log 2. 
> 

-~ 
( 

J 5tl 
4 

Log $+LogF 
)l 

) 

from which, upon simplification, part (v) follows. 
Because the details for the remaining calculations are quite straightfor- 

ward but rather time consuming, we shall omit further proofs. In a11 cases we 
use (14.2). For parts (v+(x), use Example 13(v), (a) with n = 8, 10, 12, 16, and 
20, respectively. 

In Ramanujan’s statement of (viii), p. 95, the term ($/6) Log 2 does not 
appear. For a further study of the function C~(X), see a paper of M. L. 
Robinson [ 11. 
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The content of the remainder of this chapter is much different from most of 
the foregoing material. 

Ramanujan first defines a by the equality 

Log a=rl/(x+ 1) (15.1) 

and regards a as a function of x, which we assume is real and positive. From 
Corollary 1 in Section 6, we note that Log a - Log x as x tends to CO. 

Entry 15. Let x and a be given as above, and suppose that n is any complex 
number. Then as a tends to 00, 

-l-S+ 
10nZ+lln 70n3+231n2+891n 

720a4 - 90720a6 
+ ..a. (15.2) 

Proof. Let z > 0. By Corollary 1 in Section 6, as z tends to 00, 

l//(z + $) - Log z + 2 B”(:k;; -2k). 
k=l 

Putting z = x + 3 and using (1X1), we find that 

Log i - - c 
0 

m B,,(l - 2l-=) 
k=l 2kzZk 

1 7 31 
=-yQ+ -~ 

960~~ 8064~~ + ‘-’ ’ 

Hence, 

TO find an asymptotic series in descending powers of a, we employ the 
method of successive approximations. 

The first approximation is 

z 24 

0 
- 
a 

=1--g 

Thus, z-2=u -2(1 - a-“)- “12, and SO the second approximation is 
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Thus, z-~ = a- 2(1 - l/a2 + 71/120~~)-“‘~, and SO the third approximation 
is 

71 533 &L+--- 
120a4 1680a6 ’ 

Raising each side to the n/6 power, we deduce that 
4n 

+; a-1 
( JC 

71 2 -;+- 
1 20a4 > 

+$-1)(;-2)(--$y+..., 

Upon simplification, we obtain the proposed first four terms of the asymp- 
totic expansion (15.2). 

Corollary. “I?(x + 1) is minimum when x = 6/13 uery nearly.” 

We have quoted Ramanujan’s formulation of his corollary, p. 95. From 
(4.2), it is easy to see that I(x + 1) has exactly one minimum for positive 
values of x, and from (15.1), that minimum x0 occurs when a = 1. Approxi- 
mations for x0 cari be obtained from (15.2). Taking just two terms, we find 
that x0 is approximately 11/24, and taking three terms, we find that x0 is 
approximately equal to 889/1920. It is interesting to read Ramanujan’s 
argument, “x = 3 - & + &c or x = 1/(2 + 1/6) very nearly.” These values 
might be compared with the actual value of x0 (see Whittaker and Watson’s 
text Cl, p. 2531); 

x0 = 0.4616321.1.) 

11124 = 0.4583333 . . . , 

88911920 = 0.4630208.. . , 

6113 =0.4615384.... 

Thus, Ramanujan’s “interpolated” value is better than either of the approx- 
imations 11/24 or 889/1920. 
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Entry 16. Let A, = 3(3k - l), k 2 0. Z%en 

y=Log2-2c k 2 1 
k=l j=Ak-I+l (3jJ3 - 3’ 

where y denotes Euler’s constant. 

In Ramanujan’s formulation of Entry 16, the words “the last term . ..“. 
p. 95, should be replaced by “the first term . . . .” Ramanujan [3], [15, p. 3251, 
submitted (16.1) as a problem to the Journal of the Zndian Mathematical 
Society. Evidently, a solution was never published. 

Proof. From the corollary to Entry 6 of Chapter 2, 

k~l$=n+2:~~(n-k)i=~~~+l(ji)"l_3j n2 1. 

Rearranging this equality and then taking the limit 
that 

as n tends to 00, we find 

-2 ’ k j=,4$,+l(3j)31- 3j k=l 

=;-,{k$l;-Log(;) +L,,(G) 

n-1 

-n ( 1+2C 2 

1 
k=l j=Ar-I+l (3j)3 - 3j 11 

n-l =y-Log2+limn 1 
n-cc k=l j=Ak-C+l (3j)3 - 3j 

02 

=y--Log 2+ limn C 1 
n-+03 k=A,-t+l (3j)3-3j 

=y-Log2, 

where in the penultimate equality we employed Example 14.2(ii). This 
completes the proof. 

Entry 17(i). Let 

q(x)= f y, 
k-l 

c1 = lim {q(n) - 3 Log’ n}, 
n-ru2 

(17.1) 

(17.2) 

and 

Hn = k$ ;. (17.3) 
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Then as x tends to 00, 

m &dJ,,- 1 q(x) - Il/(x + 1) Log x N -+ Log2 x + ci + 1 - 
k=l 2kxZk ’ 

where B, denotes the nth Bernoulli number. 

Proof. Apply the Euler-Maclaurin formula (15) withf(t) = (Log t)/t. Then as 
x tends to 00, 

Log2 x Log x m B 
q(x) - -y-- + --g- + c + 1 +f(2k-1)(X), 

k= 1 (2k)! 
(17.4) 

where c is a constant. It is easy to see from (17.4) that c = ci. Now if 
fi(x) = Log x andf,(x) = 1/x, then 

where j 2 1. Then a routine calculation with the use of Leibniz% rule shows 
that 

fc~j(X)=(-l)“n! Logx +(-l)‘-‘n!H, 
X 

Il+1 X”+l ’ n2 1. 

Thus, from (17.4), 

Log2 x Logx 
cpw - --y- + 

m B,, m B,kff,k- 1 
r + ‘1 - L”g x kgl 2kX2k + kzl 2kX2k ’ (17’5) 

as x tends to CO. From Stirling’s formula found in Chapter 7, Entry 23, as x 
tends to CO, 

Combining (17.5) and (17.6), we complete the proof. 

Ramanujan gives the value cl = - 0.072815845483680, which agrees with a 
calculation of Liang and Todd Cl] except for the last two decimal places 
which should be 77 instead of 80. 

Corollary. Let <p(x) and cl be dejïned by (17.1) and (17.2), respectiuely. Then 

lim {q(x) -$$‘(x + l)} = ci. 
x-cc 

Proof. This result follows readily from (17.5) and (17.6). 

Entry 17(ii). If x is real, then 

m 
v(x)= 1 

Log k 

k=l 
7 - (17.7) 
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Now if x is a positive integer, Entry 17(ii) is trivial. For nonintegral x, 
Ramanujan is actually defining <p(x) by (17.7). This device for extending the 
definition of a sum is frequently used by Ramanujan (e.g., see (3.1)). 

Corollary. Zf q(x) is defned by (17.7), then 

cc (- l)k Log(2k + 1) c 
k=O 2k+ 1 

=${cp(-&p(-2)) +9x Log 2. 

Proof. By (17.7) 

= ,go (- “k2yf;k + l) - Log 4 kto L!E, 

and the desired result follows from Leibniz’s series for n/4. 

Entry 17(iii). If q(x) is dejined by (17.7) and n is a positive integer, then 

=nLogn $(X+l)-fnLog2n. 

Proof. By (17.7) 

mn = n lim 1 Logj Log(j+ x) 
- - 

m-raz j=l j  j+x 
n-l m  

_ lim C C 
n Log(nj-k+x)-n Log n 

m+m k=O j=l nj-k+x 

=lim n 
m-rm 

= lim +n 
m+m 

(Log2(mn) - Log2 m) - n Log n ,rr i 

= lim{nLognLogm+~nLog2n-nLogn(Logm+Logn+y)} 
m+m 

+ n Log n ($(x + 1) + y) 

= -fn Log’ n+n Log n I~/(X+ l), 

where in the penultimate equality we used (4.2). 
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Corollary. Zf q(x) is dejined by (17.7), then 

=ynLogn+$ILog%. (17.8) 

Proof. Set x = 0 in Entry 17(iii) and use the fact that I,$( 1) = - y, as cari be seen 
from (4.2). 

Example 1. We bave 

kul (2k)“c2k’ 
m (2k - 1)1”2k-1) = 2fLOg2-y 

Proof. Let 

Then 

n (2k _ l)W- 1) 

p,= l-I k=l (2k)“cZk) ’ 
n2 1. 

2” (- l)k-l Log k 
Log P, = 1 

k=l k 

=+ Log2 (2n) + cr - 3 Log2 n - Cl - Log 2 (Log n + y) + o(1) 

=iLog22-y Log2+0(1), 

as n tends to CO, where cl is defined by (17.2). Exponentiating and letting n 
tend to CO, we complete the proof. 

Example 2. ++)=2yLog2+Log22. 

Example 3. <p(-~)+cp(-~)=3yLog3+~Log23. 

Example 4. cp(-t)+<P(-2)=6yLog2+7Log’2. 

Example 5. q(-~)+cp(-~)=3yLog3+4yLog2+~Log2(12)-Log24. 

Examples 2-5 follow from setting n = 2, 3,4, and 6, respectively, in (17.8). 

Entry 17(h). Zf 0 < x < 1, then 

& + (y + Log(2rr))(2x - 1) = kr, LF sin(2rrkx). 

Proof. By a result of Kummer Cl] (see also Whittaker and Watson 
[l, p. 250]), if 0 < x < 1, 

Log T(x) = 3 Log rr - 4 Log(sin(rrx)) 

m 1 
+ kzl G (y + Log(2rk)) sin(2zkx). (17.9) 
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Replacing x by 1 -x, we find that 

Log I( 1 - x) = $ Log n - 4 Log(sin(nx)) 

- ,zl & (y + Log(2nk)) sin(2rckx). (17.10) 

Subtracting (17.10) from (17.9) and using the fact that 

a sin(27ckx) c k=l kn 
=$-x 9 O<x<l, 

we easily complete the proof. 

Entry 17(v). Let q(x) be dejined by (17.7). IfO < x < 1, then 

V(X - 1) - cp( - x) = (y + Log(2x))n cot(rcx) + 271 c sin(2nkx) Log k. (17.11) 
k=l 

Of course, Entry 17(v) is meaningless because the series on the right side 
diverges for 0 <x < 1. Entry 17(v) is intended to be an analogue of 
Entry 17(iv). In the midst of his formula, after cot(rcx), Ramanujan inserts a 
parenthetical remark “for the same limits,” the meaning of which we are 
unable to discern. After his formula, Ramanujan informs us to note that 

kg1 sin(2rckx) = 3 cot(7tx), (17.12) 

which also is devoid of meaning. (Formula (17.12) may be formally es- 
tablished by differentiating the well-known equality 

w cos(2zkx) 
’ k 

= - Log(2 sin(nx)), O<x<l, (17.13) 
/C=l 

with respect to x.) 
Nonetheless, we are able to formally derive (17.1 l), and we do SO now to 

show how Ramanujan must have thought. For o > 0 and 0 -C x < 1, define 

G(s) = i(s, x) - ((s, 1 -x) = $0 {(k + x)-’ -(k + 1 -x)-‘}, 

where [(s, a) denotes the Hurwitz zeta-function. Thus, for CJ > 0, 

and by (17.7), 
G’(1) = cp(x - 1) - cp(-x). (17.14) 

Recall Hurwitz’s formula, found in Titchmarsh’s treatise [3, p. 371, 

i(s, 4 = W - 4 

m cos(2xka) m sin@W 
sin(+s) kzl (271k)l -s + CO~&S> k& (271k)l -s y 

(17.15) 
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where o < 1 and 0 < a -C 1. It follows that, for CT < 1 and 0 < x < 1, 

a sin(2nkx) 
G(s) = 4F(l - 4 COS(+~ k& (2nk)1 -s a 

Hence, for o < 1, 

G’(S) = { - 4r’( 1 - s) c0s&s) - 2nI( 1 - s) sin(+ts)) kzl ~J$$?~ 

a sin(2nkx) Log(2nk) 
+ 4r(1 - s) cos(~zs) c 

k=l (2nk)l -s -’ 
(17.16) 

Using the expansion (Abramowitz and Stegun [l, p. 256]), 

I-(1-s)=&+..., 

employing (17.14), and letting s tend to 1 - in (17.16). we find formally that 

4$x-l)-q(-x)=2ny f sin(2rckx) + 271 f sin(2rckx) Log(2nk). 
k=l k=l 

If we now apply (17.12), we formally deduce (17.11). 

In Example 1, Ramanujan asks us to “Find cp( -& cp( -4), cp( - 2) and 
q( - 2)” Except for the fact that cp( - $) has been previously determined in 
Example 2 following Entry 17(iii), it is significsnt that Ramanujan uncharac- 
teristically does not record the values of cp( -8, cp( -$), and cp( -2). If 
Ramanujan really had a bona fide formula for cp(x - 1) - cp( - x), then this, in 
conjunction with Examples 3,4, and 5 following Entry 17(iii), could be used 
to determine q( - 8, cp( - $), and q( - 2). 

Example 2. We have 

m (- l)k Log(2k + 1) c 2k+l 
=& L0g x - n L0g r($) - $ny. 

k=O 

Proof. Putting x = 2 in Kummer’s formula (17.9), we find that 

Log r(s) = 3 Log 7r + 4 Log 2 + ; kgo s {y + Log(2n) + Log(2k + l)}. 

Using Leibniz% series for n/4 and simplifying, we reach the desired result. 

Example 3. We have 
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Proof. From Example 1 following Entry 17(iii), we have 

= JZeeY. (17.17) 

Also, by Example 2 above, 

m (4k _ 3)‘lW 3) 4in 

l-I k=l (4k - l)l’(‘+l) 

= exp a (&r Log rc - rc Log l-(i) - $ry) = rcnT-4($c-Y. 

Combining (17.17) and (17.18), we complete the proof. 

(17.18) 

Entry 18(i). Let cl and H, be dejned by (17.2) and (17.3), respectively. Dejïne 

(18.1) 

and 

c = +y’ + Cl - $7c’ - + Log2(27r). (18.2) 

Then as x tends to CO, 

qx + 1) 
q(x) - 2 Log x Log ~ ( > fi 

N -(x+~)Log2x+2x+C 

Proof. We shah apply the Euler-Maclaurin formula (15) withf(t) = Log2 t. 
Two integrations by parts yield 

s 

x 
Log’ t dt=x Log2 x-2x Log x+2(x-l), 

1 

and a straightforward application of Leibniz? formula shows that 

f (2k- l’(x) = 2(2k - 2)! ~‘-~~(Log x - HZkw2), kz 1. 

Thus, by (15), as x tends to CO, 

cp(x)-xLog~x-2xLogx+2x+$Log2x+c 

+2Logx c 
B 

k=l (2k - l)(;;)X2k-’ - 2 krl (2k $$;ik- 1) (18.3) 
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where c is some constant. Now by Stirling’s formula, given in Chapter 7, 
Entry 23, as x tends to CO, 

Log T(x + 1) m (x + $) Log x - x + 3 Log(27r) 

+F 
k=l 

B2k 

(2k - 1)(2k)x2k-1’ 

Taking (18.3) and (18.4) together, we find that 

(18.4) 

-2c B2&2k-2 
k= 1 (2k - 1)(2k)xZk-’ ’ 

It remains to show that c = C, where C is given by (18.2). 
First observe that, by (18.3), 

c= lim ,il Log2 k - x Log2 x+2x Log x - 2x - 3 Log’ x . (18.5) 
x-+00 

Secondly, we show that c = c”(O), where c denotes the Riemann zeta-function. 
From Titchmarsh’s treatise [3, pp. 14, 151, 

m = s s 1 m c”‘x;;l+ fdx + - + ;, a>-1. (18.6) 
1 s-l 

Upon two differentiations and setting s = 0, we find that 

Y(O) = - 2 
s 

m [xl-x+$ 

-‘-;-2;;:~ 

Log x dx-2 

k+l Log x dx 

s 

” 
+2 

1 
Logxdxk- &y%x) -2 

n-l 

= lim 
“-+CC 

- kzl k(Log2(k + 1) - Log’ k} 

+2n Log n-2n-+LogZn 
) 

=lim f Log’k-nLog2n 
( n+m k=l 

+2n Log n-2n-$ Log2 y1 
> 

. 

Comparing (18.7) with (18.9, we find that c = (“(0). 

(18.7) 
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We next calculate i”(O) by turning to the functional equation of c(s), 

i(s) = 2(271)s- l sin(+ns)I( 1 - s)?J 1 - s), (18.8) 

given by Entry 4 or (4.2) in Chapter 7. We expand both sides of (18.8) in 
powers of s. The values for c(O) and i’(O) may be found in Titchmarsh’s book 
Cl, pp. 19, 201, the expansion of [(l -s) about s = 0 is determined 
by Ramanujan in Chapter 7, Entry 13, and the values I’(l) = - y and 
I”(l) = y2 + 7c2/6 cari be determined from (4.2). Accordingly, we find that 

- ; - f Log(271)s + +[“(O)s2 + . . . 

Equating coefficients of s2 on both sides, we deduce that 

4(“(O) =; + ; + ; + Y mw 1 7c2 
( y2+x > 

Y bdw Log2(2n) 

-4 
- - 2 2 4 

7c2 Cl y2 Log2(2n) =-- 
48+2+4- 4 ’ 

Thus, we have shown that c = c(O) = C and SO have completed the proof of 
Entry 18(i). 

In order to give meaning to Entry 18(ii), we shall need to extend the 
definition (18.1) of C~(X) to the set of a11 real numbers. Unfortunately, 
Ramanujan does not divulge bis more general definition of C~(X). Clearly, an 
exact analogue of (17.7) is impossible. We shah indicate two ways of defining 
C~(X) and then show that they are equivalent. First, we follow Norlund 
[2, Chapters 3,4], and define C~(X) to be the “Hauptlosung” of the difference 
equation 

q(x) - cp(x - 1) = Log2 x. 

Thus, in view of (18.3) we define q(x) for x > - 1 by 

(18.9) 

<p(x) = lim (x + n) Log2(x + n) - 2(x + n) Log(x + n) 
n+m i 

+ 2(x + n) + $ Log2(x + n) - f Log2(x + k) - n Log2 n 
k=l 

+2n Log n-2n-3 Log2 n+ f Log2 k 
k=l 
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= lim (X+I~) 
n-+m i ( 

Logn+X+O -$ 
( )) 

2 

-2(x+4 
( 

Logn+X+O ; 
( )J 

+2x 

+$(Log n+o(;))2- nLogZn+2nLogn-$Log% 

+ ktl (Log’ k - Log’(x + 4) 
1 

= lim x Log2 n + t (Log’ k - Log’(x + k)) . (18.10) 
n-tm k=l 

It is easy to show, from the last equality, that <p(x), indeed, is a solution of 
(18.9). 

We now motivate our second definition of C~(X). We first extend the usual 
definition of c(s, x) by setting 

i(s, 4 = kro (k + x)-‘, o> 1, (18.11) 

for a11 real x. By a formula of Lerch [2], 

Log I-(x) = [‘(O, x) - l’(O). (18.12) 

(A simple proof of Lerch’s formula has been given by Berndt [4].) With this in 
mind, define 

q(x) = - [“(O, x + 1) + C”(O). (18.13) 

A brief calculation shows that, for o > 1, 

ly’(s, x) - [“(S, x + 1) = x-S Log2 x. (18.14) 

By analytic continuation, (18.14) is valid for a11 complex values of s. It follows 
from (18.13) and (18.14) that (18.9) is satisfied. We next show that (18.10) and 
(18.13) are in agreement. 

By a straightforward application of the Euler-Maclaurin formula (13) to 
(18.1 l), we find that, for o > 1 and x > 0, 

x1-s 
i(s, x) = - ++ 

s 

m t - [t] - 4 dt 

S-l 0 (t+x)S+’ * 

By analytic continuation, this formula holds for o > - 1. Differentiating 
twice and setting s = 0, we find that 

(“(0,x)= -x Log2 x+2x Log x-2x+3 Log2 x 

+2 
s 

m t - [t] -+ 
Log(t + x) dt. 

0 t+x 
(18.15) 
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Now, 

s 

O2 t - [t] -f 
Log(t + x)dt 

0 t+x 

= lim (S “=Log(t+x)dt-“~lk 
s 

k+lLog(t +x) dt 
n-m 0 t+x k=l k t+x 
- ($ + x) 

s 

” mi@ + 4 & 

0 t+x > 

= lim (n+x) Log(n+x)-x Logx-n++C Log’(k+x) 
“-+Cm k=l 

-in Log’(n + x) - +($ + x){Log’(n + x) - Log2 x> 
> 

. 

Using this calculation in (18.19, we find that 

[“(O, x) = -2x + Log2 x + lim - 2n + 2(n + x) Log(n + x) 
n-m ( 

-(n + x + +) Log2(n + x) + c Log’(k + x) . 
k=l > 

In particular (see also (18.7)), 

[“(O, 1) = - 2 + lim - 2n + 2(n + 1) Log( n + 1) 
n-rc.3 

-(n + 8 Log’(n + 1) + k1 Log2(k + 1) 
> 

. 

Hence, by (18.13), for x > 0, 

cp(x - l)= 2x - Log2 x - 2 + lim (n + x +s){Log’(n + x) 
n-ta, ( 

- Log2(n + l)} + (x - 1) Log2(n + 1) - 2(n + x + 1) Log n+x 

( > 
n+l 

+ 2 Log(n +x) - 2x Log(n + 1) 

+ c {Log’(k + 1) - Log’(k + x)} 
k=l 

= lim (x - 1) Log’(n + 1) + kto{ Log2(k + 1) - Log2(k + x)) , 
n-rm 

after a moderate calculation. Comparing this representation for cp(x - 1) with 
the far right side of (18.10), we see that the two definitions (18.10) and (18.13) 
are compatible. 
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Entry 18(i). Let q(x) be dejïned by (18.13) and let C be giuen by (18.2). 11 n is 
any natural number, then 

n-l 

<p(x)-jzo<p 7 =2LognLog ~ 
( 1 

l-(x + 1) 

( > J2n 
-(x++) Log’ n-C(n-1). (18.16) 

Proof. Either (18.10) or (18.13) cari be employed to prove (18.16), but the 
proof with (18.13) is computationally simpler. 

Putting r = (k + 1)n -j below, we find that, for o > 1, 

= [“(s, x + 1) _ ns f Log;(‘::>:“n’ 

r=l 

= (1 - n’)c”(s, x + 1) - 2n” Log n c(s, x + 1) 

- ns Log’ n &Y, x + 1). (18.17) 

By analytic continuation, the extremal sides of (18.17) are equal in the entire 
complex s-plane. Using (18.13), (18.17) with s = 0, and the fact that r(O) = C, 
we find that 

n-l 

4w - jzo <p y 
( 1 

= (1 - n)C + 2 Log n c’(O, x + 1) 

+ Log’n 5(0, x + 1) (18.18) 

By (18.12) and the fact that c’(O) = -4 Log(2z) (Whittaker and Watson 
ci, P. 2711)~ 

T(x + 1) 
[‘(O, x + 1) = Log p 

( > & 
. 

Also, ((0, x + 1) = - x - 3 (Whittaker and Watson [l, p. 2711). Using these 
evaluations in (18.18), we deduce (18.16). 

Corollary. Under the assumptions of Entry 18 (ii), we haue 

n-1 

k=l~ -i =Log(2n)Logn+$Log%+C(n-1). 
4 > 

Proof. Set x = 0 in Entry 18(ii). Noting, by (18.13), that C~(O) = 0, we deduce 
the desired result immediately. 



208 8. Analogues of the Gamma Function 

Example 1. We haue 

lim XXLOgX-2X 2X 
e krjg 

=(271)3L~e(2n)e-)~*+1/(24ff2) 

x-+02 

Proof. Letting 

we find that, by (17.5) and (18.3), 

= - x Log2 x + 2x Log x - 2x - $y2 + &r2 + 3 Log2(27r) + o(l), 

as x tends to CO. After rearranging and exponentiating the last equality, we 
complete the proof. 

Example 2. Let q(x) be dejned by (18.13) and let C be given by (18.2). Then 

cp( - $) = Log(2n) Log 2 + $ Log2 2 + c, 

cp( - 4) + cp( - +) = Log(2n) Log 3 + 4 Log2 3 + 2c, 

cp( - 4) + cp( - 2) = Log(2x) Log 2 + $ Log2 2 + 2c, 

and 

cp(-;)+cp(-$)=Log2Log 3+2C. 

Proof. The four evaluations above follow from putting II = 2, 3, 4, and 6, 
respectively, in the last corollary. 

In the second notebook, p. 98, Ramanujan writes “Find q(-+), 
cp( - $) + (p( - 8, cp( - %) + cp( - j), and cp( - &) + cp( - s),” but does not give their 
values. In the tïrst notebook, p. 135, Ramanujan does record their values. 

Entry 18(iii). Let q(x), cl, and C be defined by (18.13), (17.2), and (18.2), 
respectiuely. If0 < x < 1, then 

+{(p(x - 1) + cp( -x)> = ci - &7? 

+ gy + Log(2rr)) (y - Log {$c csc~(7cx)>) - f Log k c;s(2nkx). (18.19) 
k=l 

Proof. From Hurwitz’s formula (17.15), for 0 < x < 1 and o < 1, we deduce 
that 

((s, x) + &, 1 - x) = 4IY(l - s) sin&s) kz, y$:). 
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After two differentiations with respect to s, we find that 

[“(S, x) + (“(S, 1 - x) 

= { 4r”( 1 - s) sin(+ts) - 4nT’( 1 - s) CO~($~S) 

m cos(2nkx) 
- n21(1 - s) sin(&)} k&i olS + { -8I’(l - s) sin($s) 

+ 47X(1 - s) cos(~71s)) f Log(~2~k;y:!2zkx) 
k=l 

m Log2(2nk) cos(2nkx) 
+ 4I(l - s) sin&s) C 

k=l (2nk)’ -’ -’ 

Letting s = 0 and using (18.13) we deduce that 

4{cp<x - 1) + cp( -X>l 

= rr( l)  T cos(;W _ krl LogW);os(2nkx) + c 

k=l 

= (y + Log(2n)) Log(2 sin(nx)) - f Log k “i’(z--! + C, 
k=l 

where we have used (17.13) and the fact that I’(1) = - y. After some 
elementary manipulation, the formula above is transformed into (18.19). 

For a further development of the theory of C~(X) and for applications to the 
theory of real quadratic fields, see a paper of Deninger [l]. 

Before stating and proving the results in Section 19, we need to explain 
Ramanujan’s terminology. For each nonnegative integer II, Ramanujan lets c, 
denote the “constant” of ~~=, Log” k. In fact, 

Log” t dt-+ Log” x+(-l)“+‘n! 

By the Euler-Maclaurin formula (13), this limit is easily seen to exist. Thus, 
c,, = - $, cl = 3 Log(2rc) (by 18.4), and c2 = C (by (18.2) and (18.5)). For each 
nonnegative integer n and positive integer x, define 

C~,(X) = i Log” k and t,+“(x) = C~,(X) - c,. 
k=l 

Entry 19(i) concerns what Ramanujan calls “the logarithmic part” of G,,(X). 
By the logarithmic part off(x), we shall mean that part of the asymptotic 
expansion off(x), as x tends to CO, that involves positive powers of Log x 
multiplied by nonnegative powers of x. We denote the logarithmic part of 
f(x) bY ~.f(x). 
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Entry 19(i). Let n be a positive integer. Then in the notation above, 

T$“(X) = 27 ,& (- llk+’ 
0 

; L”gk x #n-ktx)* (19.3) 

Proof. Using the Euler-Maclaurin formula (15) and integrating by parts m 
times, we find that, as x tends to CO, 

*m(x)- x 
s 

Log” t dt + 4 Log” x 
1 

-xj$O(-l)‘L 
(m -j)! 

Log”-’ x + 3 Log” x, (19.4) 

where m is any nonnegative integer. In particular, 
n-l 

~~,(x)=(x+~)Lognx+x 1 (-l)j& Log”-’ x. (19.5) 
j=l 

Using (19.4), we find that 

(ip f (-l)k+l ; 
0 

Logkx II/, - ktX) 
k=l 

n-1 

=(x+#Lognx+xj~l(-l)~&Log”‘x. 

Comparing (19.5) and (19.6), we deduce (19.3). 

(19.6) 

Entry 19(ii). Let $,,(x), n 2 0, be dejined by (19.2). Then as x tends to CO, 

k&-l~+k(~) Logk x $n-k(x)Nn! x 

B Il+1 n&+2 n(n + %4 + 3 
- (n + 1)x” - 2(n + 2)x”+’ - 222! (n + 3)~“+~ 

n(n + 2)(n + 3)B,+, n{(n+2)(n+4)2+gn+2)+$}B,+5 
- 233! (n + 4)xnf3 244! (n + 5)~“+~ 

- n(n+4)(n+5){(n+3)(n+4)+~n+l)}B,+, +.... (197) 
255! (n + 6)~“+~ 
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Proof. If n = 0, the theorem is verified at once. Thus, in the sequel, we assume 
that y1 2 1. From the Euler-Maclaurin formula (15), we find that, as x tends 
to CO, 

k&l)"+k 

0 

; L”gk x $. - kcX) 

(;)Log%++~)Log”*x 

m B ,dZj-lLogn-kx 

Log”-k-j x + 1 ZJ- dX2j-1 
j = 1 (2j)! 

& Log”-j x ‘2’ (- l)k + R, 
j=l k=O 

=xn! + R,, 

where 

00 B d2jm1 Logk x 
Lognpkx 1 + 

j= 1 (5)! dx2j-r' (19.8) 

It remains to calculate the terms in the asymptotic expansion R, that are 
indicated by (19.7). We shall repeatedly employ the evaluations 

(19.9) 

First, from (19.9) we observe that if 2j - 1 < n, then the contribution to R, 
of the jth term of the inner sum in (19.8) is equal to 0. 

Suppose that n is odd. Appealing to (19.9) we find that when 2j - 1 = rr, the 
contribution from (19.8) is 

k$o(-l)$)$&= - n! Bn+l = -Lk. 
x”(n + l)! 

(19.10) 

If n is even, there is no value ofj for which 2j - 1 = n. But then B,, 1 = 0. Thus, 
in either case, (19.10) is in agreement with (19.7). 

If n + 1 is odd, the next contribution from (19.8) Will be 

by (19.9). Thus, whether II is even or odd, we see that this second contribution 
above is in compliance with (19.7). 

Whether n is even or odd, the third contribution in (19.8) is 

(19.11) 
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Now (Abramowitz and Stegun [l, p. 1)) 

i;fl &l o'- lh2 

‘. j=l 2 
l<j 

= 1 (n + 1)2(n + 2)2 
2 

_ (n + l)(n + 2)(2n + 3) 
4 6 

= $n(n + l)(n + 2)(n + 3). 

Thus, (19.11) becomes, with the help of (19.9), 

- n! Bn+& + l)(n + 2)(n +$) = _ n(n +jp,+3 
qn + 3)! x”+2 8(n + 3)~“+~’ 

which is compatible with the asymptotic expansion (19.7). 
The remaining calculations are facilitated by employing a theorem of Faa 

di Bruno [l, p. 123. Let 

and 

Then for k 2 1, 

A,(n) = k . . 2112 . . . lk. 
iz,i*,...,ik= 1 
il<iz<...<ik 

S,(n) 1 0 0 . . . 0 

S,(n) S,(n) 2 0 . . . 0 

4M = & S,(n) S,(n) S,(n) 3 ... 0 . (19.12) 

S,(n) &-t(n) S,-,(n) S,-,(n) ... S,(n) 

The values for Si(n), 1 5 j I 5, that we shall need below may be found in 
Abramowitz and Stegun [l, pp. 1,2]. 

Returning to (19.Q we see that the fourth contribution is 

(19.13) 

By (19.12), 

A,(n + 2) = &qrl + 2) - &(n + 2)S,(n + 2) + &(n + 2) 

= (n + 2)3(n + 3)3 
48 - 

(n + 2)2(n + 3)2(2n + 5) + (n + 2)2(n + 3)2 
24 12 

= n(n + l)(n + 2)2(n + 3)2 
48 
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Thus, (19.13) becomes, with the aid of (19.9), 

n! Bn+4n(n + l)(n + 2)2(n + 3)2 = _ n(n + 2)(n f 3)B,+4 
- 48(n + 4)! x”+~ 48(n + 4)~“+~ ’ 

which coincides with the appropriate term in (19.7). 
The fifth contribution from (19.8) is 

By (19.12), 

k+k n 0 k”B,+ ,A& + 3) 
k (n+5)!x”+4 ’ 

(19.14) 

A,(n + 3) = &Sl(n + 3) - *Sf(n + 3)S,(n + 3) + $S:(n + 3) 

+ +Sl(n + 3)S,(n + 3) - +S,(n + 3) 

(n + 3)4(n + 4)4 _ (n + 3)3(n + 4)3(2n + 7) 
2’3 253 

+ (2 + 3)2(n + 4)2(2n + 7)2 + (n + 3)3(n + 4)3 
2532 233 - 

(n +3)(n +4) (2n + 7){3(n + 3)2 + 3(n + 3) - 1) -- 
233 * 5 

n(n + l)(n + 2)(n + 3)(n + 4) ZZZ- 
244! ( 

97 502 n3+10n2+3n+15 , 
> 

after an extremely laborious calculation. Thus, (19.14) becomes, with the help 
of (19.9), 

n! B ,+,n(n + l)(n + 2)(n + 3)(n + 4)(n3 + 10n2 + yn + *) - - 
(n + 5)! 244! x”+~ 

=-- nB,+,{(n+2)(n+4)2+i(n+2)+$> 
244! (n + 5)~“+~ , 

which coincides with the penultimate displayed term on the right side of 
(19.7). 

Lastly, the sixth contribution from (19.8) is 

- k$o (- 1>*(k) k”;;“‘;:54). 
Suppressing the argument n + 4, we find that (19.12) yields 

A, = &,S; - &S;S2 + $SIS; + #S, - &S2S3 -$SIS4 + &S, 

(n + 4)5(n + 5)5 (n + 4)4(n + 5)4(2n + 9) =--- 
120 * 32 12.8.6 

(19.15) 

+ (n + 4)3(n + 5)3(2n + 9)2 + (n + 4)4(n + 5)4 
8.2~36 6.4~4 
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(n + 4)3(n + 5)3(2n + 9) - 
6~6.4 

_ (n + 4)2(n + 5)2(2n + 9){3(n -t 4)2 + 3(n + 4) - lj 
4.2~30 

+ (n + 4)‘(n + 5)2{2(n + 4)2 + 2(n + 4) - 1> 
5.12 

= (n + 4)2(n + 5)%(n + l)(n + 2)(n + 3)(n2 + +&i +Y) 
2’5! 2 

after an excruciatingly tedious computation. Thus, the sixth contribution 
(19.15) is, by (19.9), 

n! B,+,(n + 4)2(n + 5)*n(n + l)(n + 2)(n + 3)((n + 3)(n + 4) ++(n + l)} - 
2’5! (n + 6)! xnf5 9 

which easily reduces to the last displayed term in (19.7). 

In analogy with the previous two sections, Ramanujan now examines 
analytic extensions of q,(x) and $,,(x) but does not indicate their definitions. 
In view of (18.12) and (18.13), we shall define, for every real value of x and 
positive integer 12, 

q&(x) = (- l)““{[‘“‘(O, x + 1) - Q”‘(O)}. (19.16) 

Thus, we want to let 

Il/,(x) = (- 1),+ l<(“)(O, x + l), n2 1. (19.17) 

We first show that (19.16) and (19.17) are consistent with the previous 
definitions (19.2) made for just positive, integral values of x. For o > 1, a 
simple calculation shows that 

(-l)“+‘{p’(s, x+ l)-[(“‘(s, x)} =x-s Log” x, 

which, by analytic continuation, is valid for a11 complex s. Thus, by (19.16), 

cp”(X) - %I(x - 1) = Log” x, 

and since ~~(0) = 0, q,(x) =C$=i Log” k, for each positive integer x, as 
desired. 

Secondly, we need to show that c, = (- l)“c(“)(O), where c, is defined by 
(19.1). Using (18.6), it is easy to show by induction that 

Q")(s) = (- l)"-ln s : cc cxlx~+xl+e Log"-lx dx 1 
+ (- 1)ns 

s 

a [xl-x+$ (-l)%! 
s+l Log”x~~+(sqn+l’ (19.18) 

1 X 
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where n 2 1 and o > - 1. Thus, 

p’(o)=(-1)“-‘n J mb1-~+&)8”-1Xdx-n, 
1 X 

N-l 
=(- l)“-‘n lim N-rai kgl k 

( J 
;+lLog;lrdx- J;~og”-lxdx 

+; 
J 

NLog”-lx 
dx -n! 

1 X > 

A 

N-l 

=(-l)“-’ lim N m cl k(Log”(k + 1) - Log” k) 

J 
N 

- N L>og” N + Log”xdx++Log” N 
1 ) 

-n!. 

Thus, 
N 

( - l)“Q”‘(O) = lim 5 Log” k - Log”xdx-+Log”N -(-~)“FI!. 
N-+CC ( k=l J 1 > 

Hence, by (19. l), (, - l)“[““(O) = c,, II 2 1, as we wished to show. 

Entry 19(iii). Let $n(~) be defined by (19.17), where n 2 1. Ifr is any positive 
integer, then 

w-;Y)e”(~) =jl(y) (- i)j+1 Logj r $n-j(x). (19.19) 

Before proving Entry 19(iii), we note two special cases. If n = 1, then 
$t(x) = Log lY(x + 1) - 3 Log(2z). Since tiO(x) = x + 5, Entry 19(iii) yields 

r-1 

Log T(x + 1) -- c Log I- 7 
( . > 

+ 1 = (x + +) Log Y - J(r - 1) Log(27c), 
j=O 

which is just another form of Gauss’s multiplication theorem (Whittaker and 
Watson [l, p. 2401). The case n = 2 of (19.19) is equivalent to Entry 18(ii). 

Proof. Let o > 1. Setting m = kr + r -j below, we find that 

(-l)nil[‘“)(s,x+ 

r-l m Log”{(x -j + r + kr)/r} 

m Log”{(x +- m)/r> 
=(-l)n+l((“)(~, xf l)+r” C ----- 

m=l (x + m) 

= (- l),+ ‘[(“$Y, x + l)(l - rs) 

(-1) j+l Logj r (-1) n-j+lp-j)(S, x + 1). (19.20) 
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By analytic continuation, the extremal sides of (19.20) are equal for a11 
complex numbers s. If we set s = 0 in (19.20) and use (19.17), then we obtain 
precisely the equality (19.19). 

Corollary 1. For each pair of positive integers n, r, we have 

i$ *"( -:-> zjtl (y)(-l)j+' G-j L%'r. 

Proof. Put x = 0 in (19.19). Since $,(O) = - ck, k 2 0, the desired result 
follows. 

Ramanujan’s version of Corollary 1 contains an extra additive factor of 
-c, on the right side, p. 99. 

Corollary 2. Let T~(X) denote the logarithmic part off(x) as dejîned prior to 
Entry 19(i). If x and n are positive integers, then 

x-l 
Lq$, y  =Q 

j=O ( > 

Proof. Put r = x in Entry 19(iii) to get 

;jI; i.(q) =$o(;)w,jLog’ x V&<x>. 

Thus, by (19.3), 

Entry 20(i). Let r and x denote positive integers and suppose that k > 0. De$ne 
FL(x) ad dx, 4 = C~(X) by 

FL(x) = k”<p(x) = “zl n’k”-l. (20.1) 

If k # 1, then 

(-l)jtij(-k)x’-j 
(k - l)j+’ 

+ C,(k) x’ R 
k” +z+kx+iy (20.2) 

where 

(20.3) 

(20.4) 
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and 

s 

x 
R= P,(t)k’(rt’- 1 + t’ Log k) dt. (20.5) 

0 

Entry 20(i) is not given very explicitly by Ramanujan. The last two 
expressions on the right side of (20.2) are missing in the notebooks, p. 99. The 
definition of C,(k) is not given and cari only be inferred from the next entry. 
Moreover, Ramanujan has written C,(k) instead of C,(k)/k”. Lastly, Raman- 
ujan writes “where $ is the same II/ in.” The sentence is not completed, and SO 
the definition (20.3) of \clj( - k) is not given. 

Proof. Applying the Euler-Maclaurin summation formula (13) we find that 

k”+ ‘q(x) = i n*kn = 
s 

X t’k’ dt + sxrkx + R, (20.6) 
Il=1 0 

where R is given by (20.5). Upon successively integrating by parts, we get 

s 
x r (- l)$.! kxxr-j 

t’k’ dt = c 
(-l)lr! 

0 j=o (r -j)! Logj’ik - Log’+‘k’ (20.7) 

Substituting (20.7) into (20.6) and employing the notation (20.3) and (20.4), we 
readily deduce (20.2). 

Entry 2O(ii). For each positive integer r, 

ti,l.-k) 
‘rtk)= (1 _ k)r+l and k$A- k) = kjtij OIj<r. 

The latter equality is stated by Ramanujan for onlyj = r, and the subscript 
on the right side is inadvertently omitted by him. 

Proof: The first equality is immediately verified by using (20.4) and (20.3) with 
j = r. 

The second equality is an easy consequence of (20.3). 

Ramanujan next examines an extension of Fk(x) for a11 real values of x, but 
he does not divulge his definition. Following previous practices of Raman- 
ujan (see (17.7), for example), assume that 0 < k < 1 and define, for x and r real, 

FI<(x) = T {n’k”-’ -(n + x)lk”+x-l}. 
n=1 

(20.8) 

An elementary calculation shows that 

FL(x) - Fk(x - 1) = x’kX- ‘, 

and SO F, satisfies the natural difference equation. In particular, if x is a 
positive integer, we see that (20.1) is valid. 

Although he uses the same notation, the definition of the constant C,(k) in 
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Entry 2O(iii) is not the same as in Entries 20(i), (ii). In Chapter 6, we pointed 
out that Ramanujan’s definition of the “constant” of a series is deficient if the 
series actually converges. We seem to have an example of this here. 

Entry 2O(iii). For 0 < k < 1 and r real, let 

CJk) = f m’km-‘. 
m=l 

If x is real and n is any positive integer, then 

;$ F”(y) = nCr(k) + n-‘k(l -“M {FkXln(x) - CXkl’“)}, (20.9) 

where F, is dejîned by (20.8). 

Proof. Replacing mn -j by m below, we find that 

= nCr(k) - n-’ mzl (m + x)‘k(m+X)‘n-l 

= nC,(k) + n-‘k(‘-“)~” mEl {mrk(m~l)in 

-(m+x)rk(m+x-l)/n) -mzl mrk(m-l)/n 
> 

, 

which yields (20.9) immediately. 

Corollary. Under the same hypotheses as Entry 2O(iii), we haue 

y$ F, ( - k) = nC,(k) - n-‘k(’ -“)‘“C,(kl’“). 

Proof. Set x = 0 in (20.9). 

In Entry 21(i) Ramanujan considers 

(21.1) 

where apparently he assumes that r > 1. The case r = 1 was considered in 
Section 17, and the case r < 0 is examined in Chapter 9. 

Entry 21(i). DeJne 

(21.2) 
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Let [(s, x) denote the extended version of the Hurwitz zetu-function dejïned by 
(18.11). Recul1 that (r), is dejined in (17). Then as x tends to 00, 

q,(x) + Log x &, x + 1) - - i’(r) - 
1 m &,W,,-,HZ~-~W 

(r - l)‘x’- ’ + kzl -T;k)! X’+2k-l ’ 

(21.3) 

Proof. Applying the Euler-Maclaurin summation formula (15), we find that, 
as x tends to CO, 

s 
x 

(-P’(X) - 
Log x 

1 

t-‘Logtdt+2x,+c’ 

+ kgl $$f(2k- “(XL (21.4) 

wheref(x) = x-’ Log x and c’ is some constant. 
Firstly, integrating by parts, we find that 

s 
x Log x 1 1 

t-’ Le t dt = (1 _ r)xr-l - (1 _ r)2xr-1 + (1-r>2. (21.5) 
1 

Secondly, put fi(x) = Log x and f2(x) = x-‘. Then 

j-y’(x) = (- l)k+i(k - l)! X-k, k2 1, 
and 

ff)(x) = (- l)k(r)kx-‘-k, k 2 0. 

Applying Leibniz’s rule, we find that, for each positive integer n, 

f(n)(x) = (- l)‘+k Log x + (- l)n+l n! i &k 
x’+” 

. 

X 
*+Il k=l(n-k)! k 

For arbitrary a and each positive integer n (see, e.g., Hansen’s tables [l, 
P. W), 

‘2’ ca)k = @) H, - l(a), 
k=Ok! (n-k) n. 

where H,,(r) is defined by (21.2). Thus, 

f(n)(x) = (- lN-), Log x + (- Il”+ ‘O%H, - l(r) 
X’+‘l X’+‘l 

Employing (21.5) and (21.7) in (21.4), we deduce that 

Log x Log x 1 
cp’b) N c + 2x’ + (1 - r)x’-’ - (r - 1)‘~‘~’ 

(21.6) 

@)2k- 1 Lo&? x + @)2k- ,H2k-2@) 
Xr+2k-1 Xr+2k- 1 > (21.8) 

as x tends to CO, where c is some constant. Since r > 1, we see, by letting x tend 
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to cc in (21.Q that c = - c’(r). Now by Entry 26 of Chapter 5, 

[(r, x + 1) N (r _ ;)x, _ r - & + f B2JM2k - 1 k=l (zk)! xr+2k-1’ 
(21.9) 

as x tends to CO. Employing (21.9) in (21.8) and using the fact c = - c(r), we 
deduce (21.3) to complete the proof. 

We now extend the definition (21.1) of C~,(X) to a11 real values of x and 
positive values of Y by defining 

q,(x) = f 
k=l 

(21.10) 

An elementary calculation shows that (21.1) and (21.10) are compatible. 

Entry 21(ii). Let q,(x) be dejïned by (21.10). Thenfor r > 0 and 1x1-c 1, 

4%(x)= 2 -?. 
( > j=t j  

{i(r +jlHj-llr) - i'(r +j))Xj, 

where H,(r) is dejined by (21.2). 

Proof: By (21.10), 

p,(x) = f Log k !- - 
k=l 

say, 
= s, + s,, 

First, for 1x1 < 1, 

(21.11) 

(21.12) 

where we have inverted the order of summation by absolute convergence. 
Secondly, for ( x I< 1, 

(21.13) 
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where in the penultimate equality we applied (21.6), and where again we 
inverted the order of summation by absolute convergence. Putting (21.12) 
and (21.13) in (21.11), we finish the proof. 

Entry Il(iii). Ifr > 1 and n is any natural number, then 
n-l 

n’cp,(x) - j&. cp, 7 
( ‘1 

= (n - n’)[‘(r) - n’ Log n [(r, x + 1). 

Proof. By (21.10), 
n-l 

n’rp,(x) - jzo ÿ>, 7 
( 1 

= (n - GYr) - n’ Lois n kjJl p-j-q? 

and the proof is complete. 

Corollary. For r > 1 and each positive integer n, 

Y)(-;) = n’ Log n i(r) + (n’ - n)[‘(r). 

Proof. Set x = 0 in Entry 2l(iii). 

Ramanujan begins Section 22 by defining 
x Log’k 

%W = c -2 
k=l k 

r 2 0. (22.1) 

Entry 22(i). Zf c, is the constant appearing in the asymptotic expansion of q,(x) 
as x tends to CO, then 

c, = lim <p,(x) - r + 1 
X’rn i 

Log’+’ x 

1 
. 

Proof. From the Euler-Maclaurin summation formula (13), as x tends to 00, 

cpr(x) = s * Log’ t 
1 

tdt + c, + o(l), 

and the desired result follows forthwith. 

We now extend the definition of C~,(X) by defining 

m 
v%(x) = c 

Log’ k Log’(k+x) 
k=l 

7 - k+x - 
(22.2) 
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for a11 real values of x and r 2 0. It is easy to see that (22.1) and (22.2) are 
compatible. Note that the case r = 1 was studied in Section 17. The next result 
generalizes Entry 17(iii). 

Entry 22(ii). Let r be any nonnegative integer and n any positive integer. With 
q,(x) defined by (22.2), then 

n-l 
v,(x) - C cp, 7 j=O ( 1 

_ t-1)’ n Log’+l 

r+l 
n+n C I (-1)’ 

j=l C) 
‘+l LOgjn{~,-j(x)-Cr-j), 

where ck is given in Entry 22(i). 

Proof. For any positive integer m, consider 

m” 
nk?l 

Log’ k Log’(k + x) m Log’k 
= 

k - k+x 
-nC--- 

k=l k 

= 
n 

2 7) +n$ljl Cr)(-l)‘Log~~~‘-j(k+x) 
k=l 

_ Log’-‘k tftf8 Logr-j 

+’ k 

k _ Log’- j+ ‘(mn) 

k k=l r-j+1 

+nE Y 
C) 

Log’-j+ ‘(mn) 

j=l 
(-1)jLogjn r-j+1 . (22.3) 

By (22.2) and Entry 22(i), 

Log’-j(k + x) _ Log’-’ k 

k+x k 

+ y Log’-j k _ Log’-j+ ‘(mn) 

k=l k r-j+1 

(-l)jLOgjn{-q,-j(X)+C,-j}. (22.4) 
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We next examine the last sum on the far right side of (22.3). Replacing j by 
r-j+ 1, we see that this sum equals 

(- l)r-j+ 1 Log’-j+ 1 n Logj(mn) 

j 

(-,y-j+l Logr-j+l n 

(-1)’ Logr+l n 
+- 

r+l 

Logk m LogjPk n 

r-k+1 

P ) 

= -r! ,zo 
r Logk m LogrPk+’ n + (-1)’ Log,+l 

k! (r-k + l)! r+l 
n 

= - & Log’+ ‘(mn) + 
1 

-Log’+‘m+--- 
r+l 

(- ‘)* Log’+ ’ n. 
r+l 

(22.5) 

Returning now to (22.3) taking the limit as m tends to CO, and using (22.4) 
and (22.Q we deduce that 

- $ Log’+ ‘(mn) 

(- l)j+’ L0g.j n(prp,(x) - c,-J 

+(-1)‘n Logr+l n 

rtl 

=njt, ; 0 (-1)‘n (-l)j+’ Logjn{cp,-J(x)-c,-j} +-r+lLog’+’ n, 

by Entry 22(i). This completes the proof. 

Entry 23. Let c, be dejïned as in Entry 22(i). If r 2 0 and a > 0, then 

m Log’k T(r + 1) 
C-..-.-- 

m (- l)%,+,sk 
k=l kS+l $+l + 1 k, -’ (23.1) 

k=O 
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Proof. In Section 13 of Chapter 7, Ramanujan gives the Laurent expansion 

&+1)=;+ f (-k:“t”“, 
k=O . 

(23.2) 

where s is any complex number. Thus, in the sequel, we shall assume that r 
> 0. (If r were restricted to the nonnegative integers, then (23.1) could be 
established by differentiating (23.2) r times.) 

Let f(t) = t C-’ Log’ t, r, s > 0, in the Euler-Maclaurin summation 
formula (13). We then find that 

m Log’k OD c Log’ t -= 
k=l kS+l s 

tS+’ dt + 
s 

m(t - [t] - +)f’(t) dt 
1 1 

_ r(r + 1) I 
f+l m (t - [t])f’(t) dt. 

1 

Now 

(23.3) 

s m (t - [t])f’(t) dt = 
1 

,+)+,)(rLog’-l t---;+l)Logri) & 

s 

mq(rLogr+k-l t-(s+ l)Log’+kt)dt 
1 

=kgo*, 
where, for k 2 0 and integral x, 

(23.4) 

uk = lim s x t - [t] 
--&(r+k)Log’+“-’ t-Log’+k t)dt. (23.5) 

x+m 1 

First, 

s “(r + k) Log’+‘-l t - Logr+k t Log’+k+ lx 

1 t dt = Log’+k x - r + k + l . (23.6) 

Secondly, 

s lx!$ {(r + k) Log’+k-’ t - Log’+k t} dt 

= 
j+l(r+k)Logr+k-' t-Logrfktdt 

t2 

x-l 

4 
j 

Log’+k(j + 1) Logr+k j = -~ 
j=l j+l j 

= -j~l~+Log’+kx, (23.7) 
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Using (23.6) and (23.7) in (23.5), we deduce that 

uk = lim (23.8) 
x-30 

by Entry 22(i). Putting (23.8) into (23.4) and then (23.4) into (23.3), we 
complete the proof for s > 0. By analytic continuation, (23.1) is valid for o > 0. 

Example 1. -c”‘($) = 96.001 nearly. 

Example 2. -c’(2) = 0.9382 nearly. 

Example 3. [““(2) = 24 neady. 

Example 4. - [“‘(j) = 7680 nearly. 

Example 5. 
m Log”” k 
c k2 

= 288 nearly. 
k=l 

Except for the notation of the Riemann zeta-function, we have quoted 
Ramanujan in Examples 1-5. Ramanujan obviously used (23.1) to obtain his 
numerical values. As we shall see below, a11 of Ramanujan’s approximations 
are quite reasonable, although he made a slight error in the calculation of 
c(2). In fact, 

-l’(2) = 0.9375482543 1584375. 

This determination was achieved by Rosser and Schoenfeld Cl]. Knuth [l] 
and Wrench [Z] later calculated c’(2) to 40 and 120 decimal places, 
respectively. It also should be noted that Gauss [l, p. 3591, calculated c’(2) to 
10 places. 

In order to calculate Examples 1, 3, and 4, Write, by (23.1), 

m Log’k 1-(r+ 1) n-l(-l)k~,+k~k -j--.-- 
k=l kS+l s r+1 +c 

k=O kl 

T(r + 1) 
= r+l + Mn(6 4 + E”o-7 $3 s 

say. We shall determine M,(r, s) numerically and estimate E,(r, s) for 
appropriate values of n, r, and s. Values for cg, cl, c2, and cg were calculated 
by Ramanujan in Section 13 of Chapter 7. Liang and Todd [l] have 
calculated ck, 0 I k I 19, to 15 decimal places, and we have used their values 
in the calculations which follow. We also shall use the bounds, 

(23.10) 

found in Berndt’s paper [l, Theorem 23. 
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Examining Example 1, we set r = 3 and s = 3 in (23.9) and use (23.10) to 
find that 

IE”(3, $1 I & jzo @ + 2 +;;yj+ l +j) 

(n+W+ 1) 4 _ 
y71n + 3 

i 

2n+4 2 
1 - 1/(27r) + (1 - 1/(27c))2 + (1 - 1/(27r))3 1 . 

Letting n = 6, we find that (&(3, *)I < 0.000195. Using the calculations of 
Liang and Todd [l], we find that M,(3,# = 0.009940. In summary, we have 
shown that -c”($) = 96.009940 with an error no greater than 0.000195. 
Thus, 96.01 would have been a better approximation than 96.001. Raman- 
ujan probably found his approximation by taking n = 2 in (23.9), for it turns 
out that M,(3,$ = 0.000891. 

TO calculate [““(2) we want to put r = 4 and s = 1 in (23.9). Using (23.10), 
we determine that 

IE,(4> 111 = 
+ j$o (n + 3 +Nn +;j+i)(n + 1 +j). 

In particular, if n = 5 we find that JE,(4, l)l I 0.008670. Using Liang and 
Todd’s [l J calculations, we deduce that [““‘(2) = 24.014859 with an error of at 
most 0.008670. This justifies Ramanujan’s claim. 

For Example 4, we put r = 5, s = 9, and n = 4 in (23.9). Proceeding as 
above, we find that -[“‘($) = 7680.008541 with an error no more than 
0.045880, and SO Ramanujan’s approximation is again corroborated. 

For nonintegral Y, c,+~ has not been calculated in the literature for any 
values of k. Moreover, no estimates like those in (23.10) have been deter- 
mined. Thus, we do not give a careful error analysis for Example 5. We merely 
note that I(y) = 287.88528 (Abramowitz and Stegun Cl, p. 272]), and SO 
Ramanujan’s approximation of 288 appears to be a reasonable one. 

In Section 24, the last section of Chapter 8, Ramanujan studies 
x Logk 

dx)= c - 
k=l Jk ’ 

which is the case r = 3 of (21.1). Entry 24(i) is the equality 

(24.1) 

(24.2) 

which really is the definition of C~(X) for a11 values of x, x > - 1, and is the case 
r =$ of (21.10). 

Entry 24(ii). Let C~(X) be dejïned by (24.1). Then as x tends to 00, 

L g 0 

+ f &k(+)2k-lHZk-2($) 

k=l (2k)! XZk-l” ’ 

where If&) is dejned by (21.2). 
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Proof. Although it is assumed that r > 1 in Entry 21(i), that part of the proof 
through (21.8) is valid for r > 0. Thus, putting r = 3 in (21.8), we find that, as x 
tends to CO, 

<p(x)-c++x -“*Logx+2JxLogx-4fi 

Now by Entry 1 of Chapter 7, 

m  B2k(+)2k - 1 
k$$ - 2& + + + c(+) - kzl (2k)j X2k--l/2’ 

as x tends to CO. Thus, from (24.3), 

dx) - c L - r(i) 
m  B2k(+)2k-1H2k-2(t) 

k=I$ 
L”g x - ’ - 4& + kzl (2j)j x2k- 1/2 ’ 

as x tends to 00. It remains to show that 

c = - l(3) (4~ + $7~ + 3 Log(8n)). 

It is clear from (24.3) that 

c = lim {q(x) - 2Jx Log x + 4Jx). 
X’ül 

(24.4) 

(24.5) 

We shall first show that c = - r,(i). From (19.18), 

S(3) = s “Lx] -x++ “[xl-x+$ 
1 

x3/2 - s 2x3’* 
Logxdx--4 

1 

Log(k + 1) Log k -- m Jk +&Logn-4& 

+2&Logn-4Jn (24.6) 

by (24.5). 
From Titchmarsh’s book [3, p. 203, 

5’(1 - 4 --= - Log(2n) - +rt tan(&) + - Vs) I Us) 
a1 -4 I-(s) 4x4 
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Setting s = *, using Corollary 3(i) in Section 6, and using (24.6), we establish 
(24.4). This completes the proof of Entry 24(ii). 

For Entries 24(iii)-(v), we shah define 

(24.7) 

Entry 24(iii). Let q(x) and $(x) be dejïned by (24.2) and (24.7), respectiuely, for 
x > - 1. If n is any positive integer, then 

,,4--$;~ v(q) = $(x) Log n - (& - 1)c - c(+) Log n, 

where c is given by (24.4). 

Proof. For (T > 1, the calculation (21.14) gives 

Log k Log(k + x) -- 
k (k + x) 

= (n’ -S - ~)C’(S) + Log n kzI {’ &} -Log d(s). (24.8) F - 

By analytic continuation, the extremal sides of (24.8) are equal for o > 0. Now 
set s =i in (24.8) and use (24.2), (24.6) and (24.7) to obtain the desired 
equality. 

Entry 24(iv). Let q(x) and Il/(x) be dejïned by (24.2) and (24.7), respectively. If 
0-cx-c 1, then 

rp(x - 1) + cp( - x) - 2c + (y + fn + Log(8n)) {$<x - 1) + $( - x) - 21;(+)) 

= 2 2 Log k cos(2xkx), 

k=l 
Jk 

where c is given in (24.4). 

Proof. For o > 0, define 

F(s)=kgl 
i 

(k+;+ +&-$ 
1 

’ 

Since c(s) and [(s, a) cari be analytically continued into the entire complex 
s-plane, F(s) cari be SO continued. In view of (24.7), we note that 

J-(+1 = - {W - 1) + 4Y - x,>, (24.9) 

and by (24.2), we observe that 

F’(& = cp(x - 1) + cp( - x). (24.10) 
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Now apply the functional equation (18.8) of [(s) and Hurwitz’s formula (17. 
for [(s, a) to obtain 

15) 

11) F(s) = 
4r(l - s) . 
(2n)’ -s s&d k&l 

i 
m cos(2Kkx) _ 5-1 __ s) kl -s 

1 
) 

where 0 < x < 1 and o < 1. Differentiating (24.1 l), we find that 

(24. 

F’(s) = 
i 

4r’(l - s) 
- 

(271)’ -s 
sin($cs) + (27c)T( 1 - s) cos(+cs) 

* 
i 

k$, coykx) - C(l -s)} 

+ 4l-(1 -s) m Log(2nk) cos(2nkx) 
(27r)l -s kt-” 

- Log(2?T)i( 1 - s) + <‘( 1 - s) . (24.12) 

Using (24.9) (24.10), (24.1 l), and (24.12) with s = 4, Corollary 3(i) in Section 6, 
and (24.4), we find that 

<p(x - 1) + <p( - x) - 2c + (y + 4~ + Log(8n)){+(x - 1) + $(-x) - 2@)) 

= F ‘(4) - 2c - (y + +c + Log(8n)) { F(i) + 22;(i)} 

= (2y + 4 Log 2 + n) c cos(2nkx) 
k=l Jk 

m Log(2nk) cos(2rckx) 

3 
-- Log(wm + m 

~0 cos(2zkx) 
- 2c - 2(y + $n + Log(8n)) 1 

k=l $ 

m Log k cos(2nkx) 
=2kzl 

Jit . 

Entry 24(v). Under the same hypotheses as Entry 24(b), 

<p(x - 1) - cp( - x) + (y - $c + Log(8n)){+(x - 1) -. $( - x)} 

m Log k sin(2rckx) 
=2kzl 

& * 
Proof. For o > 0, define 

As with F in the previous proof, G cari be analytically continued into the 
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entire complex s-plane. Note that 

G(i) = $(x - 1) - $( - x) 
and 

G’(i) = - <p(x - 1) - q( - x). 

By Hurwitz’s formula (17.19, 

G(s) = - 
4I-(1 - s) m sin(2nkx) 
(279’ -s co~o~S)k~l /&” 9 

where 0 < x < 1 and o < 1. Proceeding as in the previous proof, we deduce 
that 

V(X - 1) - <p( - xl + (Y - tn + b#W){$(x - 1) - $( - 4) 

= - G’(+) + (y - fz + Log@n))G(+) 

- 2(y - +c + Log(8n)) 2 sin(2Znkx) 
k=l ,,/i 

= 2 ,zl Log k sinPxk.4. 

Jk 

In Example 1, Ramanujan asks us to “Find the values of cp( - i), q( - 8, & 
cp( - $),” but he does not record these values. Putting n = 2 and x = 0 in 
Entry 24(iii), we readily find that 

cp( - +) = (Jz - 2)&y + an + 4 Log@n))@) -t Jz Log 2 r(i). 

TO calculate cp( - t), first put x = 0 and n = 3 in Entry 24(iii) to obtain a 
formula for cp( - 3) + <p(- 8. Next, put x = 4 in Entry 24(v) to obtain a 
formula for cp(- 5) - cp( -3). From these two formulas, one cari obtain 
a formula for cp( - 3), but it is not very elegant or enlightening, and SO we do 
not record it. Similarly, we cari derive a formula for q(-$). 

Example 2(a). If c is de$ned by (24.4), then c = 3.92265. 

Using the value [(+) = - 1.4603545088 found in Dwight’s tables [l, p. 2441, 
we cari easily verify that Ramanujan’s calculated value of c is correct to the 
number of places given. 

Example 2(b). We haue 

c rv 4 _ f &k(+)2k-lH2kH(+) 

k=l (2k)! ’ 
(24.13) 
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Formula (24.13) cari be formally derived by setting x = 1 and r = 5 in (21.3). 
The infinite series on the right side of (24.13) is semiconvergent in the sense 
that the error made in terminating the series at the nth term is less in modulus 
than the modulus of the (n + 1)th term. (See Bromwich’s book [l, p. 3281.) It 
is with this understanding that we interpret the sign - in (24.13). We remark 
that (24.13) apparently cannot be used to determine c as accurately as in 
Example 2(a). 



CHAPTER 9 

Infinite Series Identities, Transformations, and 
Evaluations 

Chapter 9 fully illustrates Hardy? declaration in Ramanujan’s Collected 
Papers [15, p. ~XXV], “It was his insight into algebraical formulae, transforma- 
tions of infinite series, and SO forth, that was most amazing.” This chapter has 
35 sections containing 139 formulas of which many are, indeed, very beautiful 
and elegant. Ramanujan gives several transformations of power series leading 
to many striking series relations and attractive series evaluations. Most of 
Ramanujan’s initial efforts in this direction pertain to the dilogarithm and 
related functions. As is to be expected, these results are not new and cari be 
traced back to Euler, Landen, Abel, and others. However, most of 
Ramanujan’s remaining findings on transformations of power series appear 
to be new. 

The beautiful formula 

has been made famous by Apéry’s proof of the irrationality of c(3). For 
example, see papers of Apéry [l], Cohen [l], Mendès France [l], Reyssat 
[Il], and van der Poorten [l]. Ramanujan evidently missed this formula, but 
Chapter 9 contains several intriguing formulas of the same type. Some of 
these involve ((3) and Catalans constant. 

In Chapter 8, Ramanujan studied certain functions which are akin to 
Log I(x + 1). In Sections 27-30 of Chapter 9, Ramanujan returns to this 
topic. The generalization studied here is very closely related to that studied 
by Bendersky [l] and more recently by Büsing [ 11. Except for a simple result 
in Section 31, the material in Sections 27-30 has no relation to the rest of 
Chapter 9. 

In analyzing Ramanujan’s work, Hardy has frequently pointed out that 
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“he knew no theory of functions” [20, p. 141. Many of the formulas in 
Chapter 9 cari be extended by analytic continuation to complex values of x. 
However, because Ramanujan obviously intended his results to hold for just 
real values of x, we have presented his theorems in this more restricted 
setting. We have made exceptions to this decision in the few instances when 
vacuous theorems would otherwise result. 

Several of Ramanujan’s formulas in Chapter 9 need minor corrections. 
However, there are a few results, for example, Entry 3 and formula (11.3), 
which are evidently quite wrong. In describing three beautiful formulas of 
Ramanujan which he could not prove, Hardy [20, p. 91 has written, “They 
must be true because, if they were not true, no one would have had the 
imagination to invent them.” Although this judgement seems invalid here, 
Hardy may be correct, because very likely “corrected versions” of 
Ramanujan’s incorrect formulas exist. Unfortunately, we have no insights as 
to what these “corrected versions” might be. 

Entry 1. For each positive integer r, define 

1 1 
(2k+l-a)‘-(2k+l+a)’ 

where a is real but not an odd integer. Assume that 1x1 < n. Then ifr is an odd 
positive integer, 

c,(x) = f 
cos(2k + 1 - a)x cos(2k + 1 + a)x 

k=O (2k+ 1 -a)l - (2k+ 1 +a) 

= (r;c2 (- 1);;&Zkx2k > 

while if r is an even positive integer, 

- 

Proof. We first establish (i) for r = 1. Observe that 

m cos(2k + 1)x 
cl(x) = 2a cos(ax) 1 

k=O (2k + 1)2 - a2 

+ 2 sin(ax) 2 (2-k + 1) SWk + 1)~ 
kzO (2k+1)2-a2 -’ (1.1) 

By a well-known formula found in Bromwich’s text [l, p. 3681, for 1x1 < rr, 

7c cos(ax) 00 (-l),+l cos(nx) --=$+ c 
2a sin(an) n=l 

n2 -a2 ’ (1.2) 
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from which it follows that, if 0 < x < rc, 

7-c COS u(x - ?t) 1 
2a sin(a7r) = 2a2 -“$Y$$. (1.3) 

Subtracting (1.3) from (1.2), we get, for 0 < x < rc, 

Differentiating both sides of (1.2) with respect to x and proceeding as above, 
we find that, for 0 < x < rc, 

2 k$o ““n;yy~ 121Jx = 2 siFtun) {sin(ax) - sin a(x - 71)). (1.5) 

Substituting (1.4) and (1.5) into (l.l), we deduce that, for 0 < x < rr, 

Cl(X) = ~@0s<ux){c0s(ax, -COS 4x - 41 

+ sin(ax){sin(ux) - sin a(x - rc)}) 

= +n y 
( 1 

=2u 2 
1 

k=o (2k + 1)’ - u2 = SI. (1.6) 

Trivially, (1.6) holds for x = 0. Replacing x by -x, we see that (1.6) has thus 
been proven for Ix] < rc. This completes the proof of(i) for r = 1. 

If we integrate the extremal sides of (1.6) over [O, x], 1x1 < 71, we readily find 
that 

%W = s,x, 

which is in agreement with (ii) when r = 2. 
We now proceed by induction. Assume that (i) is valid for some positive 

odd integer r. Integrating both sides of(i) over [O, x], 1x1~ rc, we find that, 

(1.7) 

which is precisely (ii) with r replaced by r + 1. Integrating (1.7) over [0, x], 
Ix( < rr, we find that 

-c,+2c4 + &+2 = 

(r-1)/2 (_ ~)“s,~2kX2k+2 
c 

k=O (2k + 2)! ’ 

or 

c,+ 2(x) = (‘;c’ (- “k;;‘kF- 2kXzk , 



9. Infinite Series Identities, Transformations, and Evaluations 235 

which is (i) with r replaced by r + 2. This completes the proofs of both (i) and 
(ii). 

Entry 2. For each integer r with r 2 2, dejne 

1 1 
(2k+l-a)‘+(2k+l+a)’ ’ 

where a is real but not an odd integer. Assume that 0 < x < X. Then if r is an even 
positive integer, 

(9 c,(x) = f 
cos(2k + 1 - a)x cos(2k + 1 + a)x 

k=. (2k+ 1 -a) + (2k+ 1 +a) 

and if r is an odd positive integer, 

(ii) s,(x) = g 
sin(2k + 1 - a)x sin(2k + 1 + a)x 

k=O (2k+ 1 -a) ’ (2k+ 1 +a)l 

= (‘&f2 (- l)k;i+2)k!x2k+1 + (- ‘Ypix’-l . 

Proof. We first establish (ii) for r = 1. Using (1.4) and (1.5), we find that, for 
o<x<n, 

co (2k + 1) sin(2k + 1)x 
ht’) = 2 cos(ax) kzo (2k + 1)2 _ a2 

m cos(2k + 1)x 
- 2a sin(ax) kzo (2k + 1)2 _ ,2 

= 2 si?(an)(cos(ax){sin(ax) - sin a(x - 7c)} 

- sin(ax){cos(ax) -Cos a(x - 7c))) 

Il 
=- 

2’ (2.1) 

which proves (ii) when r = 1. 
Integrating both sides of (2.1) over [0, x], 0 < x < n, we find that 

-4x) + s2 = 5, 

which establishes (i) for r = 2. 
Proceeding by induction on r, we assume that (i) is valid for an arbitrary 

even positive integer r. Integrating (i) over [0,x], 0 X.X <n, we readily 
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achieve (ii) with r replaced by r + 1. A second integration yields (i) with r 
replaced by Y + 2. Since the details are like those in the previous proof, we 
omit them. This completes the induction. 

Ramanujan, p. 104, supplies the following incomplete hint for his appar- 
ently invalid argument: “In both 1 & 2 expand the series in ascending powers 
of x and apply.” 

The last term on the right sides of both (i) and (ii) in Entry 2 is absent in the 
notebooks. 

In preparation for Ramanujan’s next formula, we make some definitions. 
Let 

m (- 1)’ sin(2k + 1)x S”(X) = c cc (- l)k cos(2k + 1)x 
k=O (2k+l)” ’ C?#(x) = c 

k=O (2k+l)” ’ 

and 

m (- l)kHk+ 1 COS(2k + 1)X 

CPAX) = c 
k=O (2k+l)” ’ 

where n is any natural number and x is real. Unfortunately, Entry 3 is false for 
at least n sufficiently large. We are unable to offer a corrected version of 
Ramanujan’s formula. It appears that if a corrected formula exists, its shape 
would be significantly different. 

Entry 3. Let S,, C,, and (P,, be dejned as above. If n is an odd integer at least 
equal to 3, then 

cP,-z(x)-~n(~)=xS,-Z(~)-~S,(~)+nC,-l(x)-nC,+l(x). (3.2) 

Disproof (for n sufJiciently large). First, observe that (3.2) is certainly false for 
a11 n if x is any odd multiple of 7c/2. 

If x is not an odd multiple of n/2, then a brief calculation shows that 

4 cos(3x) 
f-P-z(x) - cpk4 - - 3”-’ > 

as n tends to 00. On the other hand, a similar argument shows that 

xS,- t(~) - x&(x) + nC,- 1(x) - nC,+ 1(x) N - 
8x sin(3x) 8n COS(~~) 

- 3” 3”fl ’ 

(3.4) 

as n tends to CO. For large n, (3.3) and (3.4) are incompatible. 
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In order to state Entries 4(i) and (ii), we need to make several definitions. 
For each nonnegative integer n, define 

(- l)k sin(2k + 1)x 
22k(2k + 1) 

+(-1)” 2 2k 

0 
(- l)k sin(2k + 2)x 

k=O k 22k(2k + 2),+’ ’ 

-(-l,.k~o(‘k”)‘-~~k~~~~~~~~‘x, 
m 2k 

d4 = f kzo 
( ) 

1 
k 22k(2k + l)n+l ’ 

and 

S” = (1 - 2l -“)&r), 

where c denotes the Riemann zeta-function. 

Entries 4(i), (ii). Let Ix( < x/2 and let n be un integer. 

rfi ‘,y;,p jio 2-2jS2j(p(2k - 2j) 

= =$ cos(7rn/2)tjn(x), i 

3 sin(rrn/2)F,(x), 

If n 2 - 1, then 

F: ((nlTckirk jio 2-‘jS2,q(2k + 1 - 2j) 

3 WM)F, + 1 (4, 
i cos(74W,+ 1(4, 

If n > 0, then 

if n is odd, 
ifn is even. 1 

(4.1) 

fn is odd, 

ij‘n is even. (4.2) 

Before commencing a proof of (4.1) and (4.2), we offer a few comments. 
Ramanujan further defines 

zA”=(q]+(q+(~y+ . . . +(x-;)“, 
7-c 

where evidently x is meant to be a positive multiple of rc. Ramanujan’s 
versions of Entries 4(i) and (ii) also contain formulas for F,(x) and G”(X) in 
terms of & k I n - 1. Because (4.1) and (4.2) implicitly indicate that x is a 
continuous variable, with 1x1~ 7r/2, and because A, is defined for only values 
of x that are positive integral multiples of rr, Ramanujan’s formulas involving 
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A, appear to have no sensible interpretation, and we shall not make any 
further comments about these formulas. 

In Ramanujan’s second published paper [S], [ 15, pp. 15-173, he es- 
tablishes a recursive formula for q(n) in terms of S,, 1 I k I n. This recursion 
is also given by Ramanujan in Chapter 10, Section 13. 

ProofofEntries 4(i), (ii). We proceed by induction. We first establish (4.1) for 
n = 0. If L denotes the left side of (4.1) when n = 0, then L= S,cp(O). Since 
c(O) = - 4, we find that S,, = t. Now in Proposition 4(vii) below, which 
actually holds for 1x1 I 7c/2, set x = 71/2 to deduce that C~(O) = 1. Hence, L = ). 
On the other hand, by Propositions 4(iil), (iv), and (vi) below, 

and SO (4.1) is valid for n = 0. (Propositions 4(v), (vii), and (ix) below cari be 
used to provide a direct proof of (4.1) when n = 1.) 

We now prove (4.2) for n = - 1. In this case, the left side of (4.2) is 
understood to be equal to 0. On the other hand, by Propositions 4(il), (iii), 
ad W, 

+sin(~)J”oS;} =O, 

as desired. 
We also prove (4.2) for n = 0. In this case, the left side of (4.2) is equal to 

=$Log2, 

by Example (i) in Section 16. On the other hand, by Propositions 4(vi), (viii), 
and (xl, 

~l+b,(x)=~ Log Jcosx+fi 
i ( 

cos(3> -cos(;)J2co;ï+ 1 

+cos 5 J2cosx-Log Jcosx+$ 
0 ( 

cos(;))+Log2-1) 

=iLog2, 

and SO (4.2) is valid for n = 0. 
Proceeding by induction, we now assume that (4.1) and (4.2) are valid for 

any fixed, nonnegative euen integer n. Integrating (4.1) over [0, x], 1x1~ 7c/2, 
we readily find that 

k=o (n + l -2k)! j=o 
,(p(2k-2j)=~sin 

21 2 
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Thus, we have established (4.1) with n replaced by n + 1. 
Integrating (4.3) over [0, x], 1x1~ 7c/2, we find that 

f (-1)kX”+2-2k 5 2-2jS2j(p(2k _ 2j) 

k=O (n +2-2k)! j=O 

00 2k 
+c k 22&-$“+2 0 

Comparing (4.4) with (4.1), with n replaced by n + 2, we find that we must 
show that 

nFol 2-2jS2j(p(n + 2 - 2j) 

=f 
22k(2k+ l)n+2 k=e 

- 

In a similar fashion, after two integrations of (4.2), we find that it suffices to 
show that 

n/2+1 

C 2-2jS2jq.$n + 3 - 2j) 
j=O 

m 2k 
‘c k 22k&-$“+4 0 

(4.6) 

Combining (4.5) and (4.6) together, we deduce that, in order to prove 
Entries 4(i), (ii), it suffices to prove the following curious theorem. 

Theorem. Let n denote a nonnegative integer. Then 

~~2-‘S,ip(n-j)=~~o(k)(-4)-k{(Zk+ l)-” 
W 

+(-1)“(2k+2)-“-(-1)“(2k+2)-“-1}. (4.7) 

We are very grateful to R. J. Evans for providing the following elegant 
proof of (4.7). 

Proof. Let L, and R, denote, respectively, the left and right sides of (4.7). 
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Define 

L(x) = f L”X” and R(x) = 2 R,x”, 
n=O n=O 

where 1x1 is sufficiently small. It then suffices to show that 

L(x) = R(x). 
Next, define, for j 2 0, 

T. = 2-‘Si, if 21j, 
I 

i 0, if 2)jj. 

Then, by (4.9) and the definition of L,, 

L,= i Tjdn-j), 
j=O 

n 2 0, 

and 

(4.8) 

(4.9) 

(4.10) 
where 

T(x) = f T,x” and n=O 444 = f. cp(W’, 

for 1x1 sufficiently small. We shall compute L(x) by determining T(x) and C$(X). 
First, since SO =3, 

k+l 

T(x) = f S&“x” =++“rl 4-“x2” f w 
n=O k=l 

xx 
= 4 sin(nx/2) 

+(;)r(7) =tr(3r(3. (4.11) 

Next, since 

we find that, for u < 1, 

-llx<l, (4.12) 

1 

s 

1 

4k(2k+1-v)= o (1 - xZ)-l’2x-” dx 

1 l =- 2 
s 

o (1 -u)-1/2u-(o+1)/2 du 
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Differentiating n times with respect to u, we find that 

Setting v = 0 yields 

Hence, 

Therefore, by (4.10), (4.1 l), and (4.13), 

L(x) = *r(T),(q). 

(4.13) 

(4.14) 

We next compute R(x). By (4.12), 

(-4)-kxk, -l<xll. (4.15) 

Thus, for u < 1, 

(- ‘lk ’ 1 (1 +x2)-1/2x-U dx 
4k(2k + 1 -u) = 2 s o 

s 
; (1 + u)-% -cc.+ lu2 du = F(u), (4.16) 

say. Differentiating n times with respect to u, we find that 

(-llk F’“‘(u) 
4k(2k+1-o)“+1 =n!’ 

Recalling that R, denotes the right side of (4.7), we deduce that 

R = F’“- “(0) + (- l),F(“-l)( - 1) (- l)“F’“‘( - 1) 
n (n-l)! (n-l)! - n! ’ 

n > 0, 

and, with the help of (4.19, 

R, = L- F( - 1). 
.Jz 
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Thus, 

=L +xF(x)-xF(-x- 1)-F(-x- 1) 
fi 

=i+xF(x)+(-x-l)F(-x-1). 
$ 

(4.17) 

TO determine xF(x), we return to (4.16), and integrating by parts, we 
deduce that, for x < 1, 

xF(x) = - ; 
s 
; (1 + u)-1’2u1’2d(u-x’2) 

(1 + u)-3/2u-(X+w du. (4.18) 

Furthermore, replacing u by l/u, we also find that, for x < 1, 

(1 + u)- 3/2uXiZ du. (4.19) 

Hence, from (4.18) and (4.19), if - 2 < x < 1, 

xF(x)+(-x-l)F(-x-l)= -‘+L J2 4 
s 

om (1 + u)-~‘~u~‘~ du 

=--- ;2 +-2&+(q). 
We therefore conclude from (4.17) that 

By (4.14) and the foregoing equality, we deduce (4.8), which completes the 
proof. 

Proposition 4. For Ix( < 742, we hue 

(il) S, E r ($($)! sin(2k + 1)x = sin(x’2) 
JGG’ 

(iil) CI E $‘0 ($J($)! cos(2k + 1)x = cos(x’2) 
J%E 

, 
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(i2) S, z ,gO (-2l&kils”” sin(2kx) = sin(x’2) 
J2coJx 

, 

(iii) S, - k$O (i$zf;)! sin(2k + 2)x = sin(3x’2) , 
J2cosx 

(iv) C3 = kzO (~~~($~)l cos(2k + 2)x = cos(3x’2), 
J2cosx 

(v) 

(vi) C~-,$O(~l$~)l cos2(k~22)x =cOS(~)Jzos;-1, 

(vii) S, = kzO ($$$)l sinr:ll)x = sin ’ (fi sin (;)) , 

m (- l)k(2k)! cos(2k + 1)x 
(viii) C, E 1 

k=O 22k(k!)2 2k+ 1 
Jcosx+&os ) 

m (- l)k(2k)! sin(2k + 2)x 
(ix) S, = 1 

k=O 22k(k!)2 (2k + 2)2 

= sin 
0 

x J2cosx+ sin-’ 
2 

($sin(G))-x, 

and 

(x) 

+Log2-1. 

In a11 of the equalities of Proposition 4 and throughout a11 of their proofs 
below, we take the principal branches of a11 multi-valued relations. 

Proofof (il), (iii). For 1x( < 7c/2, 

Cl + is, = c m ( - llk(2k)! e(2k+ l)ix 
k=O 22k(k!)2 

= p(l + px) - 1/2 

=(cos(q) +isin(t))(2cosx))is. 

Equating real and imaginary parts above yields (iil) and (il), respectively. 
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Proof of (i2), (ii2). For 1x1~ 742, 

C, - iS2 = k$o (~lfo! ezkix 

= (1 + e2ix)- 112 

=(cos(;) -isin(G))(2cosx)-r1’, 

and the results follow as before. 

Proof of (iii), (iv). For 1x1 < 742, 

c3 + iSg = 2 (- 1)k(2k)! e(2k+ 2)ix = e2ix( 1 + e2ix) - 1/2, 

k=,, 22k(k!)2 

from which the desired equalities readily follow. 

Proof of (v), (vi). For 1x1~ 42, 

m  ( - l)k@k)! e(2k + Vx 

‘4 + is4 = ,c 22k(k()Z ~ 2k + 2 

= (1 + ezix)li2 - 1 = e’“‘2J2cosx - 1. 

Equating real and imaginary parts on both sides above, we complete the 
proof. 

Proofof (vii), (viii). For 1x1 < 142, 

= sinh - ’ (eix) 

= Log(e’” + JW) 

= Log(e’” + eixi2J2COSX). 
Hence, 

C,=t,,,{(cosx+cos(~)JSX)I+(sinx+sin(~)$GG~} 

=iLog 1+2cosx+2cos 
i 

(;)J”E;J 

=iLog cosx+2cos2 
i 

(;)+2 cos(;)JI-} 

=Log Jcosx+$cos ; 
( ( )) 

, (4.20) 
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and 

S, =tan~’ 
( 

sin x + sin(x/2)J5cosx 

COS x + cos(x/2)JYGG > 

= tan-’ 
( 

Jz sin(x/2){$ cos(x/2) + Jcosx) 

JiG{Jcosx + $ cos(x/2)} ) 

= tan-’ 
( 

$ sin(x/2) 

1 - 2 sin2(x/2) 

=sitC1(isini;)). 

> 

(4.21) 

Proof of (ix), (x). For (xl < 7r/2, put 

where u = eiX. Observe that 

Thus, 
q-‘(u) = J-i-T7 - 1. 

f(t) = 
s 

; $JW - 1) du 

={JG7-Log(1 +JïzP)}I’, 

=JCz-l+Log2+Log+Log 
( 

f+Jr--t-1 . 
> 

Hence, 

Cc + iSs = ei”12J%G - 1 + Log 2 - ix 

+itan-’ 
( 

sin x + sin(x/2)JCGQ 

COS x + cos(x/2)J2cosx > 

=eix’2JGE- 1 +Log2-ix 

-Log Jcosx+$ 
( 

Cos(t)) +isin1(J2sin(G)), 

by (4.20) and (4.21). Equating real and imaginary parts above, we deduce 
(x) and (ix), respectively. 
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Entry 5. Let a, n, and 6 be real with n 2 0 and ltl( I 42. Then 

0) SE f 
0 

L sin(a + 2k)B = 2” COS” e sin(a + n)e 
,k=o 

and 

cos(a + 2k)8 = 2” COS* e cos(a + n)e. 

Proof. By Stirling’s formula (16), the series in (i) and (ii), indeed, do converge 
(absolutely) for n 2 0. Now, 

C+iS=C n 
0 k=O k 

e(a + Zk)iB = eid3( 1 + e2ie) 

=e i(n+nq2 cos e)n. 

Equating real and imaginary parts on both sides above, we deduce (ii) and (i), 
respectively. 

If 1zJ I 1 and n is a natural number with n 2 2, the polylogarithm Li,(z) is 
defined by 

(6.1) 

Furthermore, set 

2x”(z) = Li,(.z) - Li,( - z) = 2 $. (2zy 1, . 

Observe that, for JzI I 1, 

Li,(z) = - 
s 

‘Log(1 -w) dw= ‘dw 

s s 

w du - 
ol-u’ (6.3) 

0 W ow 

where the principal branch of Log(1 - w) is assumed. (The latter expression 
for Lia(z) suggests the terminology “dilogarithm.“) Equality (6.3) may be used 
to define Li,(z) for a11 complex z. By employing the equality 

Li,(z) = 
s 

‘Li,-,(w)dw 

0 w ’ 

we may, by induction, analytically continue L&(z), n 2 2, to the entire 
complex z-plane, tut along [l, cc). In the sequel, we shall often say that 
certain functions related to the dilogarithm have analytic continuations to 
the entire complex plane. It is to be tacitly understood that the analytically 
continued functions Will generally be holomorphic except on a branch tut. In 
Sections 6 and 7, Ramanujan derives several properties of the dilogarithm 
Lia(z) and trilogarithm Li3(z). Since most of these results are known, we shall 
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not give complete proofs but refer to Lewin’s book [l] where proofs may be 
found. 

Recall that the Bernoulli numbers B,, 0 I n < 00, are defined by (Il). 

Entry 6. Let Li, and x2 be defined as above. Then 

(9 

(ii) 

(iii) 

(iv) 

w  

(vi) 

(vii) 

and 

(viii) 

Li,(l-z)+Li, 1-i = -+Log’z, 
( > 

Li,(-z)+Li, + = -$fLog”z, 
( > 

Li,(z) + Li,( 1 - z) = % - Log z Log( 1 - z), 

Li2(z) + Li,( -z) = 3 Li,(z’), 

l-z 7c2 
x2(4+ x2 - 

( > 

l+z 
l+z 

=8+;LogzLog - 
( > l-z ’ 

Li2(&) +Li2(&) =Li,(z)+Li,(w) 

+ Li2 ( 
~- 
(1 -z;; - w) > 

+ Log( 1 - z) Log( 1 - w), 

Li,(eë’)=~+zLogz-z 

+“Q$ 14 < 271, 

Li,(l -e-Z)=n$OG, IZI < 27c. 

Proof. Part (i) is proved in Lewin’s text [ 1, p, 5, equation (1.12)] and is due to 
Landen [ 11. 

Part (ii) is also found in Lewin’s book [l, p. 4, equation (1.7)] on noting 
that Li,( - 1) = - 7c2/12. Evidently, (ii) is due to Euler [S, p. 381, [9, p. 1331. 
See the top of page 5 of Lewin’s text [l] for further references. 

Equality (iii) is also due to Euler [S], [9, p. 1303 and cari be found in 
Lewin’s book [ 1, p. 5, equation (1.1 l)]. 

Formula (iv) is rather trivial and cari be found in Lewin’s book Cl, p. 6, 
equation (1.15)]. 

Part (v) is again due to Landen [l] and is established in Lewin’s treatise 
[l, p. 19, equation (1.67)]. 
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Formula (vi) was first established by Abel [3, p. 1931, but an equivalent 
formula was proved earlier by Spence [l]. The former formula is also in 
Lewin’s book [l, p. 8, equation (1.22)]. 

Formula (vii) arises from (6.4) after dividing both sides of (6.4) by z and 
integrating both sides twice. See Lewin’s book [l, p. 21, equation (1.76)]. 

TO prove (viii), first replace z by t in (6.4) and integrate both sides over 
[0, z]. Next, in the resulting integral on the left side, set w  = 1 - e-‘. Using 
(6.3), we complete the proof. 

Example. We bave 

(9 Li,($) = g - + Log2 2, 

(ii) 

(iii) 

Li 
2 ( 1 

Js-l -to Log2 Js-l ~ _-- 
2 ( )> 

Li 3-JJ 
2 

( > 

$2 
2 

=&Log2 2 > 
( > 

(iv) x2@ - 1) = $ -$ LogQ5 - l), 

(4 x2 fi-1 =524Log2 fi-1 
( 1 2 12 ( > 2 ’ 

(vi) X2($-2)=&tLOgZ 2 . 
fi-1 

( > 

Proof. Part (i) follows from Entry 6(iii) on setting z = 3. The result is found in 
Lewin’s book Cl, p. 6, equation (1.16)]. The priority for this evaluation seems 
to be clouded. According to Lewin Cl, p. 61, the result is credited to Euler in 
1761, but Landen claims to have established (i) in 1760. On the other hand, 
Bromwich [l, p. 5201 indicates that the result is due to Legendre. 

Formula (ii) cari be found in Lewin’s treatise [ 1, p. 7, equation (1.20)] and 
is apparently due to Landen Cl]. 

Formula (iii) is found in Lewin’s book [ 1, p. 73 and is again due to Landen 
Pl. 

Equality (iv), which readily follows from Entry 6(v) upon setting 
z = ,/? - 1, is again found in Lewin’s book [l, p. 19, equation (1.68)]. 

Part (v) is also found in Lewin’s book Cl, p. 19, equation (1.69)] and is due 
to Landen [l]. 

Formula (vi) was submitted by Ramanujan as a problem in the Journal of 
the Zndian Muthematicul Society [8], [15, p, 3303. See also Lewin’s book 
[l, p. 19, equation (1.70)], where the result is attributed to Landen [l]. 
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Many other functional equations and numerical examples for the diloga- 
rithm cari be found in papers of Euler [2], [5], Gastmans and Troost [l], 
Lewin [2], Loxton [l], Richmond and Szekeres [l], and Schaeffer [l] and 
the books of Landen [l], Lewin [l], and Spence [l]. 

Entry 7. Let LiJz) be dejined by (6.1). Then 

(9 

lr2 
-&Log3z--Logz, 

6 

and 

(iii) Li3(z) + Li,( -z) = 4 Li3(z2). 

Proof. Part (i) is due to Landen [l] and cari be deduced from Lewin’s book 
[l, p. 155, equation (6.10)] by letting x = 1 - z there. 

Part (ii) cari be found in Lewin’s book [l, p. 154, equation (6.6)]. 
Part (iii) is trivial. See also Lewin’s treatise [l, p. 154, equation (6.4)]. 

Example. Zfx3 is defined by (6.2), then 

0) Li3(+) = * Log3 2 - g Log 2 + x3(1) 

and 

(ii) Li, (3-2J5)=+Log3(+)-$Log(+!)+61(3). 

Proof. The first equality follows from Entry 7(i) on setting z = $. See also 
Lewin’s text [l, p. 155, equation (6.12)]. 

Part (ii), due to Landen [ 11, is again in Lewin’s book [ 1, p. 156, equation 
(6.13)]. In Ramanujan’s notebooks, p. 107, the coefficient 5 on the right side 
of (ii) is inadvertently omitted. 

Entry 8. For 1x1 < 1, dejne 

f(x) = klgl g$ 
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Then, for 1x1 < 1, 

fL ( > 2-x 
=$Log’(l -X)+$L~~(X). 

Proof. Taking the Cauchy product of the Maclaurin series for l/( 1 - x2) and 
Lod(l + XMl -X)L we find that, for Ix/< 1, 

j-‘(x)=LLLog 2 . 
1 -x2 2x ( ) 

Hence, 

AfL&= ( > 
x-2 

(2 - 4 4x( 1 - x) 
Log(1 - x) 

= - & Log(1 -x) - 
Log(1 - x) 

4(1 -x) . 

Integrating the foregoing equality over [0, x], 1x1 < 1, and using (6.3) and the 
equality 

d x 

-0 

2 =--- 
dx 2-x (2 - x)’ ’ 

we complete the proof. 

Example. With f dejïned by (8.1), we haue 

0) 

(ii) 

and 

(iii) J($-2)=$Log2 +J . 
( > 

Proof. TO deduce part (i), set x = $ in Entry 8 and then employ Example (i) of 
Section 6. 

TO obtain (ii), set x = (fi - 1)/2 in Entry 8, note that 1 - x = x2, and use 
Example (ii) of Section 6. 

Lastly, set x = (3 - fi)/2 in Entry 8. Using Example (iii) of Section 6, we 
deduce the desired equality. 

Both Examples (ii) and (iii) are in error in the notebooks, p. 107. In (ii), 
Ramanujan has an extra term - 2 Log2 {(,/5 - 1)/2} on the right side. In (iii), 
he has written 3 instead of 2 on the right side. Ramanujan [9], [15, p. 3301 
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submitted Examples (i) and (ii) as a question in the Journal of the Zndian 
Mathematical Society. 

For other examples of this sort, see Catalan? paper [l]. 

Entry 9. For IzI I 1, define 

m Hkzk+’ 
dz) = k;l (k-t (9.1) 

where Hk is defined by (3.1). Then g cari be analytically continued to the entire 
complex plane. Furthermore, 

(9 g(l - z) = $ Log2 z Log(1 - z) + L&(z) Log z 

- Li3(4 + U3), 

(ii) g( 1 - z) - g(l - l/z) = & Log3 z, 

(iii) g( 1 - z) = 3 Log2 z Log(z - 1) - f Log3 z 

-Li,(i)Logz-Li,(f) +<(3), 

and 

(iv) g(-2)-t-g G = -&Log3z-Li,(-z)Logz 
( > 

+ Li3( -z) + c(3). 

Proof. Squaring the Maclaurin series for Log(1 - z), we find that 

zg’(z) = 3 Log2(1 -z), IZI < 1. 

Thus, 

(9.2) 

Log2 z 
-g’(l -z)= -------) 

2(1 -z) 
O<z<l. (9.3) 

Integrating by parts twice, we find that 

g( 1 - z) = 4 Log2 z Log( 1 - z) + Li,(z) Log z - Li3(z) + c. 

If we let z tend to 1 -, we find that c = Li,(l) = c(3), which completes the proof 
of(i)forO<z<l. 

Since L&(z) and Li3(z) cari be analytically continued into the full complex 
z-plane, then (i) shows that g(z) cari be analytically continued as well. 

From (9.3), 

-g’(Gz)-$g’ 1-k 
( > 

Log2 z 
=-TF 

Integrating this equality over [l, z], we get (ii). 
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Consider (i) for 0 < z < 1. Replacing z by l/z, we obtain for z > 1, 

g l-f =+Log2z{Log(z-l)-Logz}-Li, 
( ) 0 

1 Logz 
Z 

-Li, J 
0 

+ l(3). 
Z 

Substituting this expression for g(l - l/z) into (ii), we deduce (iii) for z > 1. By 
analytic continuation, (iii) is valid for a11 complex z. 

Lastly, if z > 0, we find from (9.2) that 

Log2(1 + z) Log2(1 + l/z) 
22 - 22 

Log2 2 
=--g-+ 

Log z Log(1 + 2) 
Z 

Integrating by parts, we find that 

- Li,( -2) Log 2 + 
s 

Li2(-4 dz ~ 
Z 

Log3 z 
= - - - Li,( -z) Log z + Li,( -z) + c. 

6 

By analytic continuation, this holds for a11 complex z. Now set z = - 1 and 
use the fact that g(1) = t(3), which cari be deduced from (i). We then find that 
c = c(3), and SO the proof of (iv) is complete. 

Entry 9(i) is stated without proof by Lewin [l, p. 303, formula (12)]. Entry 
9(iii) contains a misprint in the notebooks, p. 107; Ramanujan has written 
Log(1 - z) for Log(z - 1) on the right side. 

The formula 

obtained from Entry 9(i) by setting z = 0, has a long history. Formula (9.4) 
was evidently first discovered by Euler [2], [S, p. 2281 in 1775. This 
evaluation and many other results of this sort were established by Nielsen 
[3], [4], [6]. In 1952, (9.4) was rediscovered by Klamkin Cl] and submitted as 
a problem. Briggs, Chowla, Kempner, and Mientka [l] rediscovered the 
result again in 1955. Once again, in 1982, (9.4) was rediscovered, by 
Bruckman [l]. In fact, (9.4) is a special case of the more general formula 

2 krl > = (n + WXn + 1) - ;g; tXn - WV + l), 

where n is a positive integer at least equal to 2. This result is also due to Euler 
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[2], [8, p. 2661. Nielsen [3, p. 2291, [4, p. 1981, [6, pp. 47-491 developed a 
very general method for obtaining (9.5) and similar types of results. Formula 
(9.5) was rediscovered by Williams [2] in 1953. Sitaramachandrarao and 
Siva Rama Sarma [l] and Georghiou and Philippou [l] have also proved 
(9.5). 

It might be remarked that the problem of evaluating series of the type 

where m and n are positive integers with n 2 2, was first proposed in a letter 
from Goldbach to Euler [ 101 in 1742. (See also Euler and Goldbach [ 11.) The 
two mathematicians exchanged a series of letters about this problem in 1742 
and 1743, and Euler was successful in obtaining several evaluations of series 
like that depicted above. However, (9.4) and (9.5) apparently are not found in 
these letters. 

Matsuoka [l] and Apostol and Vu [l] have made a study of the related 
Dirichlet series 

F(s)= f H,-,k-“, Re(s) > 1. 
k=l 

In particular, they have shown that F cari be analytically continued to the 
entire complex s-plane. Apostol and Vu have further studied more general as 
well as other related series. 

Entry 10. For Iz( Il, define 

m Hkzk+’ 
h(z) = kzl (k ’ 

Then h(z) cari be analytically continued into the entire complex z-plane. 
Furthermore, 

(i) h(l-z)-h 1-i =-&Log4z+iLog3zLog(l-z) 
( > 

7c2 
+ c(3) Log z - 2 Li4(z) + Li3(z) Log z f -45 

ad 

(ii) = -&Log4z-Li,(-z)Logz 

4 

+2Li,(-z)+[(3)Logz+&. 

Proof. First observe that 

h’(z) = g+, (10.1) 
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where g is defined by (9.1). It follows from Entry 9 that h cari be analytically 
continued into the entire complex z-plane. 

By (10-l), Entry 9(ii), and Entry 9(i), 

gu - l/z) 
z2(1 - l/z) 

-z) - ig(l -z) + ; Log3 z 

id1 - 4 Log3 z =---- 
Z 6z(l - z) 

= & Log2 z Log(1 -z) 

+ i Li,(z) Log z - i LiJ(z) 

1 1 
+;1(3)-gLog3z- 

1 
~ Log3 z. 
6(1-z) 

Integrating the equality above, we find that 

+ * Log3 z Log( 1 - z) - 
s 

Log2 z LO!S(1 -4 dz + c 
22 

= L&(z) Log 2 - 2 Li4(z) + ((3) Log 2 - & Log4 z 

+ 4 Log3 2 Log(1 - z) + c, 

where in the penultimate equality we integrated by parts twice. Letting z = 1 
and employing the fact that Li,(l) = l(4) = 7r4/90, we find that c = x4/45, 
which completes the proof of(i). 

Next, by (lO.l), 

=-- 62 Log3 z - f Li2( -z) Log z 

+ 5 Li3(-z) + tC(3), 
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by Entry 9(iv). Integrating both sides above, we find that 

h(-z)-h A = -ALog4z-Li,(-z)Logz+ ~ 
( 1 s 

W-4 dz 
Z Z 

+ LiA-4 
s 

~ dz + l(3) Log z + c 
Z 

= -&Log4z-Li,(-z)Logz 

+2Li,(-z)+5(3)Logz+c. 

Putting z = 1 above and using the fact that Li,( - 1) = - 71(4)/8 = - 7rc4/720, 
we find that c = 7n4/360. This completes the proof of (ii). 

In the notebooks, pp. 107, 108, the right sides of Entries 10(i) and (ii) must 
be multiplied by (- 1). 

Entry 11. For - 1 I x I 1, dejÏne 

m h,xzk 
F(x) = k& (2k)~ and 

m hkX2k 
G(x) = kzl (2k)3’ 

where hk is defined by (8.2). Then for 0 2 x 5 1, 

l-x 
F-- 

( ) 1+x 
= + Log2 x Log 

l-x 

( > 
l+x +3x2(4 Loi? x 

and 

+ t{x,cl> - x3(-4 

(ii) =F(x)Logx+F(e)Log(E) 

- & Log2 x Log2 

Proof. For Ix( < 1, 
m hkX2k x 00 xFY-4 = kzl 2k = s o kzl hkt2k-’ dt 

=;j;&Log(g)dt 

=;[;Log(g)dLog(g) 

= $ Log2 (11.1) 
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Hence, for 0 I x < 1, 

Log2 x 
4( 1 - x2). 

Integrating the equality above, we find that 

= $ Log2 x Log 

(11.2) 

= $ Log2 x Log 
s 

XZk Log x dx 

= $ Log2 x Log +tx2ww-j - 
1 x2(4 dx 

s X 

+4x2(x) Log x -$x3(x) + c. 

Now let x tend to 1 - to find that c = x3(1)/2, which completes the proof of(i). 
We now prove (ii). Observe that for 1x1 I 1, XC’(X) = F(x). Hence, for 

Olx<l, 

An integration of this equality yields 

= F(x) Log x - 
J 

F’(x) Log x dx 

+F(+so) 

.sTi+zxiiF(&+(~)~~ 

=,,,,,,,.+F(k)Log(E) 

-;j Log’(k)yix 
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by (11.1) and (11.2). Integrating by parts, we get 

Letting x approach 1 -, we find that c = G(l), and this completes the proof. 

In fact, Ramanujan claims that 

(11.3) 

Unfortunately, this beautiful formula is incorrect. Taking the first three terms 
of the series defining G(l), we find that G( 1) > 0.1529320988.. . . On the other 
hand, the right side of (11.3) is easily found to be less than 0.1442780636... . 
We have been unable to find any formula for G(1) which resembles (11.3). 
R. Sitaramachandrarao (persona1 communication) has derived several ex- 
pressions for G(1) that are related to the Riemann zeta-function and similar 
types of series. Unfortunately, none of Sitaramachandrarao’s formulas echoes 
(11.3). 

Entry 12. For Ix[< 1, define 
m  HkX2k-’ 

H(x) = kcl 2k _ 1 ’ 

where H, is dejned by (3.1). Then for 0 < x < 1, 

l-x 
H-- ( > 1+x 

1+x 
=(Log2-1)Logx+~Log 0% 

( > 

+fLog’x+g+Li,(-x). 

Proof. First observe that, for (xl < 1, x2H’(x) is the Cauchy product of the 
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Maclaurin series for - Log(1 - x’) and l/(l - x2), i.e., 

H’(x) = - 
Log(1 - x’) 
x2(1 - x2) . 

Hence, 

2 l-x 
-(1H’ - = 

( > 

(1 +x)2 
1+x 2x(1 -x)2 Log (1 +x)2 ( > 

=(k+(l:x)) 4x 
2 (Log4+Logx-2Log(l+x)}. 

Integrating the equality above, we find that, for 0 < x < 1, 

H l-x 
(-) =$Log4Logx+ 

1+x 
&Log4+iLog”x+2 

s 
Logx dx 

(1 

- 

s 

Jau + 4 dx _ 4 L%U + 4 dx 

X s (1 - x)2 

=Log2Logx+ &Log4+$Log”x 

2Logx 2 dx 
+=- s x(1 -x) 

+Li,(-x)- 4 Log(1 + x) + 4 dx 

l-x s l-x2 

2 Log(4x) =Log2Logx+ l-x +$LogZx-2Logx 

+2Log(l-x)+Li,(-x)- 
2 Log(1 + x)2 

l-x 

+2Log(l+x)-2Log(l-x)+c, 

4x 
=(Log2-l)Logx+&Log ~ 

( > (1 +x)2 
+iLogZx 

4x 
+ Li,(-x) - Log (1 + xj2 

( ) 
+ c, 

where c = cl + Log 4. Letting x tend to 1 -, we find that c = -Li2( - 1) 
= 7c2/12, and this completes the proof. 

Examples. We haue 

0) 
m 6, 
c - = ((3) - ; Log 2, 

k=l k22k 



9. Infinite Series Identities, Transformations, and Evaluations 259 

(ii) 

(iii) 

and 

(iv) 

G-1 
+(3$+5+Log2)Log 2 . 

( > 
Proofof (i). For 1x1 I 1, define 

m Hkxk 
w= c F’ 

k=l 

Observe that 
G) = Li3(4 + g(x), (12.1) 

where g is defined by (9.1). We wish to evaluate t(i). Using (12.1), Entry 9(i), 
and Example 6(i), we find that 

t(3) = Li3(*) + g(3) 

= Lis(+) - + Log3 2 - Li&) Log 2 - Li3(+) + c(3) 

= -$Log32- 
7c2 
12 - $ Log2 2 Log 2 + l(3), 

from which the desired result follows. 

Proofof (ii). We wish to evaluate (t(1) - t( - 1)}/2. By (12.1), (9.4), and Entry 
W, 

+{t(l)-t(-1)) =${g(l)-g(-1)) ++{Li,(l)-Li,(-1)) 

= $103) -fW3(- 1) + C(3))) + x3(1) 

=3x3(1) + x3(1) =%x3(0 

Proof of (iii). The left side of (iii) is 4F(l), where F is defined in Entry 11. 
Putting x = 0 in Entry 1 l(i), we find that F(1) = x3(1)/2. Hence, the result 
follows. 

Proofof (iv). The left side of (iv) is H($ - 2), where H is defined in Entry 12. 
Putting x = ($ - 1)/2 in Entry 12 and noting that (1 - x)/(1 + x) = $ - 2, 
we find that 

H(&2)=(Log2-l)Log +3($+2)Log 
- 

J5-1 
+2($+2)Log2+aLogZ 2 

( ) 

+ jj + Ll, n2 ’ (-+A). (12.2) 
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Since, by (6.2), Li,( -x) = Li&x) - 2x2(x), we find from Examples 6(ii) and (v) 
that 

Using this value in (12.2) and simplifying, we deduce the sought result. 

Example (ii) was first established by Nielsen [4]. Jordan [l], [2] 
apparently not only first proved Example (iii) but also found a general 
formula for cp=, h,Jk’“, where n is a positive integer. Later proofs of both (ii) 
and (iii) were found by Sitaramachandrarao and Siva Rama Sarma [2]. 

For other formulas like those in Sections 9 and 12, consult the papers of 
Nielsen [l], [2], [3], [4] (as well as his book [SI); Euler [2], [8]; Jordan [l], 
[L]; Gates, Gerst, and Kac [ 11; Schaeffer [ 11; Gupta [l]; Hans and Dumir 
[l]; Sitaramachandrarao and Siva Rama Sarma [l] (as well as Siva Rama 
Sarma’s thesis Cl]); Sitaramachandrarao and Subbarao Cl], [2]; Buschman 
[l]; Rutledge and Douglass [ 11; Georghiou and Philippou Cl]; and Klamkin 
1111, Pl. 

Closely connected with the polylogarithms are the Clausen functions 
Cl,(x) defined by (see Lewin [l, p. 1911) 

Cl,,(x) = f q$z, n2 1, 
k-l 

and 

cl2”+1(4 = k$ p, n 2 0, 

(13.1) 

(13.2) 

where x is real, with the restriction that x is not a multiple of 27c when n = 0. It 
should be noted that 

-Log2sin 5 . 
I OI 

(13.3) 

Entry 13. If n is a positive integer, then 

=COS - 
( > 

2 n![(n+l)- f (-lp+lW r(n+l) 
T(n + 1 -j) 

X”-jClj+ l(X). 
j=O 

Proof. For each positive integer k, we have upon n integrations by parts 

s 

x nx”-l 

0 
u” sin(ku) du = - g cos(kx) + k2 sin(kx) 

+ 
n(n - 1)~“~~ n(n - l)(n - 2)~“~~ 

k3 
cos(kx) - 

k4 
sin(kx) 

+ .‘. +f.(x) + $ COS - ( ) 2 ’ 
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where fJx) = (- l)“+‘n! cos(kx)/k”+ ‘, if n = 2m is even, and 
f,(x) = (- I)“n! sin(kx)/k”+ ‘, 

if n = 2m + 1 is odd. Now sum both sides of (13.4) on k, 1 I k I N, and let N 
tend to CO to get (see Gradshteyn and Ryzhik [l, p. 303) 

where we have used the Riemann-Lebesgue lemma. 

Entry 13 is equivalent to formulas in Lewin’s book [l, p. 200, equations 
(7.52) and (7.53)]. 

Next, define 

and 

(14.1) 

(14.2) 

where x is real, with the restriction that x is not a multiple of 7~ when n = 0. 
Observe that (Gradshteyn and Ryzhik [l, p. 381) 

D,(x) = - 5 Log 

Entry 14. If n is a positive integer, then 

tan 5 
( )l 

. (14.3) 

(1) 

n 
-j& (- I)j(j+1)‘2 r(n + l) x”-jDj+l(x), 

I-(n + 1 -j) 
(14.4) 

where xn is defined by (6.2). 

Proof. The proof follows along the same lines as that of Entry 13. We begin 
with (13.4) but with k replaced by 2k - 1. Now sum on k, 1 I k I N, and let N 
tend to 00. It is easily seen that we get the right side of (14.4). On the left side, 
we obtain (Gradshteyn and Ryzhik [l, p. 301) 

lim 
s 

‘;{l-cos(2Nu)}cscudu= ;;cscudu, 
N-+m 0 s 

by the Riemann-Lebesgue lemma. This finishes the proof. 
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On the right side of (14.4), Ramanujan has written Li, + I(l) instead of 
x,+1(1), P. 109. 

Entry 15. For each nonnegative integer n, dejïne 

f,(x) = 
s 

x” cet x dx. 

Then ifn20, 

Proof. Now, since tan x = cet x - 2 cot(2x), 

2”$-x)=2”j$-x)lcot(;-x)d(;-x) 

( -x)k{cot x - 2 cot(2x)) dx 

= (- l)kn”-k (2~)~ cot(2x) d(2x) - 
s 

(2~)~ cet x dx 

n n = 
z(> k=O 

k (-l)kn”-k{fk(2X)-2kfk(X)}. 

Examples. We have 

and 
s xn cet x dx = s (sin- l y)” 

Y 
dy (15.1) 

(15.2) 

Proof. Equality (15.1) arises from setting y = sin x, and (15.2) is gotten by 
letting z = tan x. 

Recall that h, is defined by (8.2). 

Proposition 15. For 1x15 1, 

0) f(tan ’ 9 

(ii) 3< sine’ 
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-&(sin-1x)3=kz1 l+$+ ‘.. +(2k’,)z 
2k 

>( > 

XZk+l 

(iii) 
k 22k(2k + 1) ’ 

and 

&(sin-1x)4=kr1 
> 

22“(k!)2X2“+ 2 
(iv) 

(2k +2)! ’ 

Proof. The Maclaurin series (i)-(iii) may be found in J. Edwards’ calculus 
book [Il, pp. 88-901 where the methods for deriving them are clearly 
delineated. Since (iv) is not given, we shall prove (iv). 

Write, for 1x1 I 1, 

y=,asin-‘x= f  akXk. 
k=O 

(15.3) 

Then y’ = ay/J%?, or 

(1 - ~~)(y’)’ = a2 y’. 

Differentiate both sides above with respect to x and then divide both sides by 
2y’ to obtain 

(1 - x*)y” - xy’ - a2y = 0. 

Substituting the power series (15.3) into the differential equation above and 
equating coefficients of like powers of x, we find that 

(k2 + a2)ak 
ak+2=(k+2)(k+1)’ k 2 0. 

Moreover, it is easily seen that a, = 1 and a, = a. A simple inductive 
argument now gives 

a(a2 + 12)(a2 + 32) ... (a2 + (2n - 1)2) 
azn+ 1 = (2n + l)! 2 n2 1, (15.4) 

and 
a2(a2 + 22)(a2 + 42) ... (a’ + (2n - 2)2) 

a2” = 7 n2 1. 
(2n)! 

(15.5) 

Expanding exp(a sin -l x) as a power series in a, and equating coefficients of 
ak on both sides, with the use of (15.4) and (15.5), we may deduce the 
Maclaurin series for (sin -r x)~, k 2 1. In particular, for k = 4, we find from 
(15.5) that </’ 

(sin - r x)~ Oo b2,x2” 
=z2(2n)! 

1 
4! . 

where 
n-l 2242 . . . (2n- 2)2 n-l 1 

L= c 
j=l CW2 

= 22’“-1Y(~ - lN2 jzl (2j)2> 

which completes the proof of (iv). 
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Entry 16. For 1x1 I 1~12, 

m sin(2kx) =xLog/Zsinxl+l c k2. (16.1) 
k 1 

Proof. Making the substitution t = sin(u/2) and employing Entry 13 with 
n = 1, we find, for 1x1 I 7c/2, that 

=3{ -2x C1,(2x) + C1,(2x)}. 

If we now use (13.1) and (13.3) in (16.2), we deduce (16.1). 
Let 

(16.2) 

(16.3) 

thus, G denotes Catalan% constant. 

Examples. We hue 

t. (9 
(ii) 

(iii) x2 -- 
6$’ 

and 

Proof. Part (i) follows from putting x = 7c/2 in (16.1). 
Put x = n/4 in (16.1) and multiply the resulting equality by ,/% We then 

obtain (ii). 
Next, let x = 7rn/6 in (16.1). The left side of (16.1) becomes the left side of (iii), 

and the right side of (16.1) is found to be 

3JG 1 =- 
4 c k=,-, (3k + 1)2 



9. Infinite Series Identities, Transformations, and Evaluations 265 

3@ 1 
=4k=o(3k+1)z c f 

-- 
,z,, (6k : 1)’ + $0 (6k : 5)2 } 

3J3m 1 
=4,=0(3k+ c -- T i $0 : - 1)2 (2k 1)2 f,zc (2k : I)i} 

3J5m 1 
c 

4fi x2 
=4k=o(3k+1)2 -9s’ 

which completes the proof of (iii). 
Lastly, put x = x/3 in (16.1) and multiply the resulting equality by 2/$. 

The left side then becomes the left side of (iv), and the right side is equal to 

m sin (2k7c/3) 
nLog3+$kzl k2 
v 

which is readily seen to equal the right side of (iv). 

Part (i) cari be found in a paper of Ruscheweyh [l]. 

Entry 17. For Ix( -c 742, 

m (- l)k tan2k+’ x 
c 

m sin(4k + 2)x 
k=O (2k + 1)2 = x Logltan xl + ,zo (2k + 1)2 . 

Proof. For 1x1~ n/2, the left side of (17.1) is equal to 

s 
OMxk~o(Skl+l*df=SUDnxolllldt=flI,cscudu 

= - 2xD,(2x) + D,(2x), 

(17.1) 

(17.2) 

where in the penultimate step we made the substitution u = 2 tan- l t, and in 
the last step we utilized Entry 14 with n = 1. If we now employ (14.1) and 
(14.3), we deduce (17.1). 

Examples. We haue 

0) 
s 

liJ3 tan-’ t 5n2 

0 

-----ch= -SLog3-- 
t 18J3 

(ii) 
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and 

(iii) 
s 

2-J3 tan-’ t 
--dt=;Log(L-fi)+; 

s 

’ tan-’ t 
~ dt, 

0 t 0 t 

where 

s 

r tan-’ t 
~ dt = G = 0.915965594177..., 

0 t 

where G is de$ned by (16.3). 

Proof of (i). In Entry 17, put x = 7c/6 and use (17.2) to obtain 

s 

liJJ tan-’ t J3 
0 

-dt=-;Log3+2 
t 

1-$+&$+ ... 

=- J3 +Log3+1 
i( 

1-$+$-$+f-;+g-&+... 
) 

( 1 1 1 1 
+ p--$+g-$+ ... 

)l 

=-- 0 = Log3+T 
12 ( 

l-$+&$+;-$+&$+... 
) 

7L 1 
=-- 12 Log 3 + -3 5@ 4 (3k k=O + 1)2 -y{kf$-kQj$}~ 

from which (i) follows. 

Proof of (ii). Set x = rc/S in Entry 17. Using (17.2) and the fact that tan(n/8) 
= $ - 1, we find that 

s 

fi-1 tan-1 t 00 
--dt=;Log(&l)+ c 

sin { (2k + l)n/4} 

0 t k=O (2k + 1)’ 

-- ; k~o~;2yy2. 

The latter sum in the equality above is L(2, x), where 2 is the real, even, 
primitive character of modulus 8. By a standard formula (see, e.g., Berndt and 
Schoenfeld’s paper Cl, p. 48)) .C(2, x) = 7c2,/2/16. This completes the proof of 
(ii). 
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Proof of (iii). Let x = 7c/12 in Entry 17. Noting that tan(n/l2) = 2 - $ and 
using (17.2), we find that 

s 2-A tan-’ t m sin ((2k + 1)x/6} 

D 
t-dt=;Log(2-$)+ c 

k=O (2k + 1)2 

=;Log(2-$)+t 
( 

IfS-&&+ -a. 
> 

1 1 1 1 
+$-gr+s-p+ .*. 

= ; Log(2 - $> 

=;Log(2-J?)++G++G. 

The given integral representation for G follows easily upon integrating the 
Maclaurin series for (tan-’ t)/t termwise, and SO the proof of (iii) is 
completed. 

The decimal expansion of G is correct to the number of places given. In 
fact, this decimal expansion for G cari be found in J. Edwards’ book [2, p. 2461, 
a text with which Ramanujan was very familiar. 

Entry 17’as well as Examples (ii) and (iii) may be found in Ramanujan’s 
paper [ 101, [15, pp. 40-431. 

Entry 18. For 0 I x I 7~14, 

COS~~+~ x - sin2k+1 x 

22k(2k + 1)’ 
= 5 Log(2 COS x) 

Proof. Replacing x by x/2 - x in Entry 16, we find that, for 0 5 x 5 n, 

00 (- l)k+ ’ sin(2kx) +;kzi k2 * 
(18.2) 
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Subtracting (16.1) from (18.2), we deduce that, for 0 5 x 5 x/2, 

coszk+l x - sinzk+’ x 
22k(2k + 1)’ 

= 5 Log(2 COS x) - x Log(2 sin(2x)) 

m sin(4kx) 
-&(2k)2’ 

Replacing x by 2x in Entry 16, we get, for 1x1 I 7c/4, 

m sin(4kx) 
= 2x Log12 sin(2x)l + i ,& kZ. 

Combining the latter two equalities, we deduce (18.1) for 0 I x I 7c/4. 

Example. For (xl I 1, dejïne 

Il/(x) = s x v dt, 
0 

Then 

Wé(%)=qLog2+2*(~) -2$(-$). 

Proof. From (16.1) and (16.2), for 1x15 7c/2, 

@in 4 = kro (y) ,;.;y F12. (18.3) 

Let sin x = 3; SO COS x = 4. Then sin(2x) = g. Thus, by Entry 18 and (18.3), 

$<4) - bm = - Loge) - 3m>. 2 
(18.4) 

Secondly, let sin x = l/fi; SO COS x = 2/,,/5 and sin(2x) = 4. Again, from 
Entry 18 and (18.3), 

i(S) -ti($) =;m(-$) -M4> 

= a Log@) + a Log 2 - &(4). (18.5) 

Combining (18.4) and (18.5) together, we deduce the proposed equality. 

Entry 19. For 0 I x -c 742, 

coszk+’ x + sinzk+’ x Oo (-l)k tan2k+’ x 
22k(2k + 1)’ 

= ; Log(2 COS x) -t 1 
k=,, (2k+ 1)’ ’ 
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Proof. Adding (16.1) and (18.2), we find that, for 0 5 x < 742, 

cosZk+l x + sinzk+ l x 
22k(2k + 1)’ 

= 5 LOg(2 Cos x) + x Log(tan x) 

by Entry 17. 

m sin(4k + 2)x 
+ ,z(, (2k + 1)’ 

m (- l)k tanzk+’ x 
= ; Log(2 ‘Os x) + ,zo (2k + 1)2 > 

Example. We bave 

1 +22k+1 (- ljk 

22k5k+1(2k+ 1)’ +-$k~022k+l(~k+1)2’ 

Proof. In Entry 19, put sin x = l/$; SO COS x = 2/$ and tan x = 4. The 
proposed formula now follows. 

Entry 20. Let 1x1~ n/2. Then 

m 22k(k!)2 sin2k+2 x x2 c k = 0 (2k + l)! (2k + 2)2 

1 m cos(2kx) 
+i& k3 

- - ii(3). (20.1) 

Proof. By Proposition 15(ii), the left side of (20.1), for (xl I 7c/2, is equal to 

s 

sin X (sin- 1 t)2 

0 
2t dt=;j;x$ot(;)du 

=Q{ -2Q3) -4x2 C1,(2x) + 4x C1,(2x) + 2 C1,(2x)}. 

In the first equality, we made the substitution u = 2 sin-’ t, and to get the last 
equality we used Entry 13 with n = 2. If we now employ (13.1)-(13.3) in the 
equality above, we deduce (20.1). 

In the notebooks, p. 111, the term -[(3)/4 in (20.1) has been omitted. 

Examples. We haoe 

0) c 22k(k!)2 

k=o(2k+ 1)!(2k+2)’ 
= ; Log 2 -3x3(1) 

(ii) 
2k- ‘(k!)2 

k=o(2k+ 1)!(2k+2)’ 
=~LogZ+~G-jSgX3(1). 

where x3 is dejïned by (6.2) and G is dejned by (16.3). 
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Proof. TO obtain (i), simply set x = 7c/2 in Entry 20. 
Putting x = 7c/4 in Entry 20, we see immediately that the left side of (20.1) 

yields the left side of (ii). On the right side, we get 

;Log2+;G+‘c m (-ljk -i[(3) 
4k=103 . 

The last two expressions are together equal to -351;(3)/128 = -5x3(1)/16, 
and SO the proof is complete. 

Entry 21. For 1x1 s x/4, 

‘m (- l)k-‘h, 
$1 (2k)2 

m sin(4k + 2)x 
tan2k x = g Loghan XI + x C 

k=,, (2k + 1)2 

1 m cos(4k + 2)x 
+-c 2 k=. (2k + q3 -3x3(1)’ (21.1) 

where hk is dejned in (8.2). 

Proof. Using Proposition 15(i), then making the substitution u = 2 tan-’ c, 
and finally employing Entry 14 with n = 2, we find that the left side of (21.1) is 
equal to, for 1x1 5 x/4, 

s 

ta”x (tan-’ t)2 dt = 1 2X u2 csc u du 

0 2t 4 s 0 2 

= ${ -2x3(l) - 4x2D,(2x) + 4xD2(2x) + Z!D,(L?x)). 

Using (14.1)-(14.3) above, we complete the proof. 

Example. We haue 

If (- ljk-lhk k2 
= nG -2x3(l), 

k=l 
(21.2) 

where G denotes Catalan’s constant. 

Proof. Let x = 7c/4 in (21.1) and multiply the resulting equality by 4 to achieve 
(21.2). 

In the notebooks, p. 112, the right side of (21.2) is incorrectly multiplied by 
4. Nielsen [4] evidently first established (21.2). 

Entry 22. Let 0 < x 5 x/2, Then 

k!)2{cos2k+2 x + sin2k+2 x} 
k=O (2k + l)! (2k + 2)2 

= - ; Log(2 COS x) 

m 22k(k!)2 sin2k+2(2x) 
(2k + i)! (2k + 2)2 -3x3(0 
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Proof. Replacing x by 7cf2 - x in Entry 20, we find that, for 0 I x < rc, 

m 22k(k!)2 COS~~+~ x c k=O (2k + l)! (2k + 2)2 
=~(~-nx+x’)Log,2cosx/ 

+ ;(; -x) f Wk+;sin(2W 
k=l 

m  (- l)k cos(2kx) 
+:,c k3 - %(3). (22.1) 

Adding (20.1) and (22.1), we deduce that, for 0 5 x 5 n/2, 

~1 22k(k!)2{cos2k+2 x + .sin2k+2 x} 
c 

k=O (2k+ l)! (2k+ 2)2 
5 Log(2 COS x) 

= - 8 

Q (- l)k+ ’ sin(2kx) 
Log(2 COS x) + ; k& 

k2 

m sin(4kx) 
2x2 LogJ2 sin(2x)l +x C 7 

m cos(4kx) 
+i& k3 - $1(3) 

k=l 

-s&(3). (22.2) 

Observe that the former expression in curly brackets on the right side of (22.2) 
is equal to the right side of (18.2). Secondly, note that the latter expression in 
curly brackets on the right side of (22.2) is equal to the right side of (20. l), but 
with x replaced by 2x. Lastly, note that 7[(3)/8 = x3(1). Employing a11 of these 
observations, we see that (22.2) reduces to the desired equality. 

Entry 23. For (xl I n/4, 

2 (-Qk-lhk m 22k(k!)2 sin2k+2 x 
k=l (2Q2 

tan2kx=2 C 
k=o (2k + l)! (2k + 2)2 

where hk is defined in (8.2). 

Proof. By Entry 20, the right side of (23.1) is equal to, for 1x1 I 71/4, 

(23.1) 

m cos(2kx) 

+ f& k3 -%(3) 

-$ 4, sin(4kx) 
2x2 Logl2 sin(2x)l + x 1 ~ 

1 m cos(4kx) 

k=l k2 +& k3 -S(3) 

oo sin(4k + 2)x 
= g Log(tan x( + x 1 +‘C 

m cos(4k + 2)x 

k=O (2k + 1)2 2k=O (2k+ 1)3 -9x3(1). 

Entry 21 now implies (23.1). 
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Entry 24. Let x, y, 8, and cp be real numbers with xeie + yeiq = 1, 0 I x,y I 1, 
and -71 -C t?,cp I 7~. Then 

(i) 

and 
f xk S;U4 + .f yk $&4 = -cpLogx-8Logy. 

k=l k=l 

Proof. Using Entry 6(iii) below, we find that 

Li,(xeie) + Li,(ye@) 

= G - (Log x + i@(Log y + icp). 

Equating real and imaginary parts on both sides above, we deduce (i) and (ii), 
respectively. 

Entry 25. Let x, y, 0, and cp be real numbers such that xe” + ye@ = xye’@+@, 
O<x,y~ 1,and -z<O,(pIz. Then 

(9 

and 

(ii) 

cc Xk cos(ke) 
c 

m yk cos(kq) 

k=l k2 +,c k2 

= + L0g(i - 2~ COS 8 + ~2) Log(i - 2y cos cp + y2) 

-+ tan-’ (l~~~o~e)tan-l(i-pC~B) 

a xk sin (ke) 
c 

oD yk sin(kq) 
k=l k2 + kz, k2 

= -$Log(l-2xcos8+x2)tan1 
(1:):&?) 

-$Log(l-2ycoscp+y’)tan-’ 
(Zf:O,e)- 

Proof: We shall apply Entry 6(i) with 1 -z =xeie. Then 1 - l/z = 
xeie/(xeie - 1) = ye@. Since also 1 - Xe” = l/( 1 - ye”“), we find that 

Li,(xe”) + Li,( ye+) 

= - 4 Log2( 1 - xeie) = 3 Log( 1 - xeie) Log( 1 - yeiV) 

=4 jLog(l-2xcos8+x2)-itan-’ 
i (i~*~~e)} 

X 
i 

*Log(l-2ycoscp+y’)-itan-’ 
(lz.z,)}. 
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Formulas (i) and (ii) now follow from equating real and imaginary parts 
above, respectively. 

Entry 26. Let x, y, 8, and q be real numbers satisfying the conditions 
xeie + ye’q + xye’@ +rp) = 1, 0 5 x,y< 1, and -z<@p~r. Then 

(i) kro x’*‘;“;; l)Q + ,zo Y~~+’ co@k + 1)~ 
(2k + 1)2 

z--f 
8 

Log x Log y + $Qv 

and 

(ii) 
m xZk’ ’ sin(2k + 1)0 
c 

2k+ ’ sin(2k + l)cp 

k=O (2k+ 1)2 +kC_oL’ (2k+ 1)2 

= -$cpLogx-@Logy. 

Proof. Observe that ye@’ = (1 - xe’“)/(l + Xe’“). Thus, Entry 6(v) yields 

X2(xele) + x2( ye’“) = G - $ Log(xe”) Log( yeiV). 

Equating real and imaginary parts above, we get (i) and (ii), respectively. 

The topic of Sections 27-30 is altogether different from that of the 
remainder of this chapter, and is a continuation of Ramanujan’s studies in 
Chapter 8. Ramanujan considers 

q,(x) = i k” Log k, 
k=l 

(27.1) 

where here it is assumed that r > - 1; in Chapter 8, Ramanujan studied C~,(X) 
when r I - 1 and when r = - 4. In Section 29, Ramanujan examines an 
analytic function of x which reduces to (27.1) when x is a positive integer. 
However, Ramanujan does not give any hint at a11 as to how he has defined 
his analytic extension of <pI. 

Entry 27(a). Let q,(x) be dejïned by (27.1) for r > - 1. For each nonnegative 
integer k, let 

Then there exists a constant C, such that as x tends to GO, 

C~,(X) - Log x kil k’ - i( - r) 
xr+l 

-C,-7 
(r+ 1) 

m B,,T(r + 1)M2k-2(r)x’-2k+’ 
+c 

k=l (2k)! T(r - 2k + 2) ’ 



274 9. Infinite Series Identities, Transformations, and Evaluations 

where B, denotes the kth Bernoulli number and where [ denotes the Riemann 
zeta-function. 

Proof. We shall apply the Euler-Maclaurin summation formula (15) to 
f(t) = t’ Log t. Then as x tends to 00, we find that 

s 
x cpr(4 N * B,, t’Logtdt++x’Logx+C:+ 1 - f(2k - l)(x), (27.2) 
1 k= 1 (2k)! 

where Ci is independent of x. 
First, an integration by parts yields 

s 
x 

t’Logtdt= 
x*+ l Log x xr+l 1 

-(r+ 
(27.3) 

1 r+l (r + 1)2 * 

Secondly, by Leibniz’s rule, 

f’“‘(t) = 
T(r + 1) 

r(r + 1 - n) 
t’-” Log t 

T(r+l)(-l)“-k-l(n-k-l)! 
r(r + 1 - k) 

r(r + 1) 
= r(r + 1 - n) 

t,-“Logt+(-l~~~)t’-“~~~~~r~~) 

r(r + 1) 

= r(r + 1 - n) 
tr-n Log t  + (- lYr(n - r)Mn-lWt’-” 

r(-r) ’ 

(27.4) 

by a formula from Hansen’s tables [l, p. 1261. Using (27.3) and (27.4) in (27.2), 
we deduce that 

CPAX) - 
x’+l Log x xl+l x’ Log x 

r+l -(r+ 2 +cr 

m B,J(r + l)xrmZk+’ 
+ kgl (2k)I r(r + 2 _ 2k) ILog x + M2k-2(r)” (27.5) 

as x tends to 00, where C, = Ci + l/(r + 1)2. 
From Entry 1 of Chapter 7, we have 

m B,,r(r + l)~‘-~~+ 1 
+$+i(-r)+kzl (2k)!T(r+2-2k) ’ 

(27.6) 

as x tends to CO. Substituting (27.6) into (27.Q we deduce the desired 
asymptotic formula. 

An asymptotic expansion for q,(x) has also been obtained by MacLeod 
[l]. For applications of Entry 27(a), see the papers of MacLeod [l] and 
Ishibashi and Kanemitsu [l]. 
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Entry 27(b). Let C, be as in Entry 27(a). Then ifr > 0, 

c = 2w + lK(r + 1) 

r (27L)‘+l i 
sin f Log(2x) - 

( >( 
;(y;;) -;cos(~)} 

+ 2r(r + 1) sin(nr/2) m Log k 

(2?r)‘+’ c &zl k’+’ ’ 

Proof. We shall first show that 

c, = -f!y(-r). 

It is clear from (27.2) and (27.3) that 

1 xr+l Log x xr+l 

C, = lim q,(x) - 
xr Log x ~- 

x-m r+l +(r+1)2 2 

-,$,&gi (x* Log x) 1 9 

(27.7) 

(27.8) 

where n is chosen SO that n > (I + 1)/2. Applying the Euler-Maclaurin 
summation formula once again, we find that 

cpr(x) = x 
r+l Log x xr+l 1 

-(r+I)Z+ 
xr Log x 

r + 1 (r+ 1) 2 

#k-l 

s 
x dh+l 

+ P2n+ 1(t)- 
1 

dt2n + 1 (t’ Le t) dt, (27.9) 

where Pj(t) denotes the jth Bernoulli function. Formulas (27.8) and (27.9) 
imply that 

~- (t’ Log t) 

t=1 

s 
m dh+l 

+ Pzn+lW- Log t) dt. (27.10) 
1 

dt 2n + 10’ 
Now apply the Euler-Maclaurin formula to f(t) = tmS, Re s > 1, to find that 

i(s) = -& ++- && $p”k-lYt) 
t=1 

s 
cc + P2,+ l(t)f’2”+ “(t) dt, (27.11) 

1 

where n > (r + 1)/2. By analytic continuation, (27.11) holds for Re s > - 2n 
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- 1. Differentiating (27.11) and then setting s = -r, we find that 

(t’ Log t) 
z=1 

s 

m  dh+l 

- P 2n+l(t)dt2n+lV Lois t) dt. (27.12) 
1 

A comparison of (27.10) and (27.12) yields (27.7). 
From the functional equation of i(s), equation (4.2) in Chapter 7, we find 

that 

c’(s) = 2(2x)“-’ sin y I(l - s)c(l - s) Log(2rc) + 5 cet y 
0 i 0 

r’(1 -s) i’(l -s) 

Putting s = -r yields 

(‘(-r) = - 
2I(r + l)[(r + 1) sin(7rr/2) 

(27r),+l { 
Log(271) - 5 cet 

( > 
F 

Y(1 + r) 1 m Logk - 
r(i i- I) + [(r + 1) k = 1 k’+ ’ -c- * 

By (27.7), the proof is complete. 

In the first notebook, p. 163, Ramanujan indicates how he derived Entry 
27(b), but his argument is not rigorous. 

The following corollary is an immediate consequence of Entry 27(b). 

Corollary. Zf r is an even positive integer, then 

c = _ cos(NW(r + l)i(r + 1) 
r 2(271)’ * 

Ramanujan next records the following particular values of C,: 

CO = 3 Log(271), c - a3) 
= 4n2 ’ 

C4= -!Ai& 

and 

c 
6 

= 4507) 
87r6 ’ 

In the case r = 0, we see that Ce is the constant which occurs in the 
asymptotic expansion of Log I(x + 1) (Stirling’s formula), and this constant 
is well known to be 4 Log(2rc). (See Entry 23 of Chapter 7.) The values of 
C,, C,, and C, are immediately deducible from the Corollary. 
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The next example is not correctly given by Ramanujan, p. 113. 
Furthermore, the additive factor of a in the denominator of Example (i) may 
be deleted without affecting the limit. 

Example (i). We haue 

exp(x’--$Logx+*-y) fi kZk 
lim k=l 

x-m 

( 

xx(x+3q-(x2 + 1) 1/3 
= kfll kl/(nk)z. (27.13) 

.+a ) 

Proof. The logarithm of the left side of (27.13) is 

LE lim 2 i kLogk+$Jx2-$Logx++-y) 
x-+00 k=l 

= lim 2 i kLogk+$(x2-+Logx+$-y) 
x+m i k=l 

-3x(x + 3) Log x - 5((2x2 + 1) Log x - x2 + + Log(27r)) 

+3Logx , 
1 

by Stirling’s formula (Entry 23 in Chapter 7). 
On the other hand, by (27.8) and Entry 27(b), 

(27.14) 

lim 2 i kLogk-x2Logx+*x2-xLogx--&Logx-& 
x-m k=l 

(27.15) 

by (4.2) in Chapter 8. If we employ (27.15) in (27.14), we deduce that 

which completes the proof. 

Example (ii). We haoe 

lim eX3/9-X/l 2 = er(3M4”*) 

x+cc 
(27.16) 
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Proof. The logarithm of the left side of (27.16) is 

LE lim 
x+* 

i k”(Logk-Logx)+;-;} 
k=l 

=‘,{q2(x)-(;+;+;)Logx+;-;). (27.17) 

On the other hand, by (27.7) and the Corollary above, 

x3 Logx x3 x2 Log x 
3 +7- 

2 

Comparing (27.17) and (27.18), we readily deduce (27.16). 

For each positive integer r, define 

(27.18) 

f b-9 4 = HA+ 1(x + 1) 
- 1 sk&+ 1),2 

B,,r! H2k-1~r-2k+1 
r+l (2k)! (r + 1 - 2k)! ’ (28’1) 

where H, is defined in (3.1) and B,(x) denotes the nth Bernoulli polynomial, 
OSn<oo. 

Entry 28(a). For r 2 2, 

f(r 
> 
x)=Br+l(x+ 11-4.1 

r(r + 1) 
+r Xf(r-l,t)dt. 

s 
(28.2) 

0 

ze;;{. Since B,, r’(x) = (r + l)B,(x), a direct calculation with the use of (28.1) 

r Xf(r-l,t)dt= 
s 

Hr-,B,+I(x+ 1) Hr-I&+I 
0 r+l - r+l 

=f(r x)-4+~(x+l) Hr-I~+I HA+I 
- 

3 
r(r + 1) r+l 

+- 
r+l ’ 

from which (28.2) immediately follows. 

Ramanujan next studies an analytic extension of C~,(X) for a11 real values of 
x and any positive integer r. He does not give us his definition, but there exists 
considerable motivation for defining 

C~,(X) = i’( - r, x + 1) - i’( - 4, (28.3) 

where c(s) denotes the Riemann zeta-function and ((s, a) denotes the Hurwitz 
zeta-function. Normally, the definition of [(s, a) requires the restriction 
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0 < a < 1. But as in Chapter 8, we shall remove this stipulation SO that in the 
sequel a denotes any real number. In fact, we could allow a to be complex, but 
since Ramanujan evidently considered only real values of a, we shall do 
likewise. 

First, note that if Re s > 1, 

(‘(s, x + 1) - [‘(s, x) = x-s Log x. (28.4) 

By analytic continuation, (28.4) is valid for a11 complex numbers s. Putting 
s = - r, we find that <p,(x) - q,(x - 1) = xr Log x for any real number x. Since 
v*(O) = 0, we see that (28.3) is compatible with (27.1). 

Secondly, (28.3) is similar to definitions of other analogues of Log I(x + 1) 
studied in Chapter 8, and if r = 0, (28.3) reduces to a formula of Lerch for 
Log I(x + 1). (See (18.12) in Chapter 8.) 

Thirdly, if x and r are positive integers, 

k& kr = 
4+1(x+ 1)-B,+, 

r+l > (28.5) 

where B,(x) denotes the nth Bernoulli polynomial and B, denotes the nth 
Bernoulli number, 0 I n < CO. By Hurwitz’s formula (17.15) in Chapter 8 and 
the Fourier expansion for B,(a), 

C(l-k,a)= -y, kz2, O<U<~. 

Thus, we find that, for - 1 < x I 0 and r 2 1, 

~,+1(x+l)-~,+1 
r+l 

= -[(-r,x+ l)+i(-r, 1). 

If we formally differentiate (28.5) and (28.7) with respect to r and ignore the 
different restrictions on x, we formally deduce (28.3). 

Entry 28(b). I f  ~XI< 1 and r is any positiue integer, then 

cp,(x) = 5 (Br+,(x+ l)-K.lJ 

yxr+l 
c 

r! B2kH2k-1x’+1-2k 
=-- 

us1 l<k<(r+l)/Z (2k)! (r + 1 - 2k)! 

r+k 
- 

CkXI-k + f (-l)kr! F+ y;,<(k)x , (28.8) 
k=2 

where H, is dejned by (3.1), y denotes Euler’s constant, and ck = -[‘(-k), 
k 20. 

The theory of a certain analytic extension of (28.3) has been extensively 
developed by Bendersky [l]. In fact, for 1x1 < 1, Bendersky [Il, p. 2791 defines 
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his analytic extension by (28.8), except that the first sum on the right side of 
(28.8) does not appear in his definition. Büsing [l] has further developed 
Bendersky’s work and has removed some deficiencies in Bendersky’s defi- 
nition of the constants L,, which are closely related to C, here. 

Proof. For Re s > 1 and Ix[< 1, 

where 
= S,(s) + S,(s) + S,(s) + S,(s) + S,(s) + &a, (28.9) 

S,(s)= i: -s ( 1 j=O j 
i’(s + j)xj, S,(s) = 

( > 
,y”1 i’(s + r + l)xr+l, 

and 

S,(s) = n =t+ 2 i(s + n)x” “2’ -’ 
( > j=O j 

5. 

By analytic continuation, the far right side of (28.9) represents [‘(s, x + 1) for 
a11 s. 

We now evaluate 
SI(- 4, Sd- 4, &- 9, Sd- 4, ad lim,+-,{S,(s) + S,(s)}. First 

3 

S,(-r)= k c’)[yj-r)xj = -k~o(;)c,,r-k, (28.10) 
j=O 

since l’( - k) = - ck, 0 I k I r, by (27.7). 
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Secondly, since r 
0 j 

= 0, j 2 r + 2, 

S,(-r)=O. 

Using (28.6) and the fact that c(O) = -4, we find that 

Employing the notation (17) and the formula 

y1 (4k (4, y1 1 
,c=o k!(m-k) =m!,c=,, a+k’ 

found in Hansen’s tables [l, p. 1261, we find that 

281 

(28.11) 

(28.12) 

1 r =- 
Xc ) 

r+ l ~.+,.(W,~~~ r+l,=l n 

1 * 
=- 

x( > 
r + l Br+l-“(l)x”w,-fLJ r+lnZI n 

=&{E,+,(x+l)-II,+,-x’t’) 

- lak&+l),Z 

r! B2kH2k-1~*+1-2k 

(2k)! (r + 1 - 2k)! ’ 
(28.13) 

where we have used a familiar formula for B, + 1(x + h) (Abramowitz and 
Stegun [l, formula 23.17, p. 8041). 

Letting n = k + r and j = r - m, we find that 

Now if k is a positive integer, from Gould’s tables [S, formula 1.41, p. 63, 

(28.14) 
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Thus, 

s (-r)= 
6 

if (-l)kr!(k-l)![(k)x’+k 
k=2 (r + k)! ’ 

We lastly examine S,(s) + S,(s) as s tends to -r. Letting 

“f(s) = jio (7”)y;+jy, 
we have 

L = lim {S,(s) + S,(s)) 
s--r 

=x ‘+’ lim 
K ) 

,isl (‘(s + r + 1) +f(s)T(s + r + 1) . s+ -r 1 
Replacing j by r - k and using (28.14), we find that 

A-r)= -,z(k)g= -&. 
Since 

m+k 

we see that 

= T, + T,, 

say. We first calculate Tl. We have 

(28.15) 

(28.16) 

(28.17) 

(28.18) 

(28.19) 

Inverting the order of summation and, in the third equality below, using a 
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well-known evaluation (Gradshteyn and Ryzhik [l, p. 3]), we find that 

(-l)r+l ‘21 (-l)k Y +(-l)rH _ =--- - 
0 - r+l k=~r-k k r+l r1 

=(-lr+‘(-r),C 1 +(-lyH ~ - 
(r + l)r! k=O -r+k r+l r 

=-&{l +(-l)‘Kj, (28.20) 

where in the penultimate equality we used (28.12) again. Employing (28.19) 
and (28.20) in (28.18), we deduce that 

(28.21) 

We now return to (28.16) and expand each function on the right side about 
z = 0, where z = s + r. The expansion for l/IJ - z) and the coefficient of z in 
the Maclaurin series of I(v - z + 1) cari be found in the tables of Gradshteyn 
and Ryzhik [Il, pp. 936,945]. For the first two terms in the Laurent expansion 
of c(z + l), see Entry 13 of Chapter 7. Hence, using also (28.17) and (28.21), we 
find that 

q-s+ 1) 
(r+ l)! I-(-s-r) i’(s + r + 1) +f(s)T(s + r + 1) 

=A{-z+yz2+ . ..}(r!+(y-H.)r!z+ ...> -$+CI+ ... 
i 1 

i 

1 
+ -- 

r+l 
+ %z+ ...}{;+y+ . ..}. 

Hence, 

L=X’+1 &4J--&--i$ 
r+l > 

= S(H, - y). (28.22) 

If we now utilize (28.10), (28.11), (28.13), (28.15) and (28.22) in (28.9) with 
s = -r and recall the definition of C~,(X) in (28.3), we readily deduce (28.8). 
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Entry 29. Let q,(x) be dejined by (28.3), let C, be dejïned by (27.7), let 
- 1 < x I 0, and let n and r be natural numbers. Then 

4+1(x + 1) 
= r+l 

Log n + (1 - n’+‘)C,. 

Proof. Let Re s > 1 and replace k by 
n-1 

i’(s, x + 1) - n* C, i’ s, q + 

n - k below to get 

= [‘(s, x + 1) + n’ E C ‘$jl l+ &y{:’ 
k=l j=O 

m  Log{(m + x)lnl = (‘(s, x + 1) + if+’ 1 
m=l (m + x) 

~(1 -nr+s )(‘(.Y, x + 1) - nr+’ Log n i(s, x + 1). 

By analytic continuation, the extremal sides of the equalities above are equal 
for a11 complex s. Now let s = -r and use (28.3) and (27.7) to obtain 

= -[(-r,x+l)Logn+(l-n’+‘)C,. 

Noting that - 1 < x I 0, we may employ (28.6) to complete the proof. 

Corollary 1. If n and r are any positive integers, then 

Proof. Putting x = 0 in Entry 29 and recalling that q,(O) = 0, we easily deduce 
the desired equality. 

Corollary 2. If r is any positive integer, then 

&-+)= - Br+lLog2+(2-2-‘)C,, 
(r + 1)2' 

Proof. Set n = 2 in Corollary 1. 

Entry 30. Let 0 < x < 1. If r is positive and even, then 

0) 
r! 7cr 

0 

m cos(2rckx). 
%tx- ‘)+ %(-x)=2cV+ mcos y ,zl k’+l ’ 

ifr is positive and odd, then 

(ii) 
r! 

<p,(x-l)-<p,(-x)=mSin 
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Proof. Recall Hurwitz’s formula given by (17.15) in Chapter 8. Differentiating 
with respect to s, we find that 

[‘(s, x) = -2I’(l -s) 

m sin(2nkx) Log(2rck) 

Thus, if 0 < x < 1 and Y is even, 

cp,(x-l)+cp,(-x)=i’(-r,x)+i’(-r-,1-x)+X, 

(30.1) 

which completes the proof of (i). The proof of (ii) is analogous. 

Ramanujan remarks that “More general theorems true for a11 values of r 
cari be got . . .” (p. 114). Indeed, (28.3) cari be used to define q,(x) for any real 
number r, r # - 1. Thus, (30.1) cari then be employed to obtain generali- 
zations of (i) and (ii) for r > - 1. 

Entry 31(a). Suppose that C~~(X) is dejined by (28.3), and define 

0) = kzo (y) ;:;;; yy! . 

Then if 0 < x I 3, 

tj(x) = X{~~(X - 1) - <pl(-x)} + xx Log(2 sin(rcx)). 

Proof. By Entry 3O(ii), for 0 c x < 1, 

n{‘pl(x - 1) - cpl( -x)} + nx Log(2 sin(nx)) 

(31.1) 

= ; k$l siykx) + nx Log(2 sin(rcx)). 

But by Entry 16, with 1x1~3, 

$(x) = nx Log(2 sin(rcx)l + 5 krl sin($tkx). 

The desired result now follows. 
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Entry 31(b). Let $(x) be dejïned by (31.1) and let h, be dejned by (8.2). Then we 
have 

0) 

(ii) l)(x) + l+q+ - x) = - Log(2 cos(7cx)) 
2 

m (- l)ktan2k+ ‘(nx) 
+c OSx<$, 

k=O (2k+ 1)2 ’ 

(iii) +(+ - x) +3+(2x) - $(x) = 5 Log(2 cos(rcx)), 05x<+, 

and 

(iv) $($ - x) + l+q+ + x) = 7r(l - 2x) Logl2 cos(nx)l 

+ .f (- l)k+ i sin(27ckx) 
k2 ’ 

OIXI 1. 
k=l 

Proof of (i). By the Cauchy multiplication of the Maclaurin series of 
(tan ’ t)/t and l/(l + t’), or by Proposition 15(i), we find that, for Itl < 1, 

tan-‘t m 
~ = k;. (- *)kh+ lt2k. t(1 + t2) 

Thus, for 1x1 I a, we find that the right side of(i) is equal to 

s 

Ian(m) tan- 1 t 

~ dt = 
0 t(1 + t2) s 

AX 

u cet u du 
0 

m sin(2rrkx) 
= nx LogJ2 sin( + k ,zr k2 . (31.2) 

In the penultimate step we made the substitution u = tan-’ t, and in the last 
step we applied Entry 13 with n = 1 and used (13.1) and (13.3). Using Entry 16 
on the far right side of (31.2) along with the definition (31.1) of $(x), we 
complete the proof. 

Proof of (ii). From the definition (31.1) of $(x), we find that, for 0 I x < 3, 

sin2k+‘(zx) + COS~~+~(~~). 
22k(2k + 1)2 

Applying Entry 19, we finish the proof. 

Proof of (iii). By Entry 18, for 0 I x 5 a, 

$(+-x) - ticx) = f L”g(2 cos(71x)) - ; ,go 
Using the definition (31.1), we complete the proof. 
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Proofof (iv). Using the definition (31.1) and (18.2), we find that, for 0 <x I 1, 

+ c (- l)kf’ sin(2nkx) 
k=l k2 ’ 

which completes the proof. 

Part (iv) is not what is claimed by Ramanujan, p. 115. Ramanujan asserts 
that 

@(i-x) + +qf + x) = ?1 Log(2 cos(nx)). 

Evidently, Ramanujan applied Entry 16 twice, with x replaced by en -‘II~ 
and with x replaced by 3rc + nx. But the intersection of the domains for which 
these two equalities are valid is only the origin. The infinite series on the right 
side of (iv) cannot be evaluated in terms of elementary functions. In fact, from 
Gradshteyn and Ryzhik’s tables [l, formula 1.441; 4, p. 381, it is easily seen 
that, for 0 I x < 1, 

f (- ‘jk+l sin(2’kx) = 2X x Log12 CO~(~~)I dt. 
k=l k2 s 0 

Examples. We have 

0) l)(f) = f Log 2, 

(ii) (I/(i) = +G + ; Log 2, 

(iii) + f Log 3, 

and 

(4 , OIXI$. 

ProoJ. Parts (i)-(iv) are merely restatements of Examples (i)-(iv) in Section 16. 
Part (v) arises from Entry 31(b) by subtracting (iii) from (ii). 
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In Ramanujan’s version, p. 115, of part (ii) above, read 211/(i) for $(i). 
Entry 32 below should be compared with Entry 17. 

Entry 32. For 1x1 I 7c/4, we haue 

m 22k(k!)2 sin2k+ ‘(2x) 
c k=O (2k)! (2k + 1)2 

= 2 f (- l)k tan2k+’ x 
k=O (2k+ 1)2 ’ 

(32.1) 

Proof. Using Proposition 15(ii) and then making the successive substitutions 
t = sin(2u) and u = tan- l u, we find that the left side of (32.1) is equal to, for 
1x1 5 71/4, 

s 

sin(2.4 CO 22k(k!)Zt2k sin(2.x) 

c dt = 
sin - 1 t 

dt 
0 k=,, (2k + l)! s 0 tJc7 

s 

x 
=4 u csc(2u) du = 2 

s 

tanx tan-l u 

~ du 
0 0 V 

s 

tanx m  

= 2 o k~o~dv=2k~o(-;;;$;1x. 

Entry 32 also falls in the realm of generalized hypergeometric series. In 
Whipple’s quadratic transformation of a well poised 3F2 (Erdélyi Cl, p. 1901) 

F a, b, c 
3 2 a+l-b,a+l-c ;t 1 

= (1 - t)-” 3F2 
a+l-b-c,+a,i(a+l) -4t 

a+l-b,a+l-c ;pTp 1 
let a = 1, b = c = 9, and t = -tan2 x. After some simplification, we readily 
deduce (32.1). 

Corollary (i). For 1x1 I 1, we haue 

(32.2) 

Proof. Replace tan x by $ in Entry 32. Noting that 

sin(2x) = (2 tan x)/(1 + tan2 x) = 2&(1 + u), 

we readily deduce (32.2) with x replaced by u. 

Ramanujan, p. 115, has a slight misprint in the third summand on the left 
side of (32.2). 

Corollary (ii). Zf 1x1 I x/4, then 

m (- l)k22k(k!)2 tan2k+1(2x) 
c 

m tan2k+’ x 

k=O (2k)! (2k + 1)2 = 2 &, (2k + 1)2 ’ 
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Proof. In Corollary (i), replace x by - tan’ u. Noting that tan2(2u) = 
4 tan2 u/(l - tan2 u)’ = - 4x/(1 + x)~, we easily achieve the proposed iden- 
tity with x replaced by u. 

Examples. We have 

(9 57 
22k(k!)2 

k=o (2k)! (2k + 1)2 
= 2G, 

(ii) 57 3k(k!)2 10n2 
ks(, (2k)! (2k + 1)2 

c-nLog3-F 
0 

(iii) 

64 

=BG-iLog(2+$), 
3 

= -LLog(l +fi) 
2J2 

rc2 
--+4kgo(;k-;;)2’ 

4J2 

(v) f 
22k(k!)2 

k=0(2k)!(2k+1)2 
= f Log(2 + J?), 

.f (- l)k22k(k!)2 rc2 
k=(, (2k)! (2k + 1)2 

= - - 4 Log2(1 + fi), 
8 04 

and 

(vii) c (- 1)k(k!)2 k=O (2k)! (2k + 1)2 

Proof. Example (i) follows from putting x = 1 in Corollary (i) or x = 7c/4 in 
Entry 32. 

Putting x = 3 in Corollary (i) yields 

z 
3k(k!)2 

k=O (2k)! (2k + 1)2 = f ,ro (;k-,$ . 

Employing Example 17(i), we deduce part (ii). 
Thirdly, put x = (2 - $)’ ’ in Corollary (i). Then 4x/(1 + x)~ = i, and SO 

we get 

2 
(k!)2 

k=O (2k)! (2k + 1)2 

Applying Example 17(iii), we readily deduce (iii) above. 
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Next, put x = ($ - 1)2 in Corollary (i). Then 4x/(1 + x)’ = $, and thus 

a> (-l)“(& 1)2k+l 
=2Jz c 

k=O (2k + 1)2 ’ 

Appealing to Example 17(ii), we readily find (iv). 
Fifthly, multiply the formula of part (iii) by - 2 and add it to the formula of 

part (i). This yields part (v). 
Next, let tan x = tan(n/8) = ,/? - 1. Then tan(2x) = 1, and SO Corollary (ii) 

yields 

m (- l)k22k(k!)2 c k=O (2k)! (2k + 1)2 

Now use Example 6(iv) to deduce formula (vi). 
Lastly, let tan x = ,,/? - 2 in Corollary (ii). Then tan(2x) =i. Using 

Example 6(vi), we readily achieve (vii) above. 

Example (i) is originally due to Nielsen [4, p. 1661 and is reminiscent of the 
formula (0.1) for c(3) that was used by Apéry Cl] to prove the irrationality of 
c(3). An interesting, animated account of Apéry’s proof has been written by 
van der Poorten [l]. Mendès France [Il] has also described the lecture in 
which Apéry announced his achievement. In fact, formula (0.1) appears to be 
originally due to Hjortnaes [l] in 1953. Other proofs have been given by 
D. Hawkins (persona1 communication, January, 1977), Ayoub (persona1 
communication, 1974), and van der Poorten [2]. Cohen [2] and Leshchiner 
[l] have established different formulas for c(n), 2 I n < 00, for which (0.1) is a 
special case. Other results in the spirit of Examples (i)-(vii) and (0.1) may be 
found in Comtet’s book [l, p. SS] and in the papers of Clausen [2], 
Ruscheweyh Cl], van der Poorten [2], [3], Zucker Cl], and Gosper [l]. It is 
interesting that the formula for G in Example (i) was discovered almost a half 
Century before the formula (0.1) for c(3). 

Entry 33. lf n is a positive integer, then 

(0 
s 

42 
x COS” x sin(nx) dx = n+Z 

2 n H,, 
0 

where H, is defined in (3.1), and 

s 

ni2 
COS” x sin(nx) dx = 

0 

Proof. We shall prove only (i). Formula (ii) is slightly easier to establish, and a 
proof may be found in Fichtenholz’s text Cl, p. 1361. 
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By Entry 5(i) and an integration by parts, 

s 

77/2 
x cas” x sin(nx) dx = & i 

0 k 1 
x sin(2kx) dx 

=&-L 2 

by a well-known formula (Gradshteyn and Ryzhik Cl, p. 41). 

The next two results are designated by Ramanujan as corollaries of Entry 
33. However, we prefer to begin the proofs anew. On the surface, it appears 
that these two corollaries as written by Ramanujan are devoid of meaning. 
However, each cari be assigned a mathematically precise meaning. 

Ramanujan defines 

n 2k-1 
cpb) = c - 

k=l k 

and claims, p. 116, that q(n) “cari be expanded in ascending powers of n in a 
convergent series the first two terms being S,x/2 + S,x2/8 + &c.” Here 
S, = c(k), k 2 2. We shall need to extend the definition of q(x) to a11 real values 
of x. Upon integrating both sides of 

over 1 I t < 2, we find that 

44 = 
s 

Zt”-1 
- dt. 

1 t-l 
(33.1) 

Thus, we shall define q(x) for every real number x by (33.1). By expanding 
tX - 1 in a power series and inverting the order of summation and integration, 
we find that 

where 

s 

2 Logk t 
ak = - dt, 

1 t-l 
k> 1. (33.2) 

We now state a revised version of Ramanujan’s first corollary. 

Corollary 1. Zf ak is defined by (33.2), then a, = t<(2) and a2 = &‘(3). 
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Despite the fact that ak is a rational multiple of [(k + 1) for k = 1,2, it does 
not appear that this property persists for k 2 3. (See Lewin’s book Cl, p. 1991.) 

Proof. Integrating by parts and using Example (i) in Section 6, we find that 

= 3 Log2 2 - Log 2 $1 & - Li,(+) + l(2) 

= - $ Log2 2 - ; + 3 Log2 2 + C(2) = $[(2), 

as claimed. 
Next, integrating by parts twice and employing Example (i) in bath 

Sections 6 and 7, we find that 

a2 = s 2 Log2 t 
-dt= -f 

1 t-l s 

2 Log2 t 
k=O 1 

t’+‘dt 

= $ Log3 2 - Log3 2 - 2 Log 2 Li2(+) 

- 2 Lis($) + 21(3) = *l(3), 

since x3(1) = 41(3). 

Corollary 2. For each positive integer n, 

cp(-n)= -k&+Ll> 
where H, is dejîned by (3.1). 

Proof. From (33.1), cp(-n)= 12s s s 2 n-l 

dt= - 1 ,c t-k-’ dt 

n-1 
= -w+kc&-;y;; 

= -&&L. 

Ramanujan, p. 116, next seems to indicate that Corollary 2, perhaps in 
conjunction with Corollary 1, cari be used to find the value of Lik($), k 2 2, 
where Lik is defined by (6.1). The calculations in the proof of Corollary 1 
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make it clear that Lik+ r(3) arises in the calculation of uk, k 2 1. Since 
Corollary 2 is valid only when n is a positive integer, it does not appear that 
these last two facts cari be utilized to determine Lik(i). 

Entry 34. Let - $ < x < 1. Then 

(34.1) 

where h, is de$ned in (8.2). 

Proof. Rearranging the double series below by absolute convergence, we find 
that, for - 3 < x < 1, 

(34.2) 

Comparing (34.1) and (34.2), we see that we must show that 

i (-lJk n kzo (2k + l)* 0 k 

22”(n!)2 h 
=(2n “+l’ 

n 2 0. (34.3) 

Since 

we find after two integrations that 

(n)=l;$[I(1-t2)“dt 
k 

=I;(I-t*)“dt[$ 

= - 
s 

l (1 - t*)n Log t dt. (34.4) 
0 

Letting B(x, y) denote the beta function and $(x) the logarithmic derivative of 
the gamma function, we find that the far right side of (34.4) is equal to 
(Gradshteyn and Ryzhik [l, formulas 4.253, 1, p. 538; 8.363, 3, p. 9441) 

-$Il(*, n + l){+(3) - rl/(n + 1 + t)} 

) 
22”(n!)2 h 

=(2n “+l’ 
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where we have used the Legendre duplication formula. This completes the 
proof of (34.3) and hence of (34.1) as well. 

If we let x tend to - 3 in (34. l), we obtain a formula for Catalans constant 
that has been found in a different way by Fee [Il]. 

In preparation for the last theorem in Chapter 9, define 

K,=f l 
k=l k’(k+ 1) 

and A, = (1 + cos(rtn))[(n), 

where r is a positive integer and n is any integer. If n = 1, it is to be understood 
that A, = 0. Since i( - 2k) = 0 for each positive integer k, it follows that A, = 0 
if n < 0. Also, since c(O) = -i, we have A, = - 1. 

Entry 35. For each positive integer r, 

A,-,. (35.1) 

By the remarks made above, the series on the right side of (35.1) 
terminates. Formula (35.1), or formulas easily equivalent to it, are well 
known. The first proof of (35.1) is apparently due to Glaisher [3] in 1913. 
Later proofs were found by Kesava Menon [2] and Djokovic [l]. One cari 
also find (35.1) in Hansen’s tables [Il, p. 1161. 

Examples. We haoe 

K&-3, 

(ii) K,= lO-7L2, 

(iii) 
?T4 107r2 

K”=z+T-35, 

and 

(iv) 
357c2 n4 

K,=126----- 
3 9’ 

Al1 of these examples are consequences of (35.1). Formulas (i)-(iii) are 
given explicitly by Hansen [ 1, pp. 40,35,31]. Greenstreet [l] found (i)-(iii) in 
1907, six years before Glaisher [3] found (35.1). One cari also find (i) in 
Bromwich’s text [Il, p. 2261. 



Ramanujan’s Quarterly Reports 

Introduction 

In 1910, Ramanujan met with V. R. Aiyar, the founder of the Indian 
Mathematical Society, in the hope of securing clerical employment in a 
municipal office of Tirukoilur. With this meeting, Word of Ramanujan’s 
mathematical genius slowly began to spread amongst mathematicians in 
southeast India. Several people, including R. Ramachandra Rao, P. V. Seshu 
Aiyar, S. N. Aiyar, Sir Francis Spring, and Sir Gilbert Walker, took a kindly 
interest in Ramanujan through financial support, employment, and en- 
couragement. In particular, on February 26, 1913, the English meteorologist 
Walker sent a letter to the registrar of the University of Madras, Francis 
Dewsbury, with the emphatic recommendation, “The University would be 
justified in enabling S. Ramanujan for a few years ut least to spend the whole 
of his time on mathematics, without any anxiety as to his livelihood.” The 
Board of Studies at the University of Madras agreed to this request, and its 
chairman, Professor B. Hanumantha Rao, wrote a letter to the Vice- 
Chancellor on March 25, 1913, with an exhortation that Ramanujan be 
awarded a scholarship of 75 rupees per month. Again, the decision was Swift, 
and Ramanujan was granted a scholarship commencing on May 1, 1913. A 
stipulation in the scholarship required Ramanujan to submit quarterly 
reports detailing his research to the Board of Studies in Mathematics. 
Ramanujan wrote three such quarterly reports, dated August 5, 1913, 
November 7, 1913, and March 9, 1914, before he departed for England on 
March 17, 1914. Possibly the original reports remain at the University of 
Madras, but they evidently have either been lost or misplaced. Fortunately, in 
1925, T. A. Satagopan made a handwritten copy of the reports on 51 foolscap 
pages. This copy was sent to G. H. Hardy along with a copy of Ramanujan’s 
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notebooks also made by Satagopan. G. N. Watson subsequently made 
a second handwritten copy of the reports. Both of these copies of 
the quarterly reports are now on file in the library of Trinity College, 
Cambridge. 

The quarterly reports have never been published. However, Hardy used 
material from the reports as the basis for Chapter 11 of his book [20] on 
Ramanujan’s work. We shall describe in detail the contents of these reports. 
In contrast to his notebooks which contain very few proofs, or even sketches, 
the quarterly reports offer several fairly detailed proofs. However, many of 
these proofs, especially those for the principal theorem, are forma1 and not 
rigorous. Nonetheless, Ramanujan’s proofs are enormously interesting 
because they provide insight into how Ramanujan reasoned, and for this 
reason we shall describe Ramanujan’s arguments. We also shall indicate, 
frequently with references to the literature, how Ramanujan’s findings cari be 
put on firm foundations. 

The first two reports and a portion of the third are concerned with certain 
integral formulas which, in a sense, are interpolation formulas and which are 
connected with the theory of integral transforms. In discussing one of these 
formulas, Hardy [ 14, p. 1501, [20, p. 151 remarks, “There is one particularly 
interesting formula . . . of which he was especially fond and made continua1 
use.” In Chapter 11 of [20], Hardy further observes, about the aforemen- 
tioned formulas, that Ramanujan “had not ‘really’ proved any of the formulae 
which 1 have quoted. It was impossible that he should have done SO because 
the ‘natural’ conditions involve ideas of which he knew nothing in 1914, and 
which he had hardly absorbed before his death.” The natural conditions to 
which Hardy refers are from the theory of functions of a complex variable. 
Indeed, as we shall momentarily see, the proofs given in the quarterly reports 
are not rigorous. After arriving in England, Ramanujan evidently learned, 
probably from Hardy, that his proofs were not sound. For in a paper 
published in 1915, after offering some beautiful integral evaluations, Raman- 
ujan [13], [15, p. 571 remarks that, “My own proofs of the above results make 
use of a general formula, the truth of which depends on conditions which 1 
have not yet investigated completely. A direct proof depending on Cauchy’s 
theorem Will be found in Mr. Hardy’s note which follows this paper.” These 
results Will be expounded upon in the sequel. 

Some of the principal formulas and their applications in the quarterly 
reports appear in Chapters 3 and 4 of the second notebook. Pages 180, 182, 
and 184 of the first notebook contain related “scratch” work. Al1 of this 
relevant material in both notebooks cari be found in Ramanujan’s quarterly 
reports and/or his paper [13], [15, pp. 53-581. We emphasize, however, that 
the quarterly reports contain many additional theorems and applications 
that have not been studied in the notebooks or Hardy’s book [20]. 

One result in the reports which has not been discussed by Hardy and 
which does not appear in Ramanujan’s published papers or his notebooks is 
a beautiful generalization of Frullani’s integral theorem. This new theorem 
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provides a powerful tool for evaluating many integrals and deserves more 
attention. 

In addition to material on integral interpolation formulas and transforms, 
the third quarterly report contains results on orders of infinity, fractional 
composition of functions, and fractional differentiation. Each of these topics 
is treated only briefly. It might be recalled that in his first letter to Hardy, 
dated January 16, 1913, Ramanujan [15, p. xxiii] mentions that he has been 
reading Hardy% tract, Orders of1$nity [6]. 

We now discuss in turn each of the three quarterly reports. Each report is 
divided into several sections, and we shall adhere precisely to Ramanujan’s 
divisions. The reports contain some minor misprints which we correct 
without comment. 

1. The First Quarterly Report 

In contrast to the second and third reports, the first report commences with a 
letter of introduction which we completely reproduce below. 

From S. Ramanujan, Scholarship holder in mathematics. 
TO the Board of Studies in Mathematics. 
Through The Registrar, University of Madras. 
Gentlemen, 

With reference to para. 2 of the University Registrar’s letter no. 1631 dated 
the 9th April 1913,I beg to submit herewith my quarterly Progress Report for 
the quarter ended the 31st July, 1913. 

The Progress Report is merely the exposition of a new theorem 1 have 
discovered in Integral Calculus. At present there are many definite integrals the 
values of which we know to be finite but still not possible of evaluation by the 
present known methods. This theorem Will be an instrument by which at least 
some of the definite integrals whose values are at present not known cari be 
evaluated. For instance, the integral treated in Ex(v) note Art. 5 in the paper, 
Mr. G. H. Hardy, M.A., F.R.S. of Trinity College, Cambridge, considers to be 
“new and interesting.” Similarly the integral connected with the Besselian 
function of the nth order which at present requires many complicated 
manipulations to evaluate cari be readily inferred from the theorem given in the 
paper. 1 have also utilised this theorem in definite integrals for the expansion of 
functions which cari now be ordinarily done by Lagrange’s, Burmann’s, or 
Abel’s theorems. For instance, the expansions marked as examples nos (3) and 
(4), Art. 6, in the second part of the paper. 

The investigations 1 have made on the basis of this theorem are not a11 
contained in the attached paper. There is ample scope for new and interesting 
results out of this theorem. This paper may be considered the first installment of 
the results 1 have got out of the theorem. Other new results based on the 
theorem 1 shah communicate in my later reports. 

1 beg to submit this, my maiden attempt, and 1 humbly request that the 
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Members of the Board Will make allowance for any defect which they may 
notice to my want of usual training which is now undergone by college students 
and view sympathetically my humble effort in the attached paper. 

1 beg to remain, 

Gentlemen 

Your obedient servant 
S. Ramanujan 

1.1. The thrust of the quarterly reports is described at once. Suppose that F(x) 
cari be expanded in a Maclaurin series, Then Ramanujan asserts that the 
value of 

Ir m 
s 

x”-‘F(x) dx 
0 

cari be found from the coefficient of xn in the expansion of F(x). Conversely, 
he claims that if Z cari be determined, then the Maclaurin coefficients of F(x) 
cari be found. 

1.2. Theorem 1 (Ramanujan’s Master Theorem). Suppose that, in some 
neighborhood of x = 0, 

F@)= -f q(k);;x)k. 
k=O 

Then 

Z = T(n)cp( - n). (1.1) 

Ramanujan’s theorem needs some explanation. Generally, n is not an 
integer. Thus, Ramanujan is tactitly assuming that there exists a “natural,” 
continuous extension of cp, defined initially on the set of nonnegative integers. 

We shall first relate Ramanujan’s proof and his adjoining discussion, and 
then we shall state Hardy? rigorous reformulation of Ramanujan’s theorem. 
Observe that the proof given below is a slight generalization of that given in 
Section 11 of Chapter 4. 

Ramanujan’s proof: Recall Euler’s integral representation of the gamma 
function 

s 

m 
e -mxx”-l dx = m-“r(n), 

0 

where m, n > 0. Let m = rk with r > 0, multiply both sides byf’k’(u)hk/k!, where 
f shall be specified later, and sum on k, 0 I k < CO, to obtain 

2 f’k’(4hk m ,erkxxn-l 
k=O k! s o 

Next, expand exp( -rkx), 0 I k < CD, in its Maclaurin series, invert the order 
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of summation and integration, invert the order of summation, and apply 
Taylor’s theorem to deduce that 

s ‘33 Xn-l 2 fW+ a)(-x)‘dx = qn)f(hr-” + a). (1.2) 
0 j=O j !  

Now definef(hr” + a) = q(m), where m is real, and a, h, and r are regarded as 
constants. Then (1.2) may be rewritten in the form 

s 
m 

y-1 f cpo')(-4 

j !  
dx = I-(n)cp( - n), 

0 j=O 

which completes Ramanujan’s proof. 

Ramanujan was evidently quite fond of this very clever, original technique, 
and he employed it in many contexts. See Chapter 4 for several additional 
illustrations. 

1.3. Of course, Ramanujan’s procedure is fraught with numerous difficulties. 
Ramanujan asserts that his proof is legitimate with just four simple 
assumptions: (1) J’(x) cari be expanded in a Maclaurin series; (2) F(x) is 
continuous on (0, 00); (3) n > 0, and (4) x”F(x) tends to 0 as x tends to 00. He 
remarks that the fourth condition cari be relaxed if, for example, F(x) is a 
circular or Bessel function. However, these four conditions are not nearly 
strong enough. 

In preparation for stating Hardy’s version of Theorem 1, we need to 
introduce some notation. Let s = a + it with o and t both real. Let H(6) = (s: 
o 2 - S}, where 0 < 6 < 1. Suppose that +(s) is analytic on H(6) and that there 
exist constants C, P, and A with A < rc such that 

II+!+)~ I CeP”+Alit, U-3) 

for a11 s E H(6). For x > 0 and 0 < c -K S, define 

$(-S)X-Sds. 

IfO<x<e-P, an application of the residue theorem yields (see Hardy% book 
PO, P. 1891) 

Y(x) = kzo $(k)( - xjk. 

Theorem (Hardy [20, pp. 189, 1901). Let $ and Y satisfy the conditions set 
forth in the preceding paragraph. Suppose that 0 < o < 6. Then 

s 
m Y(x)xs- l dx = +)9+(-s). (1.4) 

0 

Formula (1.4) yields (1.1) upon replacing $(s) by ~~(S)/I(S + 1). In Hardy% 
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book [20], formulas (1.1) and (1.4) are (B) and (A), respectively, on p. 186. 
Ramanujan devotes the remainder of the first quarterly report, a11 of the 

second report, and a large portion of the third to giving examples and 
applications of his Master Theorem. For the individual examples we shall 
determine if the hypotheses of Hardy3 theorem are satisfied. However, for 
brevity, we shall generally not recast Ramanujan’s theorems that are derived 
from his Master Theorem into rigorous formulations. Thus, let it be tacitly 
assumed in the sequel that Ramanujan’s theorems cari be placed on solid 
ground if the relevant functions satisfy the hypotheses of Hardy’s theorem. 

1.4. Ramanujan next briefly indicates some of the kinds of functions to which 
his Master Theorem is applicable. 

1.5. Examples. (i) This first example is mentioned by Hardy in his book 
[20, p. 1881. Let m, n > 0 with m < n. Letting x = yil”, we find that 

s 

m xm-l dx=~ ~~fdn-1 

0 1+x” s 
- dy. 

n 0 ]+Y 

Expanding l/(l + y) into a geometric series, we see that, in the notation of the 
Master Theorem, C~(S) = IJs + 1). Hardy% hypotheses are easily seen to be 
satisfied, and SO (1.1) gives 

s oagdx=;r($o~) 
=~r(~)r(l-~)=nsin~~in). 

which is a familiar result. 

(ii) The second example is Corollary 5, Section 11 of Chapter 4. Let m, n 
> 0 and set x = y/(1 + y) to obtain 

s 

1 
~~-~(l-x)n-~dx= 4ym-1(1+y)-m-ndy. 

0 s 0 

From the binomial series, 

we find that C~(S) = IJs + m + n)/I’(m + n). By Stirling’s formula (16), the 
hypotheses of Hardy% theorem are readily verified. Hence, Ramanujan’s 
Master Theorem yields the following well-known representation of the beta- 
function B(m, n), 

s 

1 

B(m, n) = ~“~‘(1 - x)n-l dx = I’(m)<p(-m) = “+ii. (1.6) 
0 
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(iii) Let p > 0 and 0 < n < 1. Letting x = A, we find that 

s 
cc 

s 
CO 

x” - l cos(px) dx = 3 yn’2 - l CO@&) dy. 0 0 
Expanding COS(~&) into a Maclaurin series, we find that, in Hardy? 
notation, IL(s) = pzs/lJ2s + 1). By Stirling’s formula, we deduce that, in the 
notation (1.3), A = n + E, for any E > 0. Hence, with no justification, we 
proceed, as did Ramanujan, to conclude that 

s 

00 
x” - l COS( px) dx = +~($I)(P( - $n) 

0 
r(+qr(l -$z) = r-(n) COS&CFI) 

= 2pnr(i -n) P” . 
(1.7) 

Now, in fact, Ramanujan’s evaluation is, indeed, correct (Gradshteyn and 
Ryzhik [l, p. 4211). 

Ramanujan next shows that 

s 

m  

x” - r sin(px) dx = 
r(n) sin(+n) 

In1 < 1, 
0 P” ’ 

by replacing n by n - 1 in (1.7) and differentiating both sides with respect to p. 
This procedure is invalid because the integral obtained from (1.7) by replacing 
II by n - 1 does not converge in the domain In[ < 1 of (1.8). Nonetheless, (1.8) 
is still correct (Gradshteyn and Ryzhik [ 1, p. 4201). If we follow the procedure 
employed by Ramanujan in obtaining (1.7), we also deduce (1.8). As before, 
this method is not justified. 

(iv) Recall that the ordinary Bessel function J,(x) of order n is defined for 
a11 real values of n and x by 

Consider 

s L-3 
s 
02 XP-n-lJn(X) dx = YP/~-~ -f (-YJk 

dy- 0 0 k=,-J k! r(n + k + 1)2”+2k+’ 

Clearly, we need to require that p > 0. Also, from the asymptotic expansion 
of J,(x) as x tends to 03 (see Whittaker and Watson’s text [l, p. 368]), 
the integrals above converge if p < n +3. In Hardy% notation, 
~/vQb) = 2 ” + r + 2”I(s + l)I(n + s + 1) and A = n + E, for any E > 0, by Stirling’s 
formula. Thus, Hardy’s theorem is inapplicable. However, formally applying 
Ramanujan’s Master Theorem, we find that 

s 
m 2p-"-1r(;p) 

0 xP-n-1Jn(4 dx=I’&)cp(-id= r(n+l-tp)’ 
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where 0 < p < n + 3. Despite the faulty procedure, this result is again correct 
(Gradshteyn and Ryzhik [l, p. 6841; Watson [3, p. 3911). 

(v) For 0 < q < 1, define 

(a; 4)cc = kfjo (1 - aqk) 
and 

I= 
s 

cc tn-’ dt 

0 t-t; 4L’ 
n > 0. 

This integral is one to which Ramanujan refers in his prefatory comments. It 
is actually the particular case a = 0 of the more general integral f(4 = s m  t-y-ut; q)m dt 

t-t; 4)‘n ’ 
14 < 4”, 

0 

discussed by him in [ 133, [ 15, pp. 53-581. As we inferred in our introduction, 
Ramanujan used the Master Theorem to evaluate f(a). In a paper [S], 
[19, pp. 594-5971 immediately following Ramanujan’s paper [13], Hardy 
evaluatesf(u) by contour integration. R. Askey [l] has made a penetrating 
study off(u) and has shown that if n = x and a = qx+y, thenf(u) is the natural 
q-analogue of the beta function B(x, y) discussed in Example (ii). 

We now describe Ramanujan’s proof which is also briefly sketched by 
Hardy [20, p. 1943. Writing 

1 -= 
2 Il/(kEt)k, 

c-t; q)m, k=O 
Itl < 1, 

and using the fact that (1 + t)( -qt; q)m =(-t; q)m, we easily derive the 
recursion formula 

,)(k) = ICltk - ‘) m- k> 1. 

Since G(O) = 1, an inductive argument shows that 

$(k)=(4;V;;),, k>O, 
2 m 

which satisfies the hypotheses of Hardy’s theorem. Hence, by Ramanujan’s 
Master Theorem, or Hardy? theorem, 

Example (a). If n = 1, (1.9) becomes 

(1.9) 
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Example (b). Let n = 2 and replace t by & in (1.9) to find that 

s 

cc dt = lim 241 -P)U -q2-“) 

0 (-$;qL n-2 sin(nn) 

303 

= % - 1) Log 4 
4 . 

Example (c). Letting n = 3 and replacing t by t”3 in (1.9), we deduce that 

s 

m dt = lim 3741 - ql-“)(l - qZ-“)(l -43-y 

0 (-t1’3; 4)m n-+3 sin(nn) 

3(1 - du - q2) Log 4 =- 
q3 

Example (d). Let n = 3, q = a’, and t = x2 in (1.9) to discover the elegant 
identity 

m dx 

s--= 0 (-x2; a2), 

which was first posed as a problem by Ramanujan [6], [15, p. 3261. 
Ramanujan also gives this application in [13], [15, p. SS] and further 
remarks that 

&k - 1)/2 = m 1-.wu2k 
n 

k=l k=l 1 -aZk-l’ 

This result is due to Gauss, and a proof cari be found in G. E. Andrews’ book 
ci, P. 231. 

(vi) In the last example of this section, Ramanujan shows that if a > 0, 
m < 1, and m + n > 0, then 

s 

a, I-(x + a) dx 

I-(x + a + n + l)xrn = 
(1.10) 

0 

The conditions on a, m, and n are needed for the convergence of the integral. 
Also, since 

n 0 (-llk k-“-’ N- 
k l--n) ’ 

as k tends to CO, if n is not a nonnegative integer, the condition m + n > 0 
insures the convergence of the series on the right side. We have not been able 
to find (1.10) in the literature. 
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We now present Ramanujan’s derivation. From (1.6) and (1.5), for x + a, 
n+l>O, 

I-(x + a)I-(n + 1) i 
T(x+a+n+l) = s 

tx+o-i(l -t)” dt 
rJ 

= jgo 4w(-xY? 
provided that 1x1 < a, where 

(1.11) 

Now multiply the left side of (1.11) by x-“’ and integrate over 0 < x < CO. It is 
easily checked that the hypotheses of Hardy’s theorem are satisfied with $(s) 
as given above. Hence, by (1.4), 

s Oz T(x + ay-(n + 1) dx 7Mm - 1) 
o r(x + a + n + l)xm = sin{ 7r( 1 - m)} 

= 71 csc(7cm) f 
n (-l)k 0 ~ 

k=o k (a+ k)“’ 

from which (1.10) is apparent. 

1.6. In the final section of the first report, Ramanujan derives certain 
expansions for four functions by assuming that a type of converse theorem to 
the Master Theorem holds. More specifically, he determines a power series 
for the integrand from the value of the integral. In fact, Ramanujan’s converse 
to the Master Theorem follows from the inversion formula for Mellin 
transforms. Although Ramanujan proceeded formally, a11 of the results that 
he obtains are, indeed, correct. We shah not only give Ramanujan’s argument 
but also indicate a correct proof in each case. 

(i) We first want to expand (2/(1 + ,/l + 4x))” in powers of x when n > 0. 
Let 0 < p < nJ2 and consider 

I=[~xp-‘(l+;&.--)‘dx. 
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Setting x = y + y2 and then y = z/(l - z), we find that 

s 

m 
I= yp-I(l + y)p-“-I(l + 2y) dy 

0 

1 

= 
s 

zp-‘(1 -z)“- Q-I(l + z)dz 
0 

= r(~)r(n - 34 + T(P + l)un - 2~) = mmn - 2~) 

Un - P) r(n -p + 1) qn-P+i) ’ 
where we have employed (1.6). Hence, in the notation of (l.l), cp(p) = 
nI(n + 2P)/I+ + p + 1). Ramanujan thus concludes that 

This result is, indeed, correct. In fact, the restriction that n be positive is 
unnecessary. Of course, one could also establish (1.12) by applying Taylor? 
theorem. Equality (1.12) cari also be found in Corollary 1, Section 14 of 
Chapter 3, where a short proof, based on Example (iv) below, is given. 

(ii) We next wish to expand (x + dm))” in ascending powers of 
x when n > 0. Letting x + Jm = l/&, Ramanujan considers, for 
O<p<n, 

s 
m xp-’ dx 1 1 = ~ 

s 0 (x+J+xzy zp+’ 0 
(1 -y)“- l~(“-p)‘~(l + l/y) dy 

nQW(${n - PI> 
=2p+1r(+{n+p} + 1)’ 

by (1.6). In the notation of the Master Theorem, 

V(P) = 
n2P-‘r(${n + P}) 

F(i{n-p} + 1) . 

Hence, Ramanujan concludes that 

1x1 I 1. (1.13) 

The expansion (1.13) is, in fact, valid for a11 complex values of n. Moreover, 
(1.13) cari be found in Corollary 2, Section 14 of Chapter 3, where a short 
proof based upon Example (iv) below cari be found. 

Now replace n by in and x by ix in (1.13). Recalling that 

sin-’ x = - i Log {ix + JÏ7}, 
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where principal branches are taken, we deduce from (1.13) that 

e nsin-‘x _ m  b,(n)xk 
- 

1+nx+k;21’ 1x1 s 1, 

where, for k 2 2, 

b,(n) = 
n2(n2 + 22)(n2 + 42) ... (n’ + (k - 2)2), if k is even, 

n(n2 + 12)(n2 + 32) ... (n’ + (k - 2)2), if k is odd. 
(iii) Let a 2 0 and let x be the unique positive solution to the equation 

Log x = - ax. For each positive number n, we want to expand X” in 
ascending powers of a. Letting 0 < p < n, a = - (Log x)/x, and then x = e-y, 
Ramanujan finds that 

s 

cc 

0 

ap-lx”da=j;( L*x)~-‘xnl-~wdx 

= s m  yP-yl + &-Y’“-P) dy 

0 

nW 

= (n-p)P+l’ 

Thus, in the notation of the Master Theorem, q(p) = n(n + P)~-‘. Therefore, 
Ramanujan concludes that 

Xn=n -f (n+k)k-1(-4k 
k=O k! ’ 

(1.14) 

Using Stirling’s formula (16), one cari show that the infinite series in (1.14) 
converges for 0 I a I l/e. 

In fact, (1.14) is valid for every real number n and 1 a 1 s l/e. The expansion 
(1.14) cari be found in Chapter 3, Entry 13, where a rigorous proof has been 
given. 

(iv) Consider the trinomial equation 

aqxp + x4 = 1, (1.15) 

where a > 0 and 0 < q < p. We shall find an expansion for x” in nonnegative 
powers of a, where n is any positive real number and x is a particular root 
of (1.15). Ramanujan’s derivation is briefly presented in Hardy’s book 
[20, pp. 194, 1951. 

Choose I SO that 0 < pr < n. Makinn the substitutions a = (1 - y)/(qyp’q) 
and x = yllq, we find that 

s 

a) 

0 

~r-‘xnd~=~~olY~/q(~)‘-l{~ 

-P l 
r+l 

s 4 0 
Y (n-Prvq-l(l -y)* dy 

+Y 
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q’+lr({n -pr}/q +r + 1)’ 

by (1.6). Thus, in the notation of the Master Theorem, 

dr) = nq’-‘U{n + pr}/q) 
r({n + pr}/q -r + 1) ’ 

Hence, Ramanujan concludes that 

n m U{n + pklh)( - dk 
X’=~k=Or({n+pk}/q-k+l)k!’ c (1.16) 

The expansion (1.16) is actually valid for a11 real numbers n, p, and q, and for 
complex a with 

(a[ 5 IpI -yp- ql(ppq)‘q. (1.17) 

Equality (1.16) is stated in Chapter 3, Entry 14, where a legitimate proof is 
given. 

Formulas (1.14) and (1.16) have a very long history. The latter was first 
discovered in 1758 by Lambert [l], while the former was initially Found by 
Euler [4], [6] in 1779. In 1770, Lagrange [l] discovered his famous 
“Lagrange inversion formula,” which cari be found in Whittaker and Watson’s 
treatise [l, p. 1331, and which is sometimes called the Lagrange-Bürmann 
theorem, and as an application derived (1.16). Recall that in the introduction 
to the first report, Ramanujan makes a reference to theorems of Lagrange 
and Bürmann. Ramanujan evidently learned about these theorems from 
Carr’s Synopsis [l, pp. 278-2821, where expansions similar to (1.12) and (1.13) 
are given as applications. Polya and Szego [l, p. 1461 have offered (1.14) and 
(1.16) as exercises illustrating the Lagrange inversion formula. The deri- 
vations of (1.14) and (1.16) in Chapter 3 are developed ab initio, however. 

2. The Second Quarterly Report 

2.1. Ramanujan commences the second quarterly report with two further 
applications of his Master Theorem. 

Example (a). Let 0 < r < 1 and suppose that m is real. Then 

s 
m 

xr-1 T  (k + l)"(-X)k dx = qr)(l - r)m 

0 k=O k! 

In the notation of Ramanujan’s Master Theorem, C~(S) = (s + l)“, and SO 
Hardy? hypotheses are readily seen to be satisfied. Hence, (2.1) follows 
immediately from the Master Theorem. This example is also mentioned in 
Hardy% book [20, p. 1931. 
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Although (2.1) is not found in his notebooks, Ramanujan thoroughly 
discusses the integrand of (2.1) when m is a nonnegative integer in Chapter 3. 
In fact, 

f (k+ l)“(-~)~ = _ e-“cp,+d-4 
k=O k! x ’ 

where C~,(X) is a polynomial of degree n called the nth single variable Bell 
polynomial. 

Ramanujan illustrates (2.1) with four examples which we need not record 
in detail here. The examples are for m = 1 and r > 0, m = 2 and r > 0, m = 71 
and r = 4, and m real and r = f. In the former two cases, the integrands may be 
expressed in terms of elementary functions. 

Example (b). Ramanujan next derives several related expansions by appeal- 
ing to a converse of his Master Theorem, as in the first report. We first expand 
eux in ascending powers of y = eebx sinh(cx)/c, where a, b 2 0 and c > 0. 

Choose n > 0 SO that a + n(b - c) > 0. Letting y = e-bx sinh(cx)/c, consider 

c-b m 

=moe s 

-(a+n(b-c)Jx 
( 

1 _ ,-ZcX)n- 1 dx 

c+b m 

+ Pc)” -4 
,-{a+n(b-c)+2c)x(l -,-2CX)n-1 dx< 

0 

Since for p, q > 0, 

s 
m e-~‘fl _ ,-‘Ix)“-1 dx = ! s 

1 @q-1(1 - ,),-1 dt 
0 4 0 

ww(Plq) 

= mn + P/4)’ 
by (1.6), we find that 

I= 
(c-b)I-(n)T(U+;fd) (c+b)T(n)T(U+n(b;c’+2c) 

“‘;C-4) +(2c~+lr(n+“i”‘Zrc)i2<:) 
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Hence, Ramanujan concludes from the Master Theorem that 

<p(s) = 
u(2cy-‘r(a+Zf-b)) 

r a- s(b + c) 
2c 

+l 
> 

and 

e -nx = a 
: 

k=O 

r(a+;f-b))(2c)l-l 

r a- k(b +c) 

2c 

e - (2.2) 

Now, in fact, (2.2) is really a special case of Example (iv) at the end of 
the first report. In the notation of that example, replace x by eë’, let 
a = eebx sinh(cx)/c, let p = c - b, and let q = 2c. Then a brief calculation 
shows that (1.15) is satisfied. Letting n (in Example (iv)) = a, we find that (1.16) 
reduces to (2.2). Furthermore, by (1.17), the representation in (2.2) converges 
for 

~e-bxs~h(cx)l I,b-c,‘*-c),(2c),b+c,-‘*+‘“‘2”. (2.3) 

Ramanujan next derives an expansion for eax in ascending powers of 
eebx sin(cx)/c. First observe that e - bx sin(cx) is an increasing function on 
[0, x0], where x0 = (l/c) tan-‘(c/b), the point at which ePbx sin(cx) achieves 
its maximum for x 2 0. Thus, at the outset, we restrict our attention to 
0 5 x I x0. Ramanujan proceeds formally and simply by replacing a by -a 
and c by ci in (2.2). Although in Chapter 3 it is assumed that p and q are real, 
the proof of (1.16) cari be easily generalized to allow for complex values of p 
and q. Thus, proceeding as in our derivation of (2.2), we find with Ramanujan 
that 

eax 
r -a + k(ci - b) 

2ci 
(-2ci)k-1 

I- 
( 

-a-k(ci+b) +1 
2ci 

(‘P yx))k 

=l+ 
ue - bs sin(cx) 

c 
+ kr2 ; (ëb’ c”‘““‘)“, 

(2.4) 

provided that the series converges, where, for k 2 2, 

[ a(a+ kb){(u+ kb)‘+(2~)~} {(u+ kb)2 +(4~)~} ... ((a+ kb)2 

dk = 
+(k-2)2c2j, if k is even, 

u{(u + kb)2 + c”} {(a + kb)2 + (3~)~) . . . ((u + kb)’ 
(2.5) 

+(k-2)2~2), if k is odd. 
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By Stirling’s formula (16) (compare also with (2.3)) the series on the right side 
of (2.4) converges when 

A short calculation shows that when x = x0 there is equality above. Thus, 
since eëbx sin(cx) is increasing on [0, x,], (2.4) is valid for 0 I x 5 x0. 

2.2. In this section, Ramanujan derives four corollaries of (2.4). 
Letting b = 0 in (2.4)-(2.6), we find that, for 0 I x I X/(~C), 

a sin(cx) 
““=l+ c 

m uk sin(cx) k 
e +,ck! - ( > c ’ 

where, for k 2 2, 

Uk = 
i 

u2{a2 + (2~)~) {CI’ + (4~)~) ... {u” + (k - 2)2c2}, if k is even, 

u{u2 + c’} {u” + (3~)~) ... {u” + (k - 2)2c2}, if k is odd. 

Letting c tend to 0 in (2.4)-(2.6), we find that, for 0 I x I l/b, 

e 
IIx = u f (a + kb)k-‘xke-kb” 

k=O k! (2.7) 

Ramanujan evidently first learned of this well-known formula in Carr’s book 
[l, p. 2821. The expansion (2.7) cari be used to establish a more general 
theorem due to Abel, found in Car?s Synopsis [l, p. 2821, to which 
Ramanujan refers in his introductory letter to these reports. In a slightly 
different form, (2.7) may be found as (13.8) in Chapter 3. Formula (2.7) is 
stated as a problem in Bromwich’s text [ 1, p. 1601 and is mentioned by Hardy 
[ZO, p. 1941. 

For the third illustration, Ramanujan replaces a by ai and b by bi in (2.4) 
and equates real parts in the resulting equality to obtain an expansion of 
COS(~~) in ascending powers of sin(cx)/c. This procedure is not really justified 
because the primary expansion (1.16) was derived under the assumption that 
n be real. However, we cari deduce Ramanujan’s expansion directly from 
(1.16) in the following manner. Let a = le -ibx sin(cx)/c, p = c - b, and 4 = 2c 
in (1.15) where b 2 0 and c > 0. With x replaced by eeiX, we see that, indeed, 
(1.15) is satisfied. Since we shall expand in powers of e ibx sin(cx), we need to 
restrict x, and SO we add the assumption, 

71 
1x1 I ~ 

2(b + c) ’ 
(2.8) 
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Thus, from (1.16), with n replaced by -a, and (1.17), we find that 

f 
k=O 

I- ( 
-a+(c-b)k 

2c 
(-2cyl 

I- ( 
- a - (c + b)k 

2c 
+l k! 

> 

( ie-ibXTn(cx)) ‘, 

provided that 

< , b _ c 1 (b C)/(~C) ) b + c 1 - (b + C)/@C). 
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(2.9) 

(2.10) 

Equating real parts in (2.9), we deduce Ramanujan’s expansion 

cos(ux) = 1 + 
a sin(bx) sin(cx) 

C 

where, for k 2 2, 

(- l)k’2u(u + kb){(u + kb)2 - (2c)‘}{(u + kb)2 - (4~)~) ... {(u + kb)2 

Uk = 
-(k-2)2c2} cos(kbx), if k is even, 

(- l)‘kP1)‘2u{(u + kb)2 -c’> {(u+ kb)2-(3c)2) ... {(u+ kb)2 

-(k - 2)2c2} sin(kbx), if k is odd, 

provided that x satisfies (2.8) and (2.10). Of course, a similar expansion for 
sin(ux) may be derived. 

Lastly, return to (2.4) and equate the coefficients of a on both sides to 
deduce that 

e bx sin(cx) 
x= 

C 

+k~2~~(e-bx~n(~~)): (2.11) 

where, for k 2 2, 

1 

kb{(kb)2 + (2~)~) {(kb)2 -t (4~)~) ... {(kb)’ 

Wk = +(k - 2)2c2}, if k is even, 
{(kb)’ + c’j {(kb)’ + (3~)~) ... {(kb)2 (2.12) 

+(k - 2)2c2}, if k is odd, 

provided that 0 I x I x0. Similar, but more complicated, expansions cari be 
deduced for higher powers of x. 

2.3. Ramanujan next gives a beautiful application of (2.11) to approximating 
the roots of the transcendental equation 

f (hX3)k e-“+e-m”+e-m2” 
---= 

k=O (3k)! 3 

e -x + 2ex/2 
= cos(xJ3/2) = o 

3 > 
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where w  is a primitive cube root of unity. Thus, 

(2.13) 

By examining the graphs of y = cos(xfi/2) and y = - ) exp( - 3x/2), we see 
that there are an infinite number of positive roots of (2.13). Furthermore, 
these roots are very near the roots 7c(2n + l)/fi of COS(~$/~), where n is a 
nonnegative integer. Setting x = rc(2n + l)/$ - z, we transform (2.13) into 

and then with h = exp( - n(2n + 1)$/2), the equality above may be written 
as 

4 +( - l),+lh = ë3z12 sin 2 
( ) 

We now apply (2.11) with b = 3 and c = $12 to expand z in powers of h. 
Hence, 

z=(-l)“+lh+ f 3 

J3 k=2 k! 

or, by (2.12), 

x = Qn + 1) _ z = 742n + 1) + (- 1) 
J3 J3 J3 h+$h3+7h5 ( 

19 * 21 

+ 37’;:‘43 h7 + 61.63*67.73h, 9, 

qh6+ 
49 - 52 - 57 

7, ha 

+ 76’79;,84’91 h’o + ... 
> 

. 

In view of (2.6), the expansions above converge when 

e- 3z12 sin(z$/2) 

$12 

Since h = exp( - rc(2n + 1)$/2), the aforementioned series converges for each 
n,OIn<co. 
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2.4. The second main theorem in the quarterly reports is a beautiful 
generalization of Frullani’s integral theorem. Employing Ramanujan’s nota- 
tion, let 

f(x) -f( 03) = ,$e u(k)ir ‘)” and g(x) - g( co) = k$O u(k)(ky ‘)*, 

where 

f(m) = lim f(x) and g(o0) = lim g(x), 
x-cc x-CO 

which we assume exist. 

Theorem II. In the notation above, let f and g be continuaus functions on [0, 03). 
Assume that u(s)/r(s + 1) and v(s)/r(s + 1) satisfy the hypotheses of Hardy’s 
theorem. Furthermore, assume that f (0) = g(0) and f (co) = g(c0). Then if a, b 
> 0, 

s 

m 
lim 1, E lim x”- l{ f(ax) - g(bx)} dx 

n-+0+ n+o+ 0 

= {f(O)-f(+$) + $(Lw($))Sz~. (2.14) 

Ramanujan tacitly assumes that the limit cari be taken under the integral 
sign. If f (x) = g(x), Theorem II reduces to 

s Oo f@x) -f(W 
0 X 

dx = {f (0) -f(4) Log $ , 
0 

(2.15) 

since in this instance the limit on n cari always be taken under the integral 
sign. Formula (2.15) is known as Frullani’s theorem and holds for any 
continuous function f such that f (co) exists. Iff(co) does not exist, but f (x)/x 
is integrable over [c, co) for some c > 0, then (2.15) still holds, but with f (co) 
replaced by 0. According to the reports, Ramanujan likely learned of 
Frullani’s theorem from Williamson’s book [l] on integral calculus. Raman- 
ujan was also familiar with the classical text of J. Edwards [2, vol. 2, 
pp. 337-3421 which has a nice section on Frullani’s theorem and some 
generalizations. 

Ramanujan’s proof. Applying the Master Theorem with 0 < n < 1, we find 
that 

s 

a2 
Z” = x”-I((f (ax) -f(a)> - {g(bx) -g(a)>) dx 

0 

= T(ri){a-“u(-n) - b-“u(-n)} 

= lY(n + 1) 
a-%(-n)- b-“v(-n) 

n 
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Letting n tend to 0, we deduce that 

lim 1, = lim 
b”u(n) - du(n) 

Il+0 PI-t0 n 

= lim (b%(n) Log b + b”u’(n) - a%(n) Log a - a%‘(n)} 
Il-0 

= {f(O) -f(m)} Log $ 
0 

+ u’(0) - U’(0) 

(2.16) 

where we have used the fact that u(O) = u(0) =f(O) --f(a). 

Hardy [l], [19, pp. 195-2261 discovered some different beautiful gen- 
eralizations of Frullani’s theorem. His paper contains a plethora of nice 
examples. In fact, Hardy evaluates ad hoc several integrals that fa11 under the 
province of Theorem II withf#g. Although Hardy was unsurpassed in the 
evaluation of integrals, he evidently failed to discover Theorem II. Another 
very interesting generalization of (2.15) was discovered by Lerch [l] and 
essentially rediscovered by Hardy [2], [3], [19, pp. 371-3791. The most 
complete source of information about Frullani’s theorem is a paper of 
Ostrowski [2] which contains much historical information and several 
generalizations and ramifications. His paper [l] is a shorter, preliminary 
version of [2]. However, none of these papers contains Ramanujan’s 
beautiful Theorem II, which evidently has not heretofore appeared in the 
literature. 

2.5. This section is devoted to applications of Theorem II. Example (i) records 
Frullani’s theorem. Al1 of the relevant functions in the next three examples 
satisfy, by Stirling’s formula, the hypotheses of Hardy’s theorem. With each 
application of Theorem II, letting n tend to 0 under the integral sign is easily 
justified. 

(ii) Recalling (1.5) d an using the standard notation $(x) = I’(x)/I(x), we 
find from Theorem II that for a, 6, p, q > 0, 

s 

“(l+ax)-P-(l+bx)-~ 

0 X 
dx=log(;) +$Log(;~;~~;;)s~o 

=Loi($) +zo {&y&}. (2.17) 
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since (see (5.5) of Chapter 6) 

315 

(2.18) 

Ramanujan records four special cases of (2.17): 

s 

“(1+ax)-5-(1+bX)-7dx=LOg b +lJ 

0 X 0 a 30’ 

s 

“(l+ax)~P-(l+bx)~P~ldX~LO~ b +’ 

0 X 0 a P’ 

s 

“(l+ax)-P~l-(l+bx)~p-“dx=Log b 

0 X 0 a 

and 

2(2p + 5)(p2 + 5p + 5) 

+ (P + l)(P + NJ + 3)(p + 4)’ 

s 0 X 

TO calculate the last example employ Leibniz’s series for n/4. 

(iii) By (1.5), (1.12), Theorem II, and (2.18), for a, b, p, q > 0, 

s 

a(l+ax)PP- 
( 

2 ’ 
> l+Jl+bx dx 

0 X 

=Log($) +gLog( d-(q+2s)r(p) ) 
l-(q+s+ l)T(p+s) s=o 

= Lot? f 
0 

+ 211/(q) - $(4 + 1) - 4+(P) 

In particular, 

P 

s 

m (1 +ax)-P- ( 2 

l+JE-Zx > 

0 X 
dx=Log $ -;. 

0 
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(iv) By (1.5), (1.13), Theorem II, and (2.18), for a, b, p, q > 0, 

s 

“(1 +ax)-P-(bx+V/l+hZXZ)-2qdx 

0 X 

42”uq + m-(P) 
r(q + 1 -+s)r(p + s) s=. 

= Log $ 
0 

+ Log 2 + &b(q) + &(q + 1) - $(p) 

In particular, 

s 

“(1 +ax)-p-(bx+,/‘~)-2pdx=Log 

0 X 

Ramanujan remarks that “many other integrals such as 

m  e-ax COSS(~X) - ( 2 

s 

m  emax 
_ (1 + bX)-P dx 

4 

) 

P 

l+Jl+bx dx 
0 X 0 X 

cari be found from Theorem II.” 
Letf,, . . . ,f, be functions such that 

,jll Ckh(O) = 0 = 2 Ckh(~), 
k=l 

where ci, . . . . c, are constants. *Then it is clear from the proof of Theorem II 
that, under suitable conditions, 

s 
cc 

0 
X - l k$l ckf(akx) dx 

cari be evaluated, where a,, . . . , a, > 0. 
James Hafner has kindly shown us that Theorem II cari be significantly 

strengthened. Hafner’s improvement allows Ramanujan’s formula (2.14) to be 
applied to a wider variety of functions (and also for the limit in (2.14) to be 
taken under the integral sign). We now present Hafner’s argument. 

By Frullani’s theorem (2.15), 

s m f@x) - g(bx) dx = s m {f(ax) -f@x)) + {f(W - dbx)} dx 
0 X 0 X 

= {f(o) -f(m)} Log f + 
0 s 

"f(x) ; g(x) dx. 
0 
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By (2.16), it then remains to show that 

s “f(x) ;n(J)dx = - {u’(O) - u’(0)). 
0 

Replacingf(x) - g(x) byf(x), it now suffices to prove the following lemma. (A 
similar result was established by Carlson [l] under stronger hypotheses.) 

Lemma. Suppose that f is analytic in a neighborhood of the nonnegative real 
axis Put 

f(z) = k$o u(k);;z)k, 

for Iz1 suficiently small. Assume that, for some positive number 6, 

s 

cc 
~(X)X -’ dx 

converges uniformly for 1 - 6 < Re(a) < 2. Suppose furthermore that f(0) = 0. 
Then u(s) cari be extended in a neighborhood of s = 0 SO that u is differentiable 
at s = 0 and SO that 

u'(0) = - 
s 

"fOdx (2.19) 
0 x 

Proof. For E > 0 sufficiently small, we shall, in fact, define u by 

u(s) = (2.20) 

and then show that u has the desired properties. (We shall assume that 
principal branches are always taken.) First, observe that ifs is a nonnegative 
integer, (2.20) is valid by Cauchy’s integral formula for derivatives. Sincefis 
analytic in a neighborhood of the positive real axis, by Cauchy’s theorem, 

s 

&Z”’ 
f(z)zps-l dz- “f(z)z-“-’ dz=O, 

s 
O<E<R<KI. 

EP E 

It follows from (2.20) that 

u(s) = 
r(s + l)enis 

2ni 
f (z)z-s-l dz + (eëznis - 1) 

Assuming that - 6 < Re(s) < 1 and using our hypotheses, we find that, upon 
letting E tend to 0 and R tend to CO, 

r(s + l)(e-zis - enis) Oo 
u(s) = 

2ni s 
f(x)x-“-’ dx o 

r(s + 1) sin(7rs) m =- 
7-c s f(x)x -s- l dx. 0 
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From this formula and our hypotheses, it follows that u(s) is analytic in a 
neighborhood of s = 0. Calculating u’(O) from the formula above, we deduce 
(2.19) to complete the proof. 

Many of the integral evaluations found by Hardy [l] do not technically 
fa11 under the domain of Theorem II because the hypotheses are too 
restrictive. However, by using Hafner’s lemma, the use of (2.14) cari be 
justified. For example, 

j~(cosx-$y$L1 

and 

s 

mco~ x-eex2 

0 X 
dx= -7, 

where y denotes Euler’s constant. 

2.6. Ramanujan now returns to his Master Theorem to derive several 
additional corollaries. As mentioned earlier, for brevity, we omit the 
hypotheses which arise from Hardy5 theorem. We shall also Write the integrands 
in terms of power series, as did Ramanujan, even though the series may not 
have an infinite radius of convergence. 

s 

m  

Corollary (i). x”-1 2 cp(w(-X2)k 
(2k)! 

dx = 1-(n)cp( - n) CO~(&T,). 
0 k=O 

Ramanujan’s proof. By the Master Theorem, 

s 

m  
m Xn-l dW( - xl” 
= k! 

dx = T(n)cp( - 24. 
0 k=O 

Replacing x by x2 and n by jn, we find that 

s 

a, 
Xn-l f &W( - x21k 

k! 
dx = +lJ$n)cp( - n). 

0 k=O 

Next replace C~(S) by &)I&)/I(s) to obtain 

s 

cc 
x”-1 m (p(2k)( - x’)~ 

c 
0 k=O (2k)! 

dx = WW( - 3M - n) 
4r(-n) ’ 

from which formula (i) follows. 

Corollary (ii) is simply (1.4) and is also found in Chapter 4, Section 11, 
Corollary 1. 

s ‘22 
Corollary (iii). 

0 
x” - ’ kzo &‘k)( - x2jk dx = 2nfi;;j . 
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Proof. Replace x by x2, s by in, and Il/(s) by (~(2s) in (1.4). 

Corollary (iv). lfr is uny natural number, then 

s 03 
0 

x”-‘$/p(rk)(-~‘)~dx= K?(-n) 
r sm(rrn/r) ’ 

Proof. The proof is similar to that of Corollary (iii), which is obviously a 
special case of Corollary (iv). 

Corollary (v). cos(nx) dx = F <p( -2k - l)( -T?)~. 
k=O 

Ramanujan’s proof. Expand cos(nx) into its Maclaurin series, invert the order 
of integration and summation of this series, and then apply the Master 
Theorem to each term. 

For a rigorous proof of Corollary (v), see Hardy? paper [13], [21, 
pp. 280-2891 or [20, pp. 200, 2013. Corollary (v) is also found in Chapter 4, 
Section 11, Corollary 3. 

Corollary (vi). 

s m f v’k)Ll x)k kzo ‘k(2k)(- n2x2)k dx = k$o $(2k)<p( - 2k - 1)( - n2)k, 
0 k=O . (2k)! 

Ramanujun’s proof. His proof undoubtedly was like that of Corollary (v), 
which clearly is a special case of the present corollary. 

Corollary (vi) is a corollary of formula (E), p. 186, and is discussed and 
proved on pages 202-205 of Hardy’s book [20]. Corollary (vii) is Corollary 4 
in Section 11 of Chapter 4. 

Corollary (vii). 

s om kzo (p(2k)( -x2)k COS(~~) dx = ; ,zo ‘(- k;;)(-n)k. (2.2 1) 

Ramunujun’s proof. By the Cauchy multiplication of power series, 

s om k$o 4W - x2)k cos(nx) dx = 
s 

om ,zo q*CW( - x2Jk dx, (2.22) 

where 

cp*W = c 
m cp(k - 2j)n2j _ 2 cp( -2j)nk+2j 

j=O (W j=l (k+2j)! ’ 
(2.23) 

Note that (2.22) requires the definition of Q* for only even k, but that 
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Ramanujan makes a definition for odd k as well. Now apply Corollary (iii) 
with ut = 1 to the right side of (2.22). Using (2.23), we complete the proof of 
(2.21). 

Ramanujan cautions us that if we expand COS(~~) into its Maclaurin series 
and apply Theorem 1 to each term, we Will not obtain the correct formula in 
Corollary (vii). Moreover, if we replace C~(S) by T(s + l)cp(s) cos(rts/2) in 
Corollary (v), we obtain the same formula as that gotten by expanding 
COS(~~) into its Maclaurin series! Ramanujan’s advice is even more curious 
because he is criticizing the same procedure followed by him in establishing 
Corollary (v). We might therefore be suspicious of Ramanujan’s new line of 
attack delineated above. Indeed, Ramanujan’s argument seems to be objec- 
tionable for at least two reasons. First, there is no apparent reason why ‘p*, 
defined by (2.23), should satisfy the hypotheses of Hardy’s theorem, or even 
Theorem 1. Secondly, the definition of (p* itself invokes skepticism. The 
reader should now be unequivocally convinced that Corollary (vii) could not 
possibly be correct. But, despite our arguments to the contrary, 
Corollary (vii) does appear to be the correct formula! We shall defer our 
argument until after Corollary (viii) which generalizes Corollary (vii). 

Corollary (viii). 

Ramanujan’s proof. Evidently, Ramanujan employed the same type of 
argument that he used to prove Corollary (vii), which is the special case 
I&V) = 1 of Corollary (viii). 

Proof. By Corollary (iii), 

s 

cc 

0 

xs - l,$ (p(2k)( - X2)9X = “,f$ . 

Letting u = n2x2 and employing the Master Theorem, we find that 

s 

a3 
xs-l f vWk)( - n2x21k dx 

0 k=O (2k)! 

n -3 02 
=- 

s 2 0 

us12-1 
kz,, (2k)! 
m G'k)(-4k du 

n -s cc 
=- 

s 2 0 
us/2- 1 f WW-(k + l)(- ulk du 

k=O r(2k + l)k! 

n T(+s)$( - s)r( 1 - 3s) = 
2r(i -s) 

= nes$(-s) c0s(&+-(~), 

(2.24) 

(2.25) 

after a little simplification. 
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With the use of (2.24) and (2.25), we now apply Parseval’s theorem for 
Mellin transforms (Titchmarsh [2, pp. 94, 951) to deduce that, for 0 < c < 1, 

s 
om ,ro (p(2k)( - .2)k f +(2k)( - nZX2)k dx 

k=O (2k)! 

1 

=-s 

c+im 

27ci 
En- 

cmim 2 
‘+sgl-s)$(s- l)I-(1 -s)ds 

= ; kzo nk<p( - k- I)$(k) $$ 

by an application of the residue theorem. This completes the proof. 

We have obviously proceeded very formally above. Besides needing 
hypotheses to invoke Hardy% theorem, we also must require strong con- 
ditions on cp and $ to apply Parseval’s theorem. The last step of our proof 
also supposed that cp and $ have sufficiently mild growth conditions SO that 
we cari integrate around a suitable rectangle with vertices of the form c + iM, 
N + iM and let M and N tend to cc to get the required sum. 

2.7. Ramanujan devotes Section 7 to the inversion formulas for Fourier 
cosine and Fourier sine transforms and some applications thereof. As we shall 
see, he derives these familiar formulas from his Master Theorem. The 
inversion formulae hold if q is of bounded variation on every finite interval in 
[0, CO) and if cp is absolutely integrable over (0, 00) (Titchmarsh [l, pp. 434, 
4351, C2, PP. 16, 171). 

Theorem III. Let n > 0. If 

s 

cc 
q(x) cos(nx) dx = l)(n), 

0 

then 

s 

m I+@X) COS(~~) dx = ;q(n); 
0 

if 

then 
s 

m  

<p(x) sin(nx) dx = $(n), 
0 

s 

om $(x) sin(nx) dx = iv(n). 

(2.26) 

(2.27) 

Ramanujan’s proof. If 
m 

dx) = c 
<p*(W - x)” 

k=O k! ’ 
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then by Corollary (v) in the previous section, we observe that (2.26) holds with 

$(x)=,Eo ‘P*(-2k- l)(-X2)k. 

An application of Corollary (vii) then yields (2.27). 
TO prove the second part of Theorem III, Ramanujan evidently developed 

sine analogues of Corollaries (v) and (vii) and proceeded as above. 

In the applications which follow, except for the last, the hypotheses of the 
aforementioned theorem in Titchmarsh’s books [ 11, [2] are satisfied, and so 
the results are correct. In each example, n >O. 

Example 1. Since 

s 

m 1 
e -x cos(nx) dx = ~ 

0 1 +n2’ 
we have 

s m cos(nx) -dx=5een. 
0 1+x2 

Example 2. Since (Gradshteyn and Ryzhik [l, p. 4901) 

s 

03 
xP-l e -ax cos(nx) dx = 

I(p) COS{~ tan l(n/a)} 

0 (a” + n2)P’2 ’ 

where a, p > 0, then m) s m Cos{ p tan ‘(X/L~)} 

0 (a2 + x2p2 
cos(nx) dx = I nP-‘e-a”. 

Example 3 is the same as Example 2, except that a11 cosines are replaced by 
sines. 

Example 4. First, recall that, for Re a > 0 (Gradshteyn and Ryzhik [l, 
P. 4W), 

s 

03 
e Jn -nz/a -<Ix2 cos(2nx) dx = ~ e 

0 2Ja . 

Setting Im a = b and letting Re a tend to 0, we deduce with the aid of Abel% 
theorem (Bochner and Chandrasekharan [l, p. 351) that 

s 

m  

cos(bx2) cos(2nx) dx = ~ 
0 

and 

s 

m  

0 

sin(bx’)cos,?nx)dx=$sin(i-g). 



Ramanujan’s Quarterly Reports 323 

Replacing x, n, and b by fi, ,f a, and n, respectively, we find that the 
foregoing formulas become, respectively, 

s 

m cos(2JL) cos(nx) 

0 Jx 
and 

s 

m cos(2Jax) sin(nx) 

0 Jx 
dx=Jsin(t-z), 

Ramanujan then invokes Theorem III to conclude that 

and 
s 

ar cos(n/4 - a/x) cos(nx) dx = & 

fi 
- cos(2fi) 

0 2& 

s 

Oo sin(n/4 - a/x) sin(nx) dx = & 

fi 
- cos(2fi). 

0 2& 

Note that cos(2,/&)/J x is not absolutely integrable on [0, CO), and SO the 
aforementioned theorem in Titchmarsh’s text [l, pp. 434, 4351 cannot be 
applied. Nonetheless, these last two evaluations are correct, as cari be verified 
from results in Gradshteyn and Ryzhik’s tables [l, pp. 398, 3991. (The 
formula at the top of p. 399 is incorrect; read - eP zJa6 for + eP “-.) 

In 1952, Guinand [l] discovered that $(x + 1) - Log x is self-reciprocal 
with respect to Fourier cosine transforms, where Il/(x) = P(~)/I(X). It is 
remarked in a footnote Cl, p, 41 that this fact was independently discovered 
by T. A. Brown, who was informed by Hardy that this theorem is found in 
Ramanujan’s quarterly reports. However, such a theorem is not found in the 
reports. 

3. The Third Quarterly Report 

3.1-3.3. After a sentence of introduction to the Board of Studies in 
Mathematics, Ramanujan returns to the conditions under which his Master 
Theorem is valid. He has become concerned about determining C~(X) from its 
values on the set of nonnegative integers. Ramanujan tries to convince us that 
there is always a “natural” continuous function that is determined by its 
values at 0, 1, 2, . . . , but his argument is quite unconvincing. 

3.4-3.6. In these three sections, Ramanujan, for the first time in the reports, 
turns away from his Master Theorem and its ramifications. He discusses the 
ordinary composition of functions and extends this concept to “the fractional 
order of functions.” 
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Define FO(~)=X, F’(x)= F(x), and F”(x)= F(F”-l(x)), n> 2, for any 
function F, where, of course, the range of F”-’ must be contained in the 
domain of F. As a particular example, consider F(x) = uxp, where a, p, x > 0. 
An easy inductive argument shows that 

F”(x) = u(P”- l)/(P- l)xP” (3.1) 

for each nonnegative integer n. Ramanujan now defines F”(x) for a11 real 
numbers n by (3.1). Thus, F l”(x) = CI”(~~+ “xc In general, if there exists a 
formula for F”(x) when n is a nonnegative integer, Ramanujan defines F”(x) 
for a11 real n by the same formula. 

By inducting on m, it is easy to show that F”(F”(x)) = F”+“(x), where m 
and n are arbitrary nonnegative integers. Ramanujan declares that this 
identity remains valid for a11 real numbers m and n. For example, in the 
particular instance mentioned above, it is easily verified that F “‘(F “2(x)) 
= F(x). 

Lemma. Let f  = x- ‘Fx. If  n is a positive integer, then 

f”=x-lF”x, (3.2) 

wkere x-l denotes the inverse function of x. 

This formula is easily established by induction on n. Ramanujan gives a 
more complicated version of (3.2) and assumes that (3.2) is valid for any real 
number n. He concludes Section 6 with several examples illustrating the 
Lemma’s usefulness. 

Example (a). Let F(x) = {a(xm + l)p - l)lim, where a, p, x, m > 0. Then, for 
any real number n, 

F”(x) = {u (P”- l)l(P- lyxm + 1)P” _ ,>l/m. 
(3.3) 

Proof. Let x(x) = x”’ + 1. Then x-‘(x) = (x - 1)““‘. Letting q(x) = UXP, we 
find that F = x- ‘<PI. By (3.2) and (3.1), 

~“(x)~31-~~“X~X-~{u~P”~‘~“P~“{X(X)}P”}, 

from which (3.3) follows. 

Example (b). Let F(x) = x2 - 2, x 2 2. Then 

FL”g3/L“g2(X) cx3 - 3x, 

and 

FLog5/Log2(~) =x5 - 5x3 + 5~. 
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Proof. Set x =y+ l/y. Then F(x)=y2 +yP2, F2(x)=y4 +Y-~, and, in 
general, for n 2 0, 

F”(x) = y2" + y-2" = (x+Jy)2”+ (“-yy”* (3.4) 

The three proposed formulas now follow without difficulty. 

Example (c), (i). If F(x) = x2 + 2x, then for any real number n, 

F”(x) = (x + 1)2” - 1. 

Proof. Let q(x) = x2 and x(x) = x + 1. Then x-‘(x) = x - 1. A short calcu- 
lation shows that F = x-iqq. The proposed result now follows from (3.2). 

Example (c), (ii). If F(x) = x2 - 2x, x 2 3, then for each real number n, 

F”(x) = 1 + 
( 

x-l+Jx2-2x-3 2” 

2 > ( 
+ 

x-l-&rzFT 2” 

2 ). 

Proof: Let ~(X)=X~-2 and x(x)=x- 1. Thus, X-~(X)=X+ 1 and 
F = x- ‘qq. Upon noting that (3.4) is valid with cp in place of F, we apply (3.2) 
to obtain the desired result. 

Example (ch (iii). If F(x) = x2 + 4x, x 2 0, then for each real number IZ, 

F”(x) = 

Proof. If q(x) = x2 - 2 and x(x) = x + 2, then x-‘(x) =x - 2 and F = x-lqx. 
By (3.2) and (3.4), 

F”(x) = 
x+2+pGG x+2-&Tii 

2 2 
- 2. 

After an elementary algebraic calculation, it is seen that the two formulas for 
F”(x) are in agreement. 

Example (d). Let 0 < x 5 1. If 

l+JFq= Jym, 

then 

l+2JFyagyym. 

Proof. If we solve (3.5) for FLog2(x), we find that 

(3.5) 

(34 

G(x)-FLog2(x)= & 2. 
( > 
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Let q(x) = x2 - 2 and x(x) = 2/&. Then x-‘(x) = 4/x2 and x-lqq = G. By 
(3.4), 

Thus, by (3.2), 

FnLog2(x) = G”(x) = 
(1 +$F)2n;(l -$Z)2’i” 

In particular, 

A straightforward calculation now shows that FLog3(x) satisfies (3.6), and SO 
the proof is complete. 

Although the arguments in these three sections have been purely formal, 
the fractional iteration of functions cari be put on a firm basis; see Comtet’s 
book [1, pp. 144-1481. 

3.7-3.9. In Sections 7-9, Ramanujan, inspired by reading Hardy’s tract [6], 
briefly studies orders of infinity. None of Ramanujan’s results is new, but his 
approach seems novel. 

As in Hardy% book [6], 

means that lim,,,f(x)/g(x) = 0, an d we say that g(x) is of an order higher 
than f(x), or f(x) is of an order lower than g(x). The symbol > is defined 
similarly. Thus, 

x<x2<x3< ... 

and 
e”‘>x”>T(x+ l)>e”>x”, 

for every real number n. 
Iterative powers may be defined inductively from the definition ubc = ucbc). 

Let “ex denote the nth iterate of the exponential function. Thus, ‘eX = eX, 
2eX = eex, etc. We also shall Write “e’ = “e. From the ratio test, it cari be seen 
that 
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converges for every x. Furthermore, f(x)>“e” for each positive integer n. 
On the other hand, by a clever construction, Ramanujan next shows that 

there exist functions tending to cc slower than any iterate of the logarithmic 
function. (This is actually a consequence of a theorem of du Bois- 
Reymond found in Hardy’s tract [6, p. 81.) Define Log, x = Log x and 
Log, x = Log(Log, r x), n 2 2. 

Theorem IV. There exists a function f such thatf(x) < Log,xfor each positive 
integer n. 

Proof. Let C~(X) be any positive, continuous function such that <p(O) = 1 and 
X<~(X) = cp(Log x), x > 0. Define u0 = ~(1) = 1 and u, = <p(“e), n 2 1. Let 

s 

1 
q(x) dx = C. 

0 

From the definition of cp it follows that 

and, in general, for n 2 2, 

s 

n+ 1, 
<p(x) dx = 

“e s 

“+%(Log 4 dx = 

“e X s 

“e 
C~(X) dx = C, (3.7) “_, 

e 

by induction. Thus, 

f(x) = x<p(t) dt 
s 0 

tends to cc as x tends to 00. By L’HÔpital’s rule, 

,im f(x) - = lim <p(x)x Logx Log, x ... Log,-, x 
x+cc Log,x x-tm 

= lim <p(Log x) Log x Log, x ... Log,- r x 
x-cc 

= lim cp(Log,x) Log,x ... Log,- r x 
x-rcc 

= . . . = lim <p(Log, x) = 0, 
x-tm 

i.e., f(x) < Log, x for every positive integer n. 

Sincef(x) tends to CO as x tends to CO, the series 
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diverges by the integral test. Ramanujan claims that @ diverges SO slowly that 
the sum of 102000000 terms does not exceed 5. This claim is meaningless 
unless C is specified. Note that n = 5 is the least positive integer such that 
“e > 102000000. Then by a familiar geometrical argument from calculus, 

~02000000 

s 

1 @mm30 

s 

5, 
& cpw < 1 + q(x) dx < 1 + q(x) dx = 1 + 5c, 

1 1 

by (3.7). Thus, if C I 2, Ramanujan’s claim is justified. 
TO further illustrate slowly divergent series, Ramanujan remarks that 

1029 

1 -LT 
k=2 k Log k 

Indeed, Hardy [6, p. 611 and Boas [l, p. 2441, [2, p. 1561 have shown that 
1.3 x 1029 terms are required to exceed 5. 

In Section 9, Ramanujan discusses “scales of infinity.” Thus, x, xl/*, x1/3, 
and x1j4 belong to the “ordinary scale,” and Log x, (Log X)I/~, and Log, x are 
in the “logarithmic scale.” Iffis any member of one scale and g is any member 
of another distinct scale, then f <g always or g<f always. Using an 
argument similar to the proof of Theorem IV, Ramanujan attempts to show 
that the number of scales is infinite, which again is a consequence of du 
Bois-Reymond’s theorem. However, Ramanujan’s attempted proof is flawed 
in several respects. 

3.10. Ramanujan now returns to the topic of fractional composition of 
functions. His main task is to expandf’(x) as a power series in r. As before, 
Ramanujan’s procedure is not rigorous. 

Some of this material is found at the beginning of Chapter 4. Thus, the first 
part of our description here Will be rather brief. 

Write 

j-‘(x) = ,zo q. (34 

Putting Y = 0, we find that x =~O(X) = $o(x). Ramanujan next shows that 

(3.9) 

from which it cari easily be deduced that en(x) = $i(x) d$,-,(x)/dx, n 2 1. 
(See the proof of Entry 4 in Chapter 4.) Thus, in order to calculate the 
expansion (3.8), we need only to determine $i(x). 

Ramanujan’s determination of @i(x) is quite interesting but not rigorous. 
Let F(x) be a solution of 

F(x) =f’(xFtf(x)~~ (3.10) 
and let 

s 

f(x) 
C(x) = F(t) dt. 

x 
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By differentiating C(x) and employing (3.10) we find that C(x) is independent 
of x, and SO we Write C(x) = C. Now for each integer n 2 1, 

s f “cd f”(X) f”’ ‘(-4 
F(t) dt = s F(t) dt. 

f n- ‘(x) 
f”- ,( 

x 
,f’WifW} dl = s f”(x) 

Hence, for each positive integer r, 

s 

f’(X) 
F(t) dt = rC. (3.11) 

x 

But now Ramanujan differentiates (3.11) with respect to Y. Using (3.9), he finds 
that 

Il/l(X) F F{f’(x)} = C. (3.12) 

By a repeated use of (3.10) along with the chain rule, Ramanujan next finds 
that, for each positive integer r, 

F(x) = F F{f*(x)). 

Comparing (3.12) and (3.13) we deduce that I++~(X) = CIF(x). As previously 
shown, this enables Ramanujan to determine the series (3.8). 

3.11. As a natural outgrowth of his study of the fractional composition of 
functions, Ramanujan briefly studies fractional differentiation in Section 11. 
For each nonnegative integer n, let D”~(X) = f’“‘(x). Ramanujan assumes that 
there exists a unique, “natural” function of n passing through the points 
DOf(x), W(x), ~Y(x), . . . > and in this rather imprecise fashion defines 
fractional derivatives of fi As an example, consider f(x) = eax. For each 
nonnegative integer n, 

Dneax = a”&‘“, (3.14) 

and SO it is natural to define the nth derivative of eax for any real number n by 
(3.14). It is interesting that Liouville in 1832 began his study of fractional 
differentiation in this same manner. (See an article by Ross Cl].) 

Theorem V. Zf n > 0, then 

s 

CO 
x”- ‘f(*)(a - x) dx = r(n)f”-“‘(a), 

0 

(3.15) 

where f (k)(t) denotes the kth fractional derivative of& 

Ramanujan points out that Theorem V cari actually be used to dejine the 
fractional derivative f . (k) Let r be any nonnegative integer greater than k and 
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let n = r - k. Thus; n > 0, and by (3.15), 

s 

03 
X” - ‘f”‘(U - x) dx = I-(n)f’k’(a). 

0 
(3.16) 

Since the left side of (3.16) has a definite meaning from elementary calculus, 
(3.16) cari be used to define the fractional derivativefck)(a) for any real number 
k. It is remarkable that (3.16) is precisely the same definition that Liouville 
gave for the fractional derivativefck’(a) (Ross [ 1, p. 6, equation (7)]). 

Ramanujan’s deduction of (3.15) is purely forma1 and amazingly simple. As 
we shall see below, he deduces (3.15) from his Master Theorem! 

Ramunujun’s proof. By Taylor’s theorem and the Master Theorem, 

s 
cc 

Xn-lf(r)(u _ x) dx = 

0 s 

m y-1 f f(r+k)(;;(-X)k dx 

0 k=O 

= 1-(n)pyu). 

Corollary. We huoe 

s 
& omj-(r)(u - x2) dx = +“- “2’(a). 

Proof. Set n = 3 and replace x by x2 in (3.15). 

For an introduction to fractionai calculus, see the book by Oldham and 
Spanier [l]. An informative historical account of fractional calculus and 
many of its applications cari be found in a book edited by Ross [l]; for 
another historical account, see Ross’s paper [2]. 

3.12. In Section 12, Ramanujan indicates how operators cari be formally 
employed to deduce various types of formulas. As at the beginning of the 
third report, Ramanujan incorrectly asserts that a function cari be uniquely 
determined from its values on the set of nonnegative integers in order to 
justify his methods. 

As is customary, the difference operator A”, n 2 1, is defined as 
follows. Define A~(X) =f(x + 1) -f(x) and A”‘(x) = A(A”-‘f(x)), n 2 2. Let 
E = Z + A, where 1 is the identity operator. Then E”V(O) = q(n) for any non- 
negative integer n. Ramanujan assumes that the last equality is valid for any 
real number n and deduces that 

q(n) = E”cp(O) = (1 + A)“cp(O) = f 
0 

n Akq(0), 
k=O k 

which cari be thought of as an infinite version of Newton’s interpolation 
formula (Abramowitz and Stegun [l, p. 8801). We make no attempt to justify 
this forma1 process. 

Ramanujan prefaces his next application by declaring that, “If a result is 
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true only for real values of a quantity (say a), then the result got by using the 
operator for a is true only if when the new function cari be expressed in terms 
of the original function . . ..” As an illustration, Ramanujan considers 

s m cos(ux) -.-dx+-‘=, 
0 x2+1 

which is valid only for (nonnegative) real values of a. Multiplying both sides 
by C~(O) and replacing a by the differential operator D, we get 

s m cos(Dx) 
~ q(O) dx = 5 e pDcp(O). 

0 x2+1 

Now 

cos(Dx)cp(O) = e 
iDx + ,-iDx 

2 4-J 

=+ 
= k! 

m (~Dx)~ + (- ~Dx)~ cp(o) 

k=O 

_ l f ciXJk + ( - iX)k q(k)(o) = dix) + dmix) 
2 

k=O k! 2 . 

Similarly, emDq(0) = cp( - 1). Thus, (3.17) cari be written in the form 

s 

Oo cp(ix) + cp( - ix) 

0 2(x2 + 1) 
dx=;<p(-1), 

(3.17) 

(3.18) 

which Ramanujan claims is valid only when <p(ix) + cp( - ix) cari be written as 
a linear combination of cosines. Observe that, in fact, (3.18) is really a special 
instance of Corollary (viii) in the second report. 

Ramanujan continues the remarks quoted above by asserting that, “But if 
a result is true for complex values of a then we cari freely use the operators 
. . . . ” TO elucidate this principle, consider 

s 

00 
xneleëox dx = u-T(n), 

0 

which is valid when Re(n), Re(u) > 0. Multiply both side by C~(O) and replace a 
by the operator E. Since E*cp(O) = q(r), 

s 
m 

Xn-l f wwkdO) dx 

0 k=O k! 

m  
m cp(M-x)k = 

s 

x”-1 

= k! 
dx = T(n),!? -“q(O) = I-(n)rp( - n), 

0 k=O 

and SO another “proof” of the Master Theorem is obtained. 
Ramanujan applies operators in two more instances to rederive the result 

of Example (iv) in the first report and Theorem III in the second report. 
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3.13. Section 13 is devoted to the delineation of some results that are 
described more fully in Ramanujan’s paper [13], [15, pp. 53-581. First [15, 
P. 541, 

s 
Oo 1 1-(a + ix) 1 2 cos(2nx) dx = &,k(u)I-(a + 4) sech2a n , 

0 

where a > 0. By the Fourier cosine inversion formula of Theorem III, 

s Oo cos(2nx) dx = $1 T(a + in) 2 
ocosh2”x 2r(q-(a +$ 

(3.19) 

Letting a = 9 and using the fact that II(+ + iy)l 2 = IZ sech(rcy) (Gradshteyn 
and Ryzhik [l, p. 937]), we find from (3.19) that 

s m cos(nx) dx = 4n2 + l)(n’ + 9) 
o cosh5 x 48 cosh(rrtn/2) ’ 

Replacing a by 1 - a in (3.19) and using an infinite product representation for 
cosh(2rcn) - CO~(~~CU) (Gradshteyn and Ryzhik Cl, p. 37]), we find after some 
manipulation and simplification that, for 0 < a < 1, 

s 

“cos(2nx) dx 
o cosh2’ x s 

co cos(2nx) dx = 7c sin(27cu) 
o cosh2” -‘) x 2(1- 2u){cosh(2nn) - CO~(~~CU)) ’ 

3.14. Let a, h, n > 0. First, 

s 

h h 
e -<Ix COS(~~) dx = Re 

s 

eë(‘+ni)x dx 
0 0 

a(1 -eeah Cos(h)} + ne-Oh sin(hn) ZZZ 
u2 + n2 

Secondly, using some integral evaluations in Gradshteyn and Ryzhik’s tables 
[l, p. 406, Section 3.723, formulas 2,3], we find that 

s 

m a(1 -e-Oh COS@~)} + xemah sin(hx) 
COS(~~) dx 

0 2+x2 

s m cos(nx) -ah 

= -dx-+ 

0 u2+x2 s 

cc cos{(h + n)x} dx 

0 u2+x2 

ue -ah 

s 

m  cos{(h-n)x} dx 

2 0 a2+x2 
x sin{(h+n)x} dx 

u2+x2 

x sin{(h - n)x} dx 
u2+x2 
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71 71 
S-e 

2 
-an - -e 

4 
-ah-4-4 + sgn(h _ ,+oh-alh-“1 

Using differential operators in a manner like that in (3.17) and employing the 
calculations above and similar calculations with COS(~~) replaced by sin(nx), 
Ramanujan deduces the following theorem. 

Theorem VI. Let n > 0. Zf 

then 

$(n) = 
s 

h q(x) cos(nx) dx, 
0 

s 

b-d2Mn), if n < h, 

m I)(X) cos(nx) dx = (z/4)(p(n), if n = h, 
0 

0, ifn > h; 

if 

then 

s 

h 

Il/(n) = q(x) sin(nx) dx, 
0 

s 
W%44, if n < h, 

m $(x) sin(nx) dx = (n/4)cp(n), if fn = h, 
0 

0, ifn>h. 

Now, in fact, Theorem VI follows from the Fourier integral theorem 
(Titchmarsh [2, pp. 16, 171, [l, pp. 432-435-J) and is valid when cp is 
continuous and of bounded variation on [O, h]. 

3.15. Several of the formulas in this final section have been discussed by 
Hardy [ZO, pp. 187, 206-2091 who regarded them as examples of 
Ramanujan’s formalistic thinking. Like Hardy, we shall make no attempt to 
justify the forma1 analysis. 

Theorem VII. Suppose that F and f satisfy either 

s 

m F(ax)f (bx) dx = &, a, b > 0, 
0 
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(b) 
s 

w~p-lF(~) dx m x-y(x) dx = 71 
0 s 0 sin(7cp) ’ 

(4 
then 

s m cp(x)${F(nxi) + F( -nxi)} dx = $(n), 
0 

(4 
s 

m $(x)f{f(nxi) +f( - nxi)} dx = t q(n), 
0 

O<p<l. 

n > 0, 

n > 0. 

Ramanujan’s proof. Ramanujan’s argument is not logically consistent with 
the formulation of his theorem. He really proceeds as follows. 

Set 

Il/(x) = ,zo $*mN - x21k, 

‘x f*(k)( - xlk 
and f(x) = c k, . 

k=O 

Suppose that e*(r) = F*(r)q*(-r- 1) and f*(r)F*( -r- 1) = 1. Then he 
proues (a), (b), (c), and (d) in turn. 

Formulas (c) and (d) are then just reformulations of Corollaries (vi) and 
(viii), respectively, in Section 2.6. Hardy [20, p. 2061 has related Ramanujan’s 
forma1 proof of (a), and SO we omit it. TO obtain (b), simply apply 
Ramanujan’s Master Theorem to each of the two integrals and then use the 
hypothesis F*( -r)f*(r - 1) = 1. 

The third quarterly report concludes with five corollaries of Theorem VII. 
For the first application, let F(x) =f(x) = ePx. Then 

s 

00 1 
e-axe-bx dx = - a, b > 0. 

0 a+b’ 

Thus, Theorem VII yields a restatement of the Fourier cosine inversion 
formula of Theorem III. 

Corollary 2. Let n > 0. Zf 

s m dx) 
o l-n*x* 

dx = vW4 

then 

s m W) 
o l-12*x2 

dx = G q(n). 
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Ramanujan’s pro@ Let F(x) = l/(l + x2) andf(x) = 2F(x)/7c. Then 

dx 1 
(1 + a2x2)(1 + b2x2) =Ta 

a, b > 0. 

Applying Theorem VII, we readily deduce the desired result. 

For conditions under which Corollary 2 is valid, see Titchmarsh’s book 
[2, Chapter 8, esp. p. 219, paragraph (lO)]. 

The next corollary gives the inversion formula for Hankel transforms. 
Consult Titchmarsh’s treatise [2, pp. 240-2421 for conditions which insure 
the validity of Corollary 3 and for a proof. Even if v is an integer, it does not 
appear that Corollary 3 cari be derived from Theorem VII. Ramanujan is 
quite vague on the origin of Corollary 3. 

Corollary 3. Let n > 0. Zf 

s 

03 
w(x)J&x) dx = Il/@), 

0 

then 

s 

m 
x+(x)J,W) dx = d4, 

0 

where J, denotes the ordinary Bessel function of order v. 

Corollary 4. If or/m = (n - p)/n = p, where m, n > 0 and 0 <p < 1, and 

s 

m F(ax) f (bx) dx = A, a, b > 0, 
0 

then 

s 
6) 

s 
a, 

xa-lF(xm) dx xB- tf(x”) dx = ’ 
0 0 mn sin(np)’ 

Corollary 4 is easily derived from formula (b) of Theorem VII. (Again, we 
emphasize that Theorem VII is illogically formulated.) Corollary 5 is the 
special instance of Corollary 4 when m = n = 2, CI = /? = 1, and p = 4. 

Corollary 5. Zf 

s 

cc 

0 

F(ax) f (bx) dx = A, 

then 

{:F(x”)dxj;f(x’)dx=;. 



336 Ramanujan’s Quarterly Reports 

Conclusion 

Although Ramanujan did not fully develop many of the ideas in his quarterly 
reports, he discovered the basic underlying formulas for several theories, most 
of which were developed earlier but some of which evolved later. It is rather 
remarkable that Ramanujan’s formulas are almost invariably correct, even 
though his methods were generally without a sound theoretical foundation. 
His amazing insights enabled him to determine when his forma1 arguments 
led to bona fide formulas and when they did not. Perhaps Ramanujan’s work 
contains a message for contemporary mathematicians. We might allow our 
untamed, forma1 arguments more freedom to roam without worrying about 
how to return home in order to find new paths to the other side of the 
mountain. 
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