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FOREWORD

In the summer of 1937, when I was a young college student, I was
studying calculus by going through my father's book Differential and
Integral Calculus with him. T believe that is when he first conceived of
writing an elementary book on the ideas and methods of mathematics
and of the possibility that 1 might help with such a project.

The book, What is Mathematics?, evolved in the following years. I
recall participating in intensive editing sessions, assisting Herbert Rob-
bins and my father, especially in the summers of 1940 and 1941.

When the book was published, a few copies had a special title page:
Mathematics for Lori, for my youngest sister (then thirteen years old).
A few years later, when I was about to be married, my father challenged
my wife-to-be to read What Is Mathematics. She did not get far, but she
was accepted into the family nonetheless.

For years the attic of the Courant house in New Rochelle was filled
with the wire frames used in the soap film: demonstrations deseribed in
Chapter VII, §11. These were a source of endless fascination for the
grandchildren. Although my father never repeated these demonstrations
for them, several of his grandchildren have since gone into mathematics
and related pursuits.

No really new edition was ever prepared since the original publica-
tion. The revised editions referred to in the preface were essentially
unchanged from the original except for a few corrections of minor er-
rors and misprints; all subsequent printings have been identical to the
third revised edition. In his last years, my father sometimes talked of
the possibility of a major modernization, but he no jonger had the energy
for such a task.

Therefore I was delighted when Professor Ian Stewart proposed the
present revision. He has added commentaries and extensions to several
of the chapters in the light of recent progress. We learn that Fermat's
Last Theorem and the four-color problem have been solved, and that
infinitesimal and infinite quantities, formerly frowned upon as fawed
concepts, have regained respectability in the context of “nonstandard
analysis.” (Once, during my undergraduate years, I used the word “in-
finity,” and my mathematics professor said, I won't have bad language
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in my class!”) The bibliography has been extended to thé present. We
hope that this new edition of What Is Mathematics? will again stimulate
interest among readers across a broad range of backgrounds.

Emest D. Courant
Bayport, N. Y.
September 1995
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PREFACE TO THE SECOND EDITION

What Is Mathematics? is one of the great classics, a sparkling collec-
tion of mathematical gems, one of whose aims was to counter the idea
that “mathematics is nothing but a system of conclusions drawn from
definitions and that must be i but otherwise may be
created by the free will of the mathematician.” In short, it wanted to put
the meaning back into mathematics. But it was meaning of a very dif-
ferent kind from physical reality, for the meaning of mathematical ob-
jects states “only the relationships between mathematicaily ‘undefined
objects’ and the rules governing operations with them.” It doesn’t matter
‘what mathematical things are: it’s what they do that counts. Thus math-
ematics hovers uneasily between the real and the not-real; its meaning
does not reside in formal abstractions, but neither is it tangible. This
may cause problems for phllosophers who like tidy categories, but it is
the great strength of h hat I have el h called its
“unreal reality.” Mathematics links the abstract world of mental con-
cepts to the real world of physical things without being located com-
pletely in either.

1 first encountered What Is Mathematics? in 1963. 1 was about to take
up a place at Cambridge University, and the book was recommended
reading for prospective mathematics students. Even today, anyone who
wants an advance look at university mathematics could profitably skim
through its pages. However, you do not have to be a budding mathe-
matician to get a great deal of pleasure and insight out of Courant and
Robbins's masterpiece. You do need a modest attention span, an interest
in mathematics for its own sake, and enough background not to feel out
of your depth. High-school algebra, basic caiculus, and trigonometric
functions are enough, although a bit of Euclidean geometry helps.

One might expect a book whose most recent edition was prepared
nearly fifty years ago to seem old-fashioned, its terminology dated, its
viewpoint out of line with current fashions. In fact, What Is Mathemat-
ics? has worn amazingly well. fts emphasis on problem-solving is up to
date, and its choice of material has lasted so well that not a single word
or symbol had to be deleted from this new edition.

In case you imagine this is because nothing ever changes in mathe-
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matics, 1 direct your attention to the new chapter, “Recent Develop-
ments,” which will show you just how rapid the changes have been. No,
the book has worn well because although mathematics is still growing,
it is the sort of subject in which old discoveries seldom become obso-
lete. You cannot “unprove” a theorem. True, you might occasionally find
that a long-accepted proof is wrong-——it has happened. But then it was
never proved in the first place. However, new viewpoints can often ren-
der old proofs obsolete, or ofd facts no longer interesting. What Is Math-
ematics? has worn well because Richard Courant and Herbert Robbins
displayed impeccable taste in their choice of material.

Formal mathematics is like spelling and grammar—a matter of the
correct application of local rules. Meaningful mathematics is like jour-
nalism—it tells an interesting story. Unlike some journalism, the story
has 1o be true. The best mathematics is like literature-—it brings a story
to life before your eyes and involves you in 1t intellectually and emo-
tionally. Math: i What Is Math ! is a very lit-
erate work. The main purpose of the new chapter is to bring Courant
and Robbins’s stories up to date—for example, to describe proofs of
the Four Color Theorem and Fermat's Last Theorem. These were major
open problems when Courant and Robhins wrote their masterpiece, but
they have since been solved. 1 do have onre genuine mathematical quib-
ble (see §9 of “Recent Developments™). I think that the particular issue
involved is very much a case where the viewpoint has changed. Courant
and Robbins's argument is correct, within their stated assumptions, but
those assumptions no longer seem as reasonable as they did.

I have made no atterpt to introduce new topics that have recently
come to prominence, such as chaos, broken symmetry, or the many
other intriguing mathematical inventions and discoveries of the late
twentieth century. You can find those in many soure in particular my
book From Here to Infinity, which can be seen as a kind of companion-
piece to this new edition of What Is Mathematics?. My rule has been to
add only material that brings the original up to date-—although I have
bent it on a few occasions and have been tempted to break it on others.

What Is Mathematics?

Unique.

Ian Stewart
Coventry
June 1995




PREFACE TO THE REVISED EDITIONS

During the last years the force of events has led to an increased de-
mand for mathematical information and training. Now more than ever
there exists the danger of frustration and disillusionment unless stu-
dents and teachers try to look beyond mathematical formalism and ma-
nipulation and to grasp the real essence of mathematics. This book was
written for such students and teachers, and the response 1o the first
edition encourages the authors in the hope that it will be helpful.

Criticism by many readers has led to numerous corrections and im-
pro . For help with the jon of the third revised
edition cordial thanks are due to Mrs. Natascha Artin.

R. Courant
New Rochelle, N. Y.
March 18, 1943
October 10, 1945
October 28, 1947




PREFACE TO THE FIRST EDITION

For more than two thousand years some familiarity with mathematlcs
has been ded as an indk ble part of the } 1
of every cultured person. Today the traditional place of mathematics in
education is in grave danger. Unfortunately, professional representa-
tives of ics share in the re ibility. The teaching of math-
ematics has sometimes degenerated into empty drill in problem solving,
which may develop formal ablhty but does not lead to real understand-
ing or to greater dence. ical research has
shown a tend toward overspecialization and o is on ab-
straction. Applications and connections with other fields have been ne-
glected. However, such conditions do not in the least justify a policy of
retrenchunent. On the conirary, the opposite reaction must and does
arise from those who are aware of the value of intellectual discipline.
Teachers, students, and the educated public demand constructive re-
form, not resignation along the line of least resistance. The goal is gen-
uine comprehension of mathematics as an organic whole and as a basis
for scientific thinking and acting.

Some splendid books on biography and history and some provocative
popular writings have stimulated the latent general interest. But knowl-
edge cannot be attained by indirect means alone. Understanding of
mathematics cannot be tr itted by painless entertai any more
than education in music can be brought by the most brilliant journalism
to those who never have listened intensively. Actual contact with the
content of living mathematics is necessary. Nevertheless technicalities
and detours should be avoided, and the presentation of mathematics
should be just as free from emphasis on routine as from forbidding
dogmatism which refuses to disclose motive or goal and which is an
unfair obstacle to honest effort. It is possible to proceed on a straight
road from the very elements to vantage points from which the substance
and driving forces of modern mathematics can be surveyed.

The present book is an attempt in this direction. Inasmuch as it pre-
supposes only knowledge that a good high school course could impart,
it may be regarded as popular. But it is not a4 concession to the danger-
ous tendency toward dodging all exertion. It requires a certain degree
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of intellectual maturity and a willingness to do some thinking on one’s
own. The book is written for beginners and scholars, for studenis and
teachers, for philosophers and engineers, for class rooms and libraries.
Perhaps this is too ambitious an intention. Under the pressure of other
work some comproniise had to be made in publishing the book after
many years of preparation, yet before it was really finished. Criticism
and suggestions will be welcomed.

At any rate, it is hoped that the book may serve a useful purpose as
a contribution to American higher education by one who is profoundly
grateful for the opportunity offered him in this country. While respon-
sibility for the plan and philosophy of this publication rests with the
undersigned, any credit for merits it may have must be shared with
Herbert Robbins. Ever since he became associated with the task, he has
unselfishly made it his own cause, and his collaboration has played a
decisive part in completing the work in its present form.

Grateful acknowledgement is due to the help of many friends. Dis-
cussions with Niels Bohr, Kurt Friedrichs, and Otto Neugebauer have
influenced the philosophical and historical attitude; Edna Kramer has
given much constructive criticism from the standpoint of the teacher;
David Gilbarg prepared the first lecture notes from which the book orig-
inated; Ernest Courant, Norman Davids, Charles de Prima, Alfred Hom,
Herbert Mintzer, Wolfgang Wasow, and others helped in the endless task
of writing and rewriting the manuscript, and contributed much in im-
proving details; Donald Flanders made many valuable suggestions and
scrutinized the manuscript for the printer; John Knudsen, Hertha von
Gumppenberg, Irving Ritter, and Otto Neugebauer prepared the draw-
ings; H. Whitney contributed to the collection of exercises in the appen-
dix. The General Education Board of the Rockefeller Foundation
generously supported the development of courses and notes which then
became the basis of the book. Thanks are also due to the Waverly Press,
and in particular Mr. Grover C. Orth, for their extremely competent
work; and to the Oxford University Press, in particular Mr. Philip Vaud-
rin and Mr. W. Oman, for their encouraging initiative and codperation.

R. Courant
New Rochelle, N. Y.
August 22, 1941




HOW TO USE THE BOOK

‘The book is written in a systematic order, but it is by no means nec-
essary for the reader to plow through it page by page and chapter by
chapter. For example, the historical and philosophical introduction
might best be postponed until the rest of the book has been read. The
different chapters are largely independent of one another. Often the
beginning of a section will be easy to understand. The path then leads
gradually upward, becoming steeper toward the end of a chapter and in
the supplements. Thus the reader who wants general information rather
than specific knowledge may be content with a selection of material
that can be made by avoiding the more detailed discussions.

The student with slight mathematical background will have to make
a choice. Asterisks or small print indicate parts that may be omitted at
a first reading without seriously impairing the understanding of subse-
quent parte Moreover, no harm will be done if the study of the book is
confined to those sections or chapters in which the reader is most in-
terested. Most of the exercises are not of a routine nature; the more
difficult ones are marked with an asterisk. The reader should not be
alarmed if he cannot solve many of these.

High school teachers may find helpful material for clubs or selected
groups of students in the chapters on geometrical constructions and on
maxima and minima.

It is hoped that the book will serve both college students from fresh-
man to graduate level and professional men who are genuinely inter-
ested in science. Moreover, it may serve as a basis for college courses
of an unconventional type on the fundamental concepts of mathematics.
Chapters 111, IV, and V could be used for a course in geometry, while
Chapters VI and VI together form a self-contained presentation of the
calculus with emphasis on understanding rather than routine. They
could be used as an introductory text by a teacher who is willing to
make active contributions in supplementing the material according to
specific needs and especially in providing further numerical examples.
Numerous exercises scattered throughout the text and an additional
coliection at the end should facilitate the use of the book in the class
room.

1t is even hoped thai the scholar will find something of interest in
details and in certain elementary discussions that contain the germ of a
broader development.




WHAT IS MATHEMATICS?

Mathematics as an expression of the human mind reflects the active
will, the contemplative reason, and the desire for aesthetic perfection.
Its basic elements are logic and intuition, analysis and construction,
generality and individuality. Though different traditions may emphasize
different aspects, it is only the interplay of these antithetic forces and
the struggle for their synthesis that constitute the life, usefulness, and
supreme value of mathematical science.

Without doubt, all mathematical development has its psychological
roots in more or less practical requirements. But once started under the
pressure of necessary applications, it inevitably gains momentum in it-
self and transcends the confines of imumediate utility. This trend from
applied to theoretical science appears in ancient history as well as in
many coniributions to modermn math ics by i and ici:

Recorded mathematics begins in the Orient, where, about 2000 B.C.,
the Babylonians collected a great wealth of material that we would clas-
sify today under elementary algebra. Yet as a science in the modern
sense mathematics only emerges later, on Greek soil, in the fifth and
fourth centuries B.C. The ever-increasing contact between the Orient
and the Greeks, beginning at the time of the Persian empire and reaching
a climax in the period following Alexander’s expeditions, made the
Greeks familiar with the achievements of Babylonian mathematics and
astronomy. ics was soon subj d to the philosophical dis-
cusston that flourished in the Greek city states. Thus Greek thinkers
became conscious of the great difficulties inherent in the mathematical
concepts of continuity, motion, and infinity, and in the problem of mea-
suring arbitrary quantities by given units. In an admirable effort the
challenge was met, and the result, Eudoxus’ theory of the geometrical
continuurs, is an achievement that was only paralieled more than two
thousand years later by the modern theory of irrational numbers. The
deductive-postulational trend in mathematics originated at the time of
Eudoxus and was crystallized in Euclid's Elements.

However, while the theoretical and posfulational tendency of Greek
mathematics remains one of its important characteristics and has ex-
ercised an enormous influence, it cannot be emphasized too strongly
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that application and connection with physical reality played just as im-
portant a part in the mathematics of antiguity, and that a manner of
presentation less rigid than Euclid’s was very often preferred.

1t may be that the early discovery of the difficulties connected with
“incommensurable” guantities deterred the Greeks from developing the
art of numerical reckoning achieved before in the Orient. Instead they
forced their way through the thicket of pure axiomatic geometry. Thus
one of the strange detours of the history of science began, and perhaps
a great opportunity was missed. For almost two thousand years the
weight of Greek ical tradition the inevitable evolution
of the number concept and of algebraic manipulation, which later
formed the basis of modern science.

After a period of slow preparation, the revolution in mathematics and
science began its vigorous phase in the seventeenth century with ana-
Iytic geometry and the differential and integral calculus. While Greek
geometry retained an 1mportant place, the Gm\k ideal of axiomatic crys-
tallization and PP d in the and
eighteenth centuries. Logically precise reasoning, starting from clear
definitions and non-contradictory, “evident” axioms, seemed immaterial
to the new pioneers of mathematical science. In a veritable orgy of in-
tuitive guesswork, of cogent reasoning interwoven with nonsensical
mysticism, with a blind confidence in the superhuman power of formal

procedure, they cong! da h ical world of i riches.
Gradually the ecstasy of progress gave way to a spirit of critical self-
control. In the ni h century the i need for consolidation

and the desire for more security in the extension of higher learning that
was prompted by the French revolution, inevitably led back to a revision
of the foundations of the new mathematics, in particular of the differ-
ential and integral calculus and the underlying concept of limit. Thus
the nineteenth century not only became a period of new advances, but
was also characterized by a successful retumn to the classical ideal of
precision and rigorous proof. In this respect it even surpassed the model
of Greek science. Once more the pendulum swung toward the side of
logical purity and abstraction. At present we still seem to be in this
period, although it is to be hoped that the resuiting unfortunate sepa-
ration between pure mathematics and the vital applications, perhaps
inevitable in times of critical revision, will be followed by an era of
closer unity. The regained internal strength and, above all, the enormous
simplification attained on the basis of clearer comprehension make it
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possible today to master the mathematical theory without losing sight
of applications. To establish once again an organic unjon between pure
and applied science and a sound balance between abstract generality
and colorful individuality may well be the paramount task of mathe-
matics in the immediate future.

This is not the place for a detailed philosophical or psychological
analysis of mathematics. Only a few points should be stressed. There
seems to be a great danger in the pre\axlmg overemphasis on the
deductive-pe ional ch of True, the element of
constructive invention, of directing and motivating intuition, is apt to
elude a simple philosophical formulation; but it remains the core of any
mathematical achievement, even in the most abstract fields. If the crys-
tallized deductive form is the goal, intuition and construction are at least
the driving forces. A serious threat to the very life of science is implied
in the assertion that mathematics is nothing but a system of conclusions
drawn from definitions and postulates that must be consistent but oth-
erwise may be created by the free will of the mathematician. If this
description were accurate, mathematics could not attract any intelligent
person. It would be a game with definitions, rules, and syllogisms, with-
out motive or goal. The notion that the intellect can create meanir.gful
postulational systems at its whim is a deceptive halftruth. Only under
the discipline of responsibility to the organic whole, only guided by
intrinsic necessity, can the free mind achieve results of scientific value.

While the contemplative trend of logical analysis does not represent
all of mathematics, it has led to a more profound understanding of math-
ematical facts and their interdependence, and to a clearer comprehen-
sion of the essence of mathematical concepts. From it has evolved a
modemn point of view in mathematics that is typical of a universal sci-
entific attitude.

‘Whatever our philosophical standpoint may be, for all purposes of
scientific observation an object exhausts itself in the totality of possible
relations to the perceiving subject or instrument. Of course, mere per-
ception does not constitute knowledge and insight; it must be coordi-
nated and interpreted by reference to some underlying entity, a “thing
in itself,” which is not an object of direct physical observation, but be-
longs to metaphysics. Yet for scientific procedure it is important to dis-
card elements of metaphysical character and to consider observable
facts always as the ultimate source of notions and constructions. To
renounce the goal of comprehending the “thing in itself,” of knowing
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the “ultimate truth,” of unraveling the innermost essence of the world,
may be a psychological hardship for naive enthusiasts, but in fact it was
one of the most fruitful turms in modern thinking.

Some of the greatest achieverents in physics have come as a reward
for courageous adherence to the principle of eliminating metaphysics.
When Einstein tried to reduce the notion of “simultaneous events oc-
curring at different places” to observable phenomena, when he un-
masked as a metaphysical prejudice the belief that this concept must
have a scientific meaning in itself, he had found the key 1o his theory of
relativity. When Niels Bohr and his pupils analyzed the fact that any
physical observation must be accompanied by an effect of the observing
instrument on the observed object, it became clear that the sharp si-
multaneous fixation of position and velocity of a particle is not possible
in the sense of physics. The far-reaching consequences of this discovery,
embodied in the modern theory of guantum mechanics, are now familiar
to every physicist. In the nineteenth century the idea prevailed that me-
chanical forces and motions of particles in space are things in them-
selves, while electricity, light, and magnetism should be reduced to or
“explained” as mechanical phenomena, just as had been done with heat.
The “ether” was invented as a hypothetical medium capable of not en-
tirely explained mechanical motions that appear to us as light or elec-
tricity. Slowly it was realized that the ether is of necessity unobservable;
that it belongs to metaphysics and not to physics. With sorrow in some
quarters, with relief in others, the mechanical explanations of light and
electricity, and with them the ether, were finally abandoned.

A similar situation, even more i, exists in math
Throughout the ages mathematicians have considered their objects,
such as numbers, points, etc., as substantial things in themselves. Since
these entities had always defied anempts at an adequate description, it
slowly dawned on the of the ni h century that
the question of the meaning of these objects as substantial things does
not make sense within mathematics, if at all. The only relevant asser-
tions concerning them do not refer to substantial reality; they state only
the interrelations between mathematically “undefined objects™ and the
rules governing operations with them. What points, lines, numbers “ac-
tually” are cannot and need not be discussed in mathematical science.
‘What matters and what corresponds to “verifiable” fact is structure and
relationship, that two points determine a line, that numbers combine
according to certain rules to form other numbers, etc. A clear insight
into the necessity of a di jation of el y h ical
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concepts has been one of the most irportant and fruitful results of the
modern postulational development.

Fortunately, creative minds forget dogmatic philosophical beliefs
whenever adherence to them would impede constructive achieveraent.
For scholars and layman alike it is not philosophy but active experience
in mathematics itself that alone can answer the question: What is raath-
ematics?




CHAPTER 1
THE NATURAL NUMBERS
INTRODUCTION

Number is the basis of modern mathematics, But what is number?
‘What does it mean to say that } +} = 1,4.4 = 3, end (~1) (~1) = 12
We learn in school the mechanics of handling fractions and negative
numbers, but for & real understanding of the number system we must go
back to simpler elements. While the Greeks chose the geometrical con-
cepts of point and line as the basis of their mathematics, it has
become the modern guiding principle that all mathematical statements
should be reducible ultinately to statements about the natural numbers,
1,2, 8,.... “God created the natural numbers; everything else is
man’s handiwork.” In these words Leopold Kronecker (1823-1891)
pointed out the safe ground on which the structure of mathematics can
be built.

Created by the human mind to count the objects in various assem-
blages, numbers have no reference to the individual characteristics of
the objects counted. The number six is an abstraction from all actual
collections containing six things; it does not depend on sny specific
qualities of these things or on the symbols used. Only at a rather
advanced stage of intellectual development does the abstract character
of the idea of number become clear. To children, numbers always re-
main connected with tangible objects such as fingers or beads, and primi-
tive languages display a conerete number sense by providing different
sets of number words for different types of objects.

Fortunately, the mathematician as such need not be concerned with
the philosophical nature of the transition from collections of concrete
objects to the abstract number concept. We shall therefore accept the
natural numbers as given, together with the two fundamental opera-
tions, addition and multiplication, by which they may be combined,

§1. CALCULATION WITH INTEGERS
1. Laws of Arithmetic

The mathematical theory of the natural numbers or posilive integers
is known as arithmetic. It is based on the fact that the addition and
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multiplication of integers are governed by certain laws. In order to
state these laws in full generality we cannot use symbols like 1, 2, 3
which refer to specific integers. The statement
1+2=2+1

is only a particular instance of the general law that the sum of two
integery is the same regardless of the order in which they are considered.
Hence, when we wish to express the fact that a certain relation between
integers is valid irrespective of the values of the particular integers
involved, we shall denote integers symbolically by letters a, b, ¢, -+
With this agreement we may state five fundamental laws of arithmetic
with which the reader is familiar:

Ya+b=0b+oe, 2) ab = be,

Naetbt+to=(@+b+e 4) a(be) = (ab)e,

5) a(b + ¢) = ab + ac.

The first two of these, the commutative laws of addition and multipli-
cation, state that one may interchange the order of the elements involved
in addition or multiplication. The third, the associative law of addition,
states that addition of three numbers gives the same result whether we
add to the first the sum of the second and third, or to the third the sum
of the first and second. The fourth is the associative law of multiplica-
tion. The last, the distributive law, expresses the fact that to multiply
asum by an integer we may multiply each term of the sum by this integer
and then add the products.

These laws of arithmetic are very simple, and may seem obvious. But
they might not be applicable to entities other than integers. If a
and b are symbols not for integers but for chemical substances, and
if “‘addition”” is used in a colloguial sense, it is evident that the commuta~
tive law will not always hold.  For example, if sulphuric acid is added to
water, a dilute solution is obtained, while the addition of water to pure
sulphuric acid may result in disaster to the experimenter. Similar ilius-
trations will show that in this type of chemical “‘arithmetic’’ the associa-
tive and distributive laws of addition may also fail. Thus one can
imagine types of arithmetic in which one or more of the laws 1)-5)
donot hold.  Such systems have actually been studied in modern mathe-
matics.

A concrete model for the abstract concept of integer will indicate the
intuitive basis on which the laws 1)-5) rest. Instead of using the usual
number symbols 1, 2, 3, etc.,, let us denote the integer that gives the
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number of objects in a given collection (say the collection of apples on a
particular tree) by a set of dots placed in a rectangular box, one dot for
each object. By operating with these boxes we may investigate the laws
of the arithmetic of integers. To add two integers a and b, we place the
corresponding boxes end to end and remove the partition.

o)+ G =iy

Fig. 1. Addition.

To multiply a and b, we arrange the dots in the two boxes in rows, and
form a new box with a rows and b columns of dots. The rules 1)-5)

Cax s =

Fig. 3. Multiptiontion,

will now be seen to correspond to intuitively obvious properties of these
operations with boxes.

o [T_m):

Fig. 3. The Distributive Law.

On the basis of the definition of addition of two integers we may define
the relation of ¢nequality. Each of the equivalent statements, a < &
(read, “‘a is less than &) and b > a (read, *‘b is greater than ¢”’), means
that box b may be obtained from box a by the addition of a properly
chosen third box ¢, so that b = @ 4 c.  When this is so we write

c="b-a,
which defines the operation of subtraction.

Fig. 4, Subtraction.

Addition and subtraction are said to be inverse operations, since if
the addition of the integer d to the integer a is followed by the subtraction
of the integer d, the result is the original integer a:

(@+d) ~d=aq.




4 THE NATURAL NUMBERS 183}

1t should be noted that the integer b — a has been defined only when
b > a. The interpretation of the symbol & — a as a negative infeger
when b < a will be discussed later (p. 54 et seq.}

It is often convenient to use one of the notations, b > a (read, “b is
greater than or equal to o””) or @ < b (read, “‘a is less than or equal to
b'"), to express the denial of the statement, a > b. Thus, 2 > 2, anl
3> 2

We may slightly extend the domain of positive integers, represented
by boxes of dots, by introducing the integer zero, represented by a
completely empty box. I we denote the empty box by the usual symbol
0, then, according to our definition of addition and multiplication,

a+0=a,
a.0 =0,
for every integer a. For a 4 0 denotes the addition of an empty box
to the box a, while a-0 denotes a box with no columns; i.e. an empty
box. It is then n-tural to extend the definition of subtraction by setting
a—a=20
for every integer a. These are the characteristic arithmetical propertics
of zero.

Geometrical models like these boxes of dots, such as the ancient
abacus, were widely used for numerical calculations until late in the
middle ages, when they were slowly displaced by greatly superior
symbolic methods based on the decimal system.

2. The Representation of Integers

We must carefully distinguish between an integer and the symbol,
5, V, ..., etc., used to represent it. In the decimal system the ten
digit symbols, 0, 1,2, 3, - -+ , 9, are used for zero and the first nine posi-
tive integers. A larger integer, such as “‘three hundred and seventy-
two,”’ can be expressed in the form

300 + 70 + 2 = 3.10° 4+ 7.10 + 2,
and is denoted in the decimal system by the symbol 372. Here the
important point is that the meaning of the digit symbols 3, 7, 2 depends
on their position in the units, tens, or hundreds plas With this
“‘positional notation” we can represent any integer by using only the
ten digit symbols in various combinations. The general rule is to express
an integer in the form illustrated by

z2=a.100+b.10°+c-10+d,
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where the digits o, b, ¢, 4 are integers from zero to nine.  The integer z
is then represented by the abbreviated symbol

abed.

‘We note in passing that the coefficients 4, ¢, b, @ are the remainders left
after suceessive divisions of z by 10. Thus
10)372 Remamder
1037
1053 7
(1

‘The particular expression given above for z can only represent integers
fess than ten thousand, since larger integers will require five or more digit
asymbols. If zis an integer between ten thousand and one hundred
thousand, we can express it in the form

zwa 10" +b.10"+c 10 +d 104

and represent it by the symbol abede. A similar statement holds for
integers between one hundred thousand and one million, ete. 1t is very
useful to have a way of indicating the result in perfect generality by a
single formula. We may do this if we denote the different coefficients,
e, d, c, .-+, by the single letter ¢ with different ‘‘subscripts,” ao, a;,
@z, dy, -+, and indicate the fact that the powers of ten may be as large
as necessary by denoting the highest power, not by 10" or 10" as in the
examples above, but by 107, where % is understood to stand for an arbi-
trary integer. Then the general method for representing an integer z
in the decimal system is to express 2 in the form
) 2= Ga- 10"+ @Qua - 107+ o+ - 10 + a4,
and to represent it by the symbot
nln1lrp -+ G1Ga .

As in the special case above, we see that the digits ap, a1, @2, -+ -
are simply the successive remainders when z is divided repeatedh by 10

In the decimal system the number ten is singled out to serve as a base.
The layman may not realize that the selection of ten is not essential,
and that any integer greater than one would serve the same purpose.
For example, a septimal system (base 7) could be used.  In such a sys-
tem, an integer would be expressed as

@) ba s T bat T e by T B,
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where the b's are digits from zero to six, and denoted by the symbol
babnt «+ o bybo -
Thus “one hundred and nine’’ would be denoted in the septimal system
by the symbol 214, meaning
2.7+ 1.7+4
As an cxercise the reader may prove that the general rule for passing
from the base ten to any other base B is to perform successive divisions
of the number z by B; the remainders will be the digits of the number in
the system with base B. TFor example:
7)109 Remainder

N5 4
N2 1
0 2

109 (decimal system) = 214 (septimal system).

It is natural to ask whether any particular choice of base would be most
desirable, We shall see that too small a base has disadvantages, while
# large base requires the learning of many digit symbols, and an extended
multiplication table. The choice of twelve as base has been advocated,
since twelve is exactly divisible by two, three, four, and six, and, as a
result, work involving division and fractions would often be simplified.
To write any integer in terms of the base twelve (duodecimal system),
we require two new digit syrabols for ten and eleven. Let us write o
for ten and g for eleven. Then in the duodecimal system ‘‘twelve’
would be written 10, “‘twenty-two’’ would be la, “twenty-three’” would
be 18, and ‘‘one hundred thirty-one’” would be 8.

The invention of positiong! notation, attributed to the Sumerians or
Babylonmns and developed by the Hindus, was of enormous significance
for civilization. Early systems of numeration were based on a purely
additive principle. In the Roman symbolism, for example, one wrote

CXVIIT = one hundred + ten + five + one + one + one,
The Egyptian, Hebrew, and Greek systems of numeration were on the
same level. One disadvantage of any purely additive notation is that
more and more new symbols are needed as numbers get larger. (Of
eourse, early scientists were not troubled by our modern astronomical
or atomic magnitudes.) But the chief fault of ancient systems, such as
the Roman, was that computation with numbers was so difficult that
only the specialist could handle any but the simplest problems. Tt is
quite different with the Hindu positional system now in use. This was
introduced into medieval Europe by the merchants of Italy, who learned
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it from the Moslems. The positional system has the agreeable property
that all numbers, however large or small, can be represented by the use
of a small set of different digit symbols (in the decimal system, these are
the “Arabic numerals” 0, 1, 2, ..., 9). Along with this goes the more
important advantage of ease of i ‘The rules of reckoni
with numbers represented in positional notation can be stated in the
form of addition and multiplication tables for the digits that can be memo-
rized once and forall.  The ancient art of computation, once confined to a
few adepts, is now taught in elementary school. There are not many
instances where scientific progress has so deeply affected and facilitated
everyday life.

3. Computation in Systems Other than the Decimal

The use of ten as a base goes back to the dawn of civilization, and i
undoubtedly due to the fact that we have ten fingers on which to count,
But the number words of many languazes show remnants of the use of
other bases, notably twelve and twenty. In English and German the
words for 11 and 12 are not constructed on the decimal principle of com-~
bining 10 with the digits, as are the ‘“‘teens,”” but are linguistically inde-
pendent of the words for 10.  In French the words ‘‘vingt’’ and “‘quatre-
vingt’’ for 20 and 80 suggest that for some purposes a system with base
20 might have been used. In Danish the word for 70, “halvfirsinds-
tyve,”’ means half-way (from three times) to four times twenty. The
Babylonian astronomers had a system of notation that was partly
sexagesimal (base 60), and this is believed to account for the customary
division of the hour and the angular degree into 60 minutes,

In asystem other than the decimal the rules of arithmetic are the same,
but one must use different tables for the addition and multiplication of
digits. Accustomed to the decimal system and tied to it by the number
words of our language, we might at first find this a little confusing. Let
us try an example of multiplication in the septimal system. Before
proceeding, it is advisable to write down the tables we shall have to use:

Addition Multiplication
|12 3 4 5 & I 2 3 4 5 8
1/ 2 3 4 5 6 10 1{1 2 3 4 5 6
213 4 5 6 10 11 212 4 6 11 13 15
3/ 4 5 6 10 11 12 3|3 6 12 15 21 2
4 5 6 10 1t 12 13 414 11 15 22 26 33
5| 6 10 11 12 13 14 515 13 21 26 34 42
6{10 11 12 13 14 15 616 15 24 33 42 51
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Let us now multiply 265 by 24, where these number symbols are
written in the septimal system. (In the decimal system this would be
equivalent to multiplying 145 by 18.) The rules of multiplication are
the same as in the decimal system. We begin by multiplying 6 by 4,
which is 26, as the multiplication table shows.

265
2
1456

588
10416

We write down 6 in the units place, “carrying” the 2 to the next
place. Then we find 4.6 = 33, and 33 + 2 = 35. We write down 5,
and proceed in this way until everything has been multiplied out. Add-
ing 1,456 + 5,630, we get 6 + 0 = 6 in the units place, 5 + 3 = 11 in
the sevens place. Again we write down 1 and keep 1 for the forty-
nines place, where we have 1 4+ 6 + 4 = 14. The final result is
265-24 = 10,416,

To check this result we may multiply the same numbers in the decimal
system. 10,416 (septimal system) may be written in the decimal
system by finding the powers of 7 up to the fourth: 7 = 49, 7* = 343,
7' = 2,401. Hence 10,416 = 2,401 + 4.49 + 7 + 6, this evaluation
being in the decimal system. Adding these numbers we find that 10,416
in the septimal system is equal to 2,610 in the decimal system. Now
we multiply 146 by 18 in the decimal system; the result is 2,610, so
the calculations check.

Ezercises: 1) Set up the addition and iplication tables in the
system aud work some examples of the same sort.

2) Express “thirty’ and “‘one hundred and thirty-three” in the systems with
the bases 5, 7, 11, 12,

3) What do the symbols 11111 and 21212 mean in these systems?

4} Form the addition and multiplication tables for the basecs 5, 11, 13.

From a theoretical point of view, the positional system with the
base 2 is singled out as the one with the smallest possible base. The
only digits in this dyadic system are 0 and 1; every other number 2z
is represented by a row of these symbols. The addition and multiplica-
tion tables consist merely of the rules 1 + 1 = 10 and 1.1 = 1. But
the disadvantage of this system is obvious: long expressions are needed
to represent small numbers. 'Thus seventy-nine, which may be ex-
pressed as 1:2° + 0-2° + 0:2° 4 1:2° + 12" + 1-2 + I, is written
in the dyadic system as 1,001,111,
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As an ilf ion of the simplicity of multiplication in the dyadic
system, we shall multiply seven and five, which are respectively 111
and 101, Remembering that 1 4 1 = 10 in this system, we have

u1
101
111
11
100011 = 2+ 2+ 1,

which is thirty-five, as it should be.

Gottfried Wilhelm Leibniz (1646-1718), one of the greatest intellects
of his time, was fond of the dyadic system. To quote Laplace: “Leib-
niz saw in his binary arithmetic the image of creation. He imagined
that Unity represented God, and zero the void; that the Supreme Being
drew all beings from the void, just as unity and zero express all numbers
in his system of numeration.”

Ezercise: Consider the question of representing integers with the base a.
In order to name the inte~crs in this system we need words for the digits
0,1, -+, @~ Land for the various powers of a:a, a% at, --- . How many different
oumber words are needed to name all numbers from zero to one thousand, for
@ =23 4,5 ---, 157 Which base requires the fewest? (Examples: If
a = 10, we need ten words for the digits, plus words for 10, 100, and 1000, making
& total of 13. For a = 20, we need twenty words for the digits, plus words for
20 and 400, making & total of 22. If @ = 100, we need 100 plus 1.)

*§2. THE INFINITUDE OF THE NUMBER SYSTEM.
MATHEMATICAL INDUCTION

1. The Principle of Mathematical Induction

There is no end to the sequence of integers 1, 2, 3, 4, - . ; for after
any integer » has been reached we may write the next integer, n + 1.
We express this property of the sequence of integers by saying that
there are infinitely many integers. The sequence of integers represents
the simplest and most natural example of the mathematical infinite,
which plays a dominant réle in modern mathematics. Everywhere in
this book we shall have to deal with collections or “sets” containing
infinitely many mathematical objects, like the set of all points on a line
or the set of all triangles in a plane. The infinite sequence of integers
is the simplest example of an infinite set.

The step by step procedure of passing from n to n -+ 1 which generates
the infinite sequence of integers also forms the basis of onc of the most
fundamental patterns of mathematical reasoning, the principle of
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1 induction. " in the natural sciences
proceeds from a particular series of ohservations of a certain phenomenon
to the statement of a general law governing all occurrences of thie
phenomenon. The degree of certainty with which the law is thereby
established depends on the number of single observations and confirma-
tions. This sort of inductive reasoning is often entirely convincing;
the prediction that the sun will rise tomorrow in the east is as certain
a8 anything can be, but the character of this statement js not the same
as that of a theorem proved by strict logxcal or mathematical reasoning.
In quite a different way mathemati luction is used to establish
the truth of a mathematical theorem for an infinite sequence of cases,
the first, the second, the third, and so on without exception. Iet us
denote by A a statement that involves an arbitrary integer n. For
example, 4 may be the statement, “The sum of the angles in a convex
polygon of n 4 2 sides is » times 180 degrees.” Or A’ may be the as-
sertion, “By drawing n lines in a plane we cannot divide the plane into
more than 2" parts” To prove such a theorem for every integer n it
does not suffice to prove it separately for the first 10 or 100 or even 1000
values of n. 'This indeed would correspond to the attitude of empirical
induction. Instead, we must use a method of strictly mathematical
and non-empirical reasoning whose character will be indicated by the
following proofs for the special examples A and 4. In the case 4, we
know that for n = 1 the polygon is a triangle, and from elementary
geometry the sum of the angles is known to be 1-180°. For a quadri-
lateral, n = 2, we draw a diagonal which divides the quadrilateral into
two triangt This shows i diately that the sum of the angles of
the quadrilatersl is equal to the sum of the angles in the two triangles,
which yields 180° + 180° = 2-180°. Proceeding to the case of a pen-
tagon with 5 edges, n = 3, we decompose it into a triangle plus a quad-
rilateral. Since the latter has the angle sum 2-180°, as we have just
proved, and since the triangle has the angle sum 180°, we obtain 3-180
degrees for the 5-gon, Now it is clear that we can proceed indefinitely
in the same way, proving the theorem for n = 4, then for » = 5, and
so on. Each statement follows in the same way from the preceding
one, so that the general theorem A can be established for all n.
Similarly we can prove the theorem 4’. For n = 1 it is obviously
true, since a single line divides the plane into 2 parts. Now add a
second line. Fach of the previous parts will be divided into two new
parts, unless the new line is parallel to the first. In either case, for
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n = 2 we have not more than 4 = 2 parts. Now we add 2 third line.
Each of the previous domains will either be cut into two parts or be
left untouched. Thus the sum of parts is not greater than 2°.2 = 2°,
Knowing this to be true, we can prove the next case in the same way,
and so on indefinitely.

The essential idea in the p ding ar is to a
general theorem A for all values of n by successively proving a sequence
of special cases, A1, Az, +--. The possibility of doing this depends
on two things: a) There is a general method for showing that 7f any
statement A, is true then the next statement, 4,., will also be true.
b) The first statement Ay is krown to be true. That these two condi-
tions are sufficient to establish the truth of ell the statements
Ai, As, Az, - - is alogical principle which is as fundamental to mathe-
matics as are the classical rules of Aristotelian logic. We formulate it
as follows:

Let us suppose that we wish to establish a whole infinite sequence of
mathemat’ ! propositions

tallish

A, Ay, Agyeee

which together i the general pr ition 4.  Suppose that a)
by some mathematical argument it is shown that if r is any integer and if
the assertion A; is known to be true then the truth of the assertion A,y will
follow, and that b) the first proposition A, is known to be true. Then all
the propositions of the sequence must be true, and A is proved.

‘We shall not hesitate to accept this, just as we accept the simple
rules of ordinary logic, as a basic principle of mathematical reasoning,
For we can establish the truth of every statement 4., starting from the
given assertion b) that 4, is true, and proceeding by repeated use of
the assertion a) to establish successively the truth of A, , 4y, 44, and
80 on until we reach the statement 4, . The principle of mathematical
induction thus rests on the fact that after any integer » there is a next,
7+ 1, and that any desired integer » may be reached by a finite number
of such steps, starting from the integer 1.

Often the principle of mathematical induction is applied without
explicit mention, or is simply indicated by a casual “ete.”” or “and so
on,” This is especially frequent in elementary instruction, But the
explicit use of an induetive argument is indispensable in more subtle
proofs. We shall give a few illustrations of a simple but not quite
trivial character.



12 THE NATURAL NUMBERS (33

2. The Arithmetical Progression
For every value of n, the sum 1 +2 -+ 3 -+ +++ 4 n of the first n integers
s equal o n(—n;—l-) In order to prove this theorem by mathematical
induction we must show that for every n the assertion An:
[6)] 1+2+3+...+n=’i(1‘_2+_1>
istrue. a) We observe that if » is an integer and if the statement 4, is
known to be true, i.e. if it is known that

1+2+3+A“+,='(L'2{1)

B

then by adding the number (r + 1) to both sides of this equation we

obtain the equation

Al
2

_rr D42+ D+ D+ 2),
2 2

142434 . +rtG+D= +r+1

which is precisely the statement A, . b) The statement 4, is ob-
viously true, since 1 = 1-242- . Hence, by the principle of mathematical
induction, the statement 4, is true for every n, as was to be proved,
Ordinarily this is shown by writing thesum t + 2 4+ 3 4+« + n

in two forms:

Sp=1+2+ .-+ (n~-1)+n
and

Sp=nt+@m-1)+..+2+1
On adding, we see that each pair of numbers in the same colunn yields
the sum n + 1, and, since there are n columns in all, it follows that

28, = n(n + 1),

which proves the desired result.
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From (1) we may immediately derive the formula for the sum of the
first (n + 1) terms of any arithmetical progression,

@ Pa=at@+d+@+Hu e+ (atnd = BEDGED,

For

Po=(nt+De+1+2+ - +n)d=(n+ Da+ -
2(11 e 1)a+n(n+ l)d n+4 1)(2n+nd)

nin + 1)d

Forthe« 2=0,d=1,thigis equlvalent to (1).

3. The Geometrical Progression

One may treat the general geometrical progression in a similar way.

‘We shall prove that for every value of n
C32)

3} G..=a+aq+aq’+...+ag"=,,HA,
(We suppose that ¢ = 1, since otherwise the right side of (3) has ne
meaning.)

Certainly this assertion is true for n = 1, for then it states that
o-¢) _all+90 -9

ey -0 =a(l +¢).

G ~atag=
And if we assume that
G =atag+t.-ta=a
then we find as a consequence that

Grr=(at+ag+ .- +ag) +ag" = G, +ag" =

1= g™
1-¢

(I — g — 9 L= D
] l-g¢ 1-¢
But this is precisely the assertion (3) for the case » = r -+ 1, This
completes the proof.
In elementary textbooks the usual proof proceeds as follows. Set

Go=a+ag+ - +ag",
and multiply both sides of this equation by g, obtaining
4Gu = ag + ag' + -+ + ag""
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Now subtract corresponding sides of this equation from the preceding
equation, obtaining
atl

Go— gGn=a —ag"",
(1= )6y = ol — g™,

4. The Sum of the First n Squares

A further b i lication of the principle of hematical
induction refers to the sum of the first n squares. By direct trial one
finds that, at least for small values of =,

2 Aot D@t 1)
& ,

@ R R S

and one might guess that this remarkable formula is valid for all integers
n. To prove this, we shall again use the principle of mathematical
induction. We begin by observing that #f the assertion A,, which in
this case is the equation (4), is true for the case # = 7, so that

1’+2’+3?+“.+r’=r(7+1)‘¢9,

then on adding (r + 1)° to both sides of this equation we obtain

Y S bt Y
[

A D@+ D) 460+ 1) ¢+ D@+ 1) 460+ 1]
3 6

_e ANt 46 4 D D@+ 3)
6 [ ’

which is precisely the assertion 4,4 in this case, since it is obtained by
substituting r -+ 1 for » in (4). To complete the proof we need only
remark that the assertion 4y, in this case the equatior

o l0+DE+Y
i ,

is obviously true. Hence the equation (4) is true for every n.
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Formulas of a similar sort may be found for higher powers of the
integers, I* 4+ 2* + 3* + ... + =% where & is any positive integer
As an exercise, the reader may prove by mathematical induction that

. :_[nn+ DT
(5) 42+ F»--+n~[—le_

1t should be remarked that although the principle of mathematical
induction suffices to prove the formula (3) once this formula has been
written down, the proof pives no indication of how this formula was
arrived at in the first place; why precisely the expression [n(n + 1)/2]°
should be guessed as an expression for the sum of the first n cubes,
rather than a(n + 1)/3F or (19n° — 4ln -+ 24)/2 or any of the in-
finitely many expressions of a similar type that could have been con-
sidered. The fact that the proof of a theorem consists in the applica~
tion of certain simple rules of logic does not dispose of the creative
element in mathematics, which lies in the choice of the possibilities to
be examined. The question of the origin of the hypothesis (5)
belongs to & domain in which no very general rules can be ziven; experi-
ment, analogy, and constructive intuition play their part here. But
once the correct hypothesis is 1, the principle of math ical
induction is often sufficient to provide the proof. Inasmuch as such a
proof does not give a clue to the act of discovery, it might more fittingly
be called a verification.

*5. An Important Inequality
In a subsequent chapter we shall find use for the inequality
©® (L+p" 21+ ap,
which holds for every number p > ~—1 and positive integer n. (For
the sake of generality we are anticipating here the use of negative and
non-integral numbers by allowing p to be any number greater than —1.
The proof for the general case is exactly the same 88 in the case where
pis a positive integer.) Again we use mathematical induction.
2) Ifitis true that (1 4+ p)" > 1 + rp, then on multiplying both sides
of this inequality by the positive number 1 4 p, we obtain
A+ ™2 1+rptp+ ot
Dropping the positive term rp° only strengthens this inequality, so that

A+p ™z 1+ ¢+ p,
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which shows that the inequality (6) will also hold for the next integer,
r+ 1. b) Itisobviously true that (1 + p)' > 1+ p. This completes
the proof that (6) is true forevery n.  The restriction to numbersp > —1
is essential. If p < —~1,then1 4+ pis nega!.xve and the argumenb m
a) breaks down, since if both bers of an are

by a negative quantity, the sense of the mequahty is reversed. (For
example, if we multiply both sides of the inequality 2 > 2 by —1 we
obtain —3 > ~2, which is false.)

*6. The Binomial Theorem

Frequently it is important to have an explicit expression for the
nth power of a binomial, (a + b)". Wefind by explicit caleulation that
forn =1, (a + b)' = a +b,
forn=2(a+b"=(a+b)a+b =ala+b) +ba+b)

=o'+ 2ab -+ B}
for- -3, (a+ b= (a+ b)a+ b= ald® + 2ab + )

+ b(a® + 20b + bY) = o + 3d’ + 3ab® +

and 50 on. What general law of formation lies behind the words “‘and
so on”'? Let us examine the process by which (a + b)* was computed.
Since (@ + b)° = (e + b)(a -+ b), we obtained the expression for (a 4 b)*
by multiplying each term in the expression @ -+ b by a, then by b, and
adding. The same procedure was used to calculate (a + b)'
(a + b)(n + b)’ We may continue in the same way to calculate
(a + b)', (@ + b)", and so on indefinitely. The expression for (e +b)"
will be obtained by multiplying each term of the previously obtained
expression for (a -+ b)"™* by a, then by b, and adding. This leads to
the following diagram:

et+b = a\b+ b R
(a4 b= /a’/+ }a,b\l\/+\‘/b2
I VY2 NS
o N e o o
(a+ b= a‘/ + \la"b/ + ;a’b{ + .4ab{ + .\b‘

which gives at once the general rule for forming the coefficients in the ex-
pansion of (@ + )". We construct a triangular array of numbers,
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starting with the coefficients 1, 1 of a -+ b, and such that each number of
the triangle is the sum of the two numbers on each side of if in the
preceding row, This array is known as Pascal’s Triangle.

The nth row of this array gives the coefficients in the expansion of (& -+ b)®
in descending powers of a and ascending powers of b; thus
(a+ b)" = ' + 7a’b + 21a°" + 350%" + 35a%" + 21a%" +- Tab® + b,
Using a concise subscript and superscript notation we may denote the
numbers in the nth row of Pascal’s Triangle by

€ =1,01,08,C7, -, Chn,CR = 1.
Then the general formula for' (a + )" may be written
() @+ )" = a4 CTa"" + CFa"" + ... + CRaad™ + b

According to the law of formation of Pascal’s Triangle, we have

(8) =i+ et
As an exercise, the experienced reader may use this relation, together
with the fact that Ci = C] = 1, to show by mathematical induction that

w_na=DEn -2 .. r=i4+1) _ n!
® o= - Y T dm-nl

(For any positive integer n, the symbol n! (read, “n factorial”) de-
notes the product of the first » integers: n! = 1.2.3 ... 7. Itis con-
venient also to define 0! = 1, so that 9) is valid for7 = 0 and £ = n.)
‘This explicit formula for the i in the bil ial ion is
sometimes called the binomaal theorem. (See also p. 475.)

Ezercises: Prove by mathematical induction:

1 1 1 n
REwhE v iy febern
1.2 3 n n+2
Dttt b=,
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1= (n+ g + ngt
—g»

41

4 U+ QU+ U +¢9 - g7, g

"B 1+2+3g+ - gt

Find the sum of the following geometrical progressions:

1 1 1
Oristayat ot aEee
R P o z

iTatizaat Yoo
Sy (B, (foiy
n z'+y’+(z«+¢) + +(;"*+,,-)-
Using formulas (4) and (5) prove:
) B kB e Q1) SLt.%ZL;t_lL(M_
)PP e Onb 1 (n DY 4 4n + 1)
10) Prove the same results directly by mathematical induction.

*7. Further R ks on Math i ducti

"The principle of mathematical induction may be ized slightly to read:
“If agequence of statements As , Auy: , Aups, -+ I8 given, where s is some positive
integer, and if

) Forevery ueofr > s, the truth of A, will follow from the truth of 4,,
and

b) A.is known to be true,
then all the statements A, Au1, Auga +++ are true; that is to say, A is true
for all n > s.”* Precisely the same renvoning used to establish the truth of the
ordinary principle of mathematioal induction applies here, with the sequence
1,2, 3, +- replaced by the similar sequence s, 8 + 1,8+ 2,5 +3 --«, By using
the principle in this form we can strengthen somewhat the inequality on page 16
by eliminating the possibility of the ="' sign. We state: For every p # 0 and
> —1and every integer n > 2,

(10) A+ p)> 1+ np.
The proof will be left to the reader.

Closely related to the principle of mathematical induction is the “principle
of the smallest integer” which states that every non-empty set C of positive integers
has o smallest member. A set is empty if it has no members, e.g., the set of
straight circles or the set of integers = such that n > n. For obvious reasons
we exclude such sets in the statement, of the principle. The set C'may be finite,
like theset 1,2, 3, 4, 5, orinfinite, like the set of all even numbers 2, 4, 6, 8,
10, --+. Any non-empty set C must contain at least one integer, say n, and
the smallest of the integers 1, 2, 3, »++ , n that belongs to € will be the smallest
integer in C.

The only way to realize the signiGeance of this principle is to observe that it
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does not apply to every set C of numbers that are not integers; for example,
the set of positive fractions 1, 4, 4, 1, -+~ does not contain & smallest member.
From the point of view of logic it is interesting to observe that the princi-
ple of the smallest integer may be used to prove the principle of mathematical in-
duction as a theorem, 'T'o this end, let us consider any sequence of statements
Ay, Az, Ay, - such that
) For any positive integer r the truth of A,,, will follow from that of 4,.
b) 4, is known to be true.
We shall show the hypothesis that any one of the A’s is false to be untenable.
For if even one of the A’g were false, the set C of all positive integers n for which
A, is false would be non-empty. By the principle of the smallest integer, C
would contain & smallest integer, p, which must be > 1 because of b). Hence A,
would be false, but As.; true. This contradicts a),.

Once more we emphasize that the principle of mathematical induction
is quite distinct from empirical induction in the natural sciences.
The confirmation of a general law in any finite number of cases, no matter
how large, cannot provide a proof for the law in the rigorous mathemat-
ical sense of the word, even if no exception is known at the time. Such
a law would remain only a very reasonable hypothesis, subject to modi-
fication by the results of future experience. In mathematics, a law or 2
theorem is proved only if it can be shown to be a necessary logical

of certain ions which are ted as valid. There
are many examples of mathematical statements which have been veri-
fied in every particular case considered thus far, but which have not
yet been proved to hold in general (for an example see p. 30). One
may suspect that a theorem is true in all generality by observing its
truth in a number of examples; one may then attempt to prove it by
mathematical induction. If the attempt succeeds the theorem is
proved to be true; if the attempt fails, the theorem may be true or false
and may some day be proved or disproved by other methods.

In using the principle of mathematical induction one must always be sure that
the conditions &) and b) are really satisfed. Neglect of this precaation may
lead to absurdities like the following, in which the reader is invited to discover
the fallacy. Wesnall “‘prove” that any o positive integers are equal; for example,
that 5 = 10.

First a definition: If @ and b are two unequal positive integers, we define
max {z, b) to be ¢ or b, whichever is greater; if @ = b we set max (a, b} = a = b.
Thus max (3, 5) = max (5,3) = 5, while max (4, 4) = 4. Now let A, be the state-
ment, “If a and b are any two positive integers such that max (a, b) = 5, then
o= b
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) Buppose A, to be true, Lot o and b be avy twa positive integers such that

max (a,8) = r + 1. Consider the two integers

ama-—1

Buab 1
then max (a, 8) = r. Hence a = §, for ive 4 re assuming 4, to be true. It follows
that'a - b; hence Ar is true.

b) 4 isobviously true, forif max (4, 5 ~ 1, then since  and b are by hypothe-
si positive integers they must both be equal to 1. Therefore, by mathematical
induction, 4a is true for every n.

Now if @ and b are any two positive integers whatsoever, denote max (g, 8) by r.
Since 4, has been shown to be true for every r, in particular A, is true. Henco
a=b,




SUPPLEMENT TO CHAPTER I
THE THEORY OF NUMBERS

INTRODUCTION

The integers have gradually lost their association with superstition
and mysticism, but their interest for mathematicians has never waned.
Eauelid (cirea 300 B.C.), whose fame rests on the portion of his Elements
that forms the foundation of geometry studied in high school, seems to
have made original contributions to number theory, while his geometry
was largely a eompilation of previous results. Diophantus of Alex-
andria {cirea 275 A.D.), an early algebraist, left his mark on the theory
of numbers. Pierre de Fermat (1601-1665), a jurist of Toulouse, and
one of the greatest mathematicians of his time, initiated the modern
work in this field. Euler (1707-1783), the most prolific of mathemati-
cians, included much number-iheoretical work in his researches. Names
prominent in the annals of mathematics—Legendre, Dirichlet, Riemann
—can be added to the list. Gauss {1777-1855), the foremost mathe-
matielan of modern times, who devoted himself to many different
branches of mathematics, is said to have expressed his opinion of num-
ber theory in the remark, ‘“Mathematics is the queen of the sciences
and the theory of numbers is the queen of mathematics.”

§1. THE PRIME NUMBERS
1. Fundamental Facts

Most statements in number theory, : 3 in mathematics as a whole,
are concerned not with a single object-- the number § or the number
32—hut with a whole class of objects that have some common prop-
erty, such as the class of all even integers,

2,4,6,8, ...,
or the class of all integers divisible by 3,

3,6,9,12 .-,
or the class of all squares of integers,

1,49, 16, .-,

and s0 on.
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Of fundamental importance in number theory is the class of all
primes. Most integers can be resolved into smaller factors: 10 = 2.5,
111 = 3-37, 144 = 3.3.2.2.2.2, ete. Numbers that cannot be so
resolved are known as prime numbers or primes. More precisely, a
prime is an inleger p, greater than one, whick has no factors other than
dtself and one. (An integer a is said to be a factor or divisor of an inleger b
if there is some infeger ¢ such that b = @e.) The numbers 2, 3, 5, 7,
11, 13, 17, - . - are primes, while 12, for example, is not, since 12 = 3.4.
The importance of the class of primes is due to the fact that every
integer can be expressed as a product of primes: if a number is not itself
a prime, it may be successively factored until all the factors are prxmes,
thus 360 = 8.120 = 3.30.4 = 3.3.10.2.2 = 3.3.5.2.2.2 = 2°.3°.5,
An integer {(other than 0 or 1) which is not a prime is said to be
composite.

One of the first questions that arises concerning the class of primes is
whether there is only a finite number of different primes or whether
the class of primes contains infinitely many members, like the class of
all integers, of which it forms a part. The answer is; There are in-
finitely many primes.

‘The proof of the infinitude of the class of primes as given by Euclid
remains & model of mathematical reasoning. It proceeds by the
“indirect method”. We start with the tentative assumption that the
theorem is false. This means that there would be only a finite number
of primes, perhaps very many—a billion or so—or, expressed in a general
and non-committal way, n. Using the subscript notation we may de-
note these primes by p1, Pa, ---,Pn. Any other number will be
composite, and must be divisible by at least one of the primes
PiyPry--e s Pa. We now produce a contradiction by constructing &
number 4 which differs from every one of the primes p1, P, «-+, Pn
because it is larger than any of them, and which nevertheless is not
divisible by any of them. This number is

A=pprepatt,

ie. 1 plus the produet of what we supposed to be all the primes. A is
Iarger than any of the p’s and hence must be composite. But A divided
by p: or by ps, ete., always leaves the remainder 1; therefore 4 has none
of the p’s ag a divisor. Since our initial assumption that there is only
a finite number of primes leads to this contradiction, the assumption is
seen to be ebsurd, and hence its contrary must be true. This proves
the theorem.
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Although this proof is indizect, it can easily be modified to give a method for
constructing, at least in theory, an infinite sequence of primes. Starting with
any prime number, such as p, = 2, suppose we have found n primes pr , Pa, *+ , Pa;
we then observe that the number + Pa-t 1 either is itself a prime or containe
a8 & factor a prime which differs from ._ose already found. Since this factor can
always be found by direct trial, we are sure in any case to find at least one new
prime pay: ; proceeding in this way we see that the sequence of constructible
primes can never end.

Ezercise: Carry out this construction sterting with p: = 2, px = 3 and find
5 more primes.

‘When a number has been expressed as a product of primes, we may
arrange these prime factors in any order. A little experience shows that,
except for this arbitrariness in the order, the decomposition of a number
N into primes is unique: Every inleger N greater than 1 can be factored
into a product of primes in only one way. This statement seems at first
sight to be so obvious that the layman is very much inclined to take
it for granted. But it is by no means a triviality, and the proof, though
perfectly elementary, requires some subtle reasoning. The classic'1
proof given by Euclid of this “fund: 1 theorem of arith ic’’ is
basod on a method or “algorithm” for finding the gre. test common
divisor of two numbers. This will be discussed on page 44. Here we
shall give instead a proof of more recent vintage, somewhat shorter
and perhaps more sophisticated than Euclid’s. It is a typical example
of an indirect proof. We shall assume the exmtence of an integer
capable of two ially different prime d i and from this
assumption derive a contradiction. This eontradiction will show that
the hypothesis that there exists an integer with two essentially different
prime decompositions is untenable, and hence that the prime decompost-
tion of every integer is unique.

*If there exists a positive integer capable of decomposition into two
essentially different products of primes, there will be a smallest such
integer (see p. 18),

O] M= PPy Pr = - Gay

where the p's and ¢’s are primes. By rearranging the order of the p's
and ¢’s if necessary, we may suppose that

nEpS - Sp, @aSeSeSa.

Now py cannot be equal to g, for if it were we could cancel the first
factor from each side of equation (1) and obtain two esseutially different
prime decompositions of an integer smaller than m, contradicting the
choice of m as the smallest integer for which this is possible. Hence




24 THE THEORY OF NUMBERS [1i

either p1 < g1 or ¢: < p1. Suppose py < ¢. (If @ < py we simply
interchange the letters p and ¢ in what follows.) We form the integer

&) m = (pugags e i)

By substituting for m the two expressions of equation (1) we may write
the integer m’ in either of the two forms
@ mo=Epep) - @) = D P B e Q)
@ me=(opo-g) - B0 = (@~ p)es - )
Since p; < g1, it follows from (4) that m' is a positive integer, while from
(2) it follows that m’ is smaller tL. m. Hence the prime decomposi-
tion of m’ must be unigue, aside from the order of the factors. But
from (3) it appears that the prime p; is a factor of m’, hence from (4)
1 must appear as a factor of either (¢; — ps) or (gugs --- @.). (This
follows from the assumed uni of the prime d: ition of m’;
see the reasoning in the next paragraph.) The latter is impossible,
since all the ¢’s are larger than p, . Hence py must be a factor of ¢ — p1,
80 that for some integer h,

a—m=p-h o q=ph+l)
But this shows that p; is a factor of qi, contrary to the fact that g is
a prime. This contradiction shows our initial assumption to be unten-
able and hence completes the proof of the fundamental theorem of
arithmetic.

An important corollary of the fundamental theorem is the following:
If a prime p is a faclor of the product ab, then p must be a factor of either
a or b. For if p were a factor of neither a nor b, then the product
of the prime decompositions of & and b would yield a prime decomposi-
tion of the integer ab not conlaining p. On the other hand, since p is
assumed to be a factor of ab, there exists an integer ¢ such that

ab = pt.
Hence the product of p by a prime decomposition of ¢ would yield a prime
decomposition of the integer ab containing p, contrary to the fact that
the prime decomposition of ab is unique.

Examples: If one hes verified the fact that 13 is a factor of 2652, and
the fact that 2652 = 6.442, one may conclude that 13 is a factor of 442,
On the other hand, 6 is a factor of 240, and 240 = 15.16, but 6 is not a
factor of either 15 or 16, This shows that the assumption that p is
prime is an essential one,
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Esercise: In order to find all the divisors of any number a we need only decorn-
pose a into & produet,

- g%

[

where the p's sre distinct primes, each raised to a certain power. All the divisors

of & are the numbers.
b g g

where the #'s are any integers satisfying the inequalities
0<BiCa, 0 <o, +,0<B <a.

Prove this statement. As a consequence, show that the number of different
divisors of o (including the divisors  and 1) is given by the product

(an + ez + 1) - far + 1.
For example,
144 = 24.3%

bae 53 divisors. They are 1, 2, 4, 8, 16, 3, 6, 12, 24, 48, 9, 1§, 36, 72, 144.

2. The Distribution of the Primes

A list of all the primes up to any ziven integer N may be constructed
by writing down in order all the integers less than N, striking out all
those which are multiples of 2, then all those remaining which are
multiples of 3, and so on until all composite numbers have been elimi-
nated. This process, known as the “sieve of Eratosthenes,” will catch
in its meshes the primes up to N. Complete tables of primes up to
about 10,000,000 have gradually been computed by refinements of this
method, and they provide us with a tremendous mass of empirical data
concerning the distribution and properties of the primes. On the basis
of these tables we can make many highly plausible conjectures (as
though number theory were an experimental science) which are often
extremely difficult to prove.

a. Formulas Producing Primes

Attempts have been made to find simple arithmetical formulas that
yield only primes, even though they may not give all of them. Fermat
made the famous conjecture (but not the definite assertion) thai all
numbers of the form

Fn) =2 +1
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are primes. Indeed, for n = 1, 2, 3, 4 we obtain

P)=2"+1=5,

F@ =2 +1=2"41=17,

F@)=2"4+1=2"41= 257,

F(4) = 2" + 1 = 2° 4 1 = 65,537,
ail primes. But in 1732 Euler discovered the factorization 2* + 1 =
641.6,700,417; hence F(5) is not a prime. Later, more of these “Fermat
numbers” were found to be composite, deeper number-theoretical
methods being required in each case because of the insurmountable
difficulty of direct trial. To date it has not even been proved that
any of the numbers F(n) is a prime for n > 4.

Another remarkable and simple expression which produces many
primes is
fn) = n* — n + 41.
For n=1,2,8,...,40, f(n) is a prime; but for n = 41, we have
f(n) = 41% which is no longer a prime.
The expression
n* — T9n + 1601

yields primes for all » up to 79, but fails when n = 80. On the whole,
it has been a futile task to seek expressions of a simple type which
produce only primes. Even less promising is the attempt to find an
algebraic formula which shall yield all the primes.

b. Primes in Arithmetical Progressions

While it was simple to prove that there are infinitely many primes in
the sequence of all integers, 1, 2, 3, 4, - .. , the step to sequences such as
1,4,7,10,13, ... or 3,7, 11, 15, 19, ... or, more generally, to any
arithmetical progression, a,a + d,a + 2d, --.a + nd, - - - , whereaand d
bave no common factor, was much more difficult. All observations
pointed to the fact that in each such progression there are infinitely
many primes, just as in the simplest one, 1, 2, 3, --- . It required an
enormous effort to prove this general theorem. Lejeune Dirichlet
(1805-1859), one of the leading mathematicians of the nineteenth cen-
tury, obtained full success by spplying the most advanced tools of
mathematical analysis thes known. His original papers on the subject
rank even now among the outstanding achievements in mathematics,
and after a hundred years the proof has not yet been simplified enough
to be within the reach of students who are not well trained in the
technique of the calculus and of function theory.
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Although we cannot attempt to prove Dirichlet’s general theorem,
it is easy to generalize Euclid's proof of the infinitude of primes to cover
some special arithmetical progressions such as 4n + 3 and 6n + 5. To
treat the first of these, we observe that any prime greater than 2 is
odd {since otherwise it would be divisible by 2) £nd hence is of the form
4n + 1 or 4n 4 3, for some inte_er n. Furthermore, the product of
two numbers of the form 4n -+ 1 is again of that form, since

(da+ 1)(db+ 1) = 16ab + da + 4b+ 1 = 4(dab + a + b) + 1.

Now suppose there were but a finite number of primes, p, p1, -+~ Pn,
of the form 4n 4 3, and eonsider the number

=Hppsorop) — 1 =d(p---pa— 1) + 3.

Either N is itself a prime, or it may be decomposed into a product of
primes, none of which can be py, -+« , pa, since these divide ¥ with a
remainder —1. Furthermore, all the prime factors of N cannot be of
the form 4n + 1, for N is not of that form and, as we have seen, the
product of numbers of the form 4n - 1 is again of that form. Hence
at least one prime factor must be of the form 4z + 3, which is impossible,
since we saw that none of the ’s, which we supposed to be all the primes
of the form 4n + 3, can be a factor of N. Therefore the assumption
that the number of primes of the form 4n + 3 is finite has Jed to a
contradiction, and hence the number of such primes must be infi-
nite,

Exercise: Prove the corresponding theorem for the progressic -+ 5.

¢. The Prime Number Theorem

In the search for a law governing the dlstrlbutwn of the primes, the
decisive step was taken when math i gave up futile D
to find a simple mathematical formuls yielding all the primes or giving
the exact number of primes contained among the first n integers, and
sought instead for information concerning the average distribution of
the primes among the integers.

For any integer n let us denote by 4, the number of primes among
the integers 1, 2,3, .-, n. If we underline the primes in the sequence
sisting of the first few integers: 1 234567891011 1213 1415
16 17 18 19 - - - we can compute the first few values of 4,

Ai=0,41=1, 4= A=24=4, =3, Ar=Asg= Ay = Ap = 4,
A=A =54dn=Au=Ay=An="06 4y = Adn =17 4 = 8, etc.
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If we now take any sequence of values for n which increases without
limit, say
n = 10, 10 10% 10", ...,
then the corresponding values of 4.,
Ao, Awory Ases, Aoty oon

will also increase without limit (although more slowly). For we know
that there are infinitely many primes, so the values of 4, will sooner
or later exceed any finite number. The “density’’ of the primes among
the first n integers is given by the ratio 4,/n, and from a table of primes
the values of A,/n may be computed empirically for fairly large values
of n.

_n Aa/n

10°| 0.168

10°| 0.078498

10°| 0.050847478

The Iast entry in this table may be regarded as giving the probability
that an integer picked at random from among the first 10° integers will
be a prime, since there are 10° possible choiccs, of which A are
primes.

The distribution of the individual primes among the integers is ex-
tremely irregular. But this irregularity “in the small” disappears if
we fix our attention on the average distribution of the primes as given
by the ratio A./n. The simple law that governs the behavior of
this ratio is one of the most remarkable discoveries in the whole of
mathematics. In order to state the prime number theorem we must
define the ‘‘natural logarithm” of an integer n. To do this we take two
perpendicular axes in a plane, and consider the locus of all points in
the plane the product of whose distances z and y from these axes is
equal toone. In terms of the codrdinates z and y this locus, an equilat~
eral hyperbola, is defined by the equation ¢y = 1. We now define log
n to be the area in Figure 5 bounded by the hyperbola, the z-axis, and
the two vertical lines x = 1 and z = n. (A more detailed discussion of
the logarithm will be found in Chapter VII1.) From an empirical study
of prime number tables Gauss observed that the ratio 4,/ is approxi-
mately equal to 1/log n, and that this approximation appears to improve
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as 7 i The d of the approximation is given by the
ratio l—/TL_ whose values for n = 1000, 1,000,000, 1,000,000,000 are
shown in the following table.

» Au/n 1/log n f%?gg";
10° 0.168 0.145 1.159

10° 0.078408 0.072382 1.084
10° 0.050847478 0.048254942 1.053

1 n

¥Fig. 6. The aren of the shaded region under the hyporbola defines log a.

On the basis of such empirical evidence Gauss made the conjecture that
the ratio A./n is “‘asymptotically equal” to 1/log n. By this is meant,
that if we take a sequence of larger and larger values of 7, say n equal to
10, 10%, 16°, 104, ...

as before, then the ratio of 4./n to 1/log n,

An/n

1/lcon’
caleulated for these successive values of 7, will become more and more
nearly equal to 1, and that the difference of this ratio from 1 can be
made as small as we please by confining ourselves to sufficiently large
values of n. This assertion is symbolically expressed by the sign ~:

A 1 means Ad/n tends to 1 as n increases,
n logn 1/logn
That ~ cannot be replaced by the ordinary sigh = of equality is clear

from the fact that while 4, is always an integer, ~/log n is not.
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That the average behavior of the prime number distribution can be
described by the logarithmic function is ¢ very remarkable discovery,
for it is surprising that two mathematical concepts which seem so un-
related should be in fact so intimately connected

Although the of Gauss's eig simple to
a rigorous mathematical proof was far beyond the powers of mathemati-
cal science in Gauss's time. To prove this theorem, concerned only with
the most elementary concepts, it is necessary to employ the most
powerful methods of modern mathematics. It took almost a hundred
years before analysis was developed to the point where Hadamard
(1896) in Paris and de la Vallée Poussin (1896) in Louvain could give
a complete proof of the prime number theorem. Simplifications and
important modifications were given by v. Mangoldt and Landau.
Long before Hadamard, decisive pioneering work had been done by Rie-
mann (1826-1866) in a famous paper where the strategic lines for the
attack were drawn. Recently, the American mathematician Norbert
Wiener was able to modify the proof so as to avoid the use of complex
numbers at an important step of the reasoning. But the proof of the
prime number theorem is still no easy matter even for an advanced
student.  We shall return to this subject on page 482 et seq.

3 q

d. Two Unsolved Problems Concerning Prime Numbers

While the problem of the average distribution of primes has been
satisfactorily solved, there are many other conjectures which are sup-
ported by ail the empirical evidence but which have not yet been proved
to be true.

One of these is the famous Goldbach conjecture. Goldbach (1690~
1764) has no sigaificance in the history of mathematics except for this
problem, which he proposed in 1742 in a letter to Fuler. He observed
that for every case he tried, any even number (except 2, which is itself
& prime) could be represented as the sum of two primes. For example:

4=2+26=3+38=5+3,10=5+512=5+714=
T+ 7,16 =1343,18=11+7,20=13+7,...,48 = 20 + 19,

, 100 = 97 + 3, ete.

Goldbach asked if uler could prove this to be true for all even num-
bers, or if he could find an example disproving it. Euler never provided
an answer, nor has one boen given since. The empirical evidence in
favor of the statement that every even number can be so represented
is thoroughly convincing, as anyone can verify by trying a number of
examples. The source of the difficulty is that primes are defined in
termns of multiplication, while the problem involves addition. Generally
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speaking, it is difficult to establish connections between the multi-
plicative and the additive properties of integers.

TUntil recently, a proof of Goldbach’s cenjecture seemed completely
inaccessible. Today a solution mo longer seems out of reach. An
important success, very unexpected and startling to all experts, was
achieved in 1931 by a then unknown young Russian mathematician,
Schnirelmann (1905-1938), who proved that every positive integer can
be represented as the sum of not more than 300,000 primes. Though this
result seems Iudicrous in comparison with the original goal of proving
Goldbach’s conjecture, nevertheless it was a first step in that direction.
The proof is a direct, constructive one, although it does not provide any
practical method for finding the prime decomposition of an arbitrary
integer. More recently, the Russian mathematician Vinogradoff,
usmg methods due to Hardy, leewood and their great Indian col-

has in reducing the number from
300,000 to 4. This is much nearer to a solution of Goldbach’s problem.
But there is a striking difference between Schnirelmann’s result and
Vinogradoff’s; more significant, perhaps, than the difference between
300,000 and 4. Vinogradofi’s theorem was proved only fér all “suffi-
ciently large” integers; more precisely, Vinogradoff proved that there
exists an integer N such that any integer n > N can be represented as
the sum of at most 4 primes. Vmogradoﬁ's proof does not permit us
to appraise N; in contrast to Sch ’s theorem it is tiall,
indirect and non-constructive. What Vinogradoff really proved is
that the assumption that infinitely many integers cannot be decomposed
into at most 4 prime summands leads to an absurdity. Here we have
a good example of the profound difference between the two types of
proof, direct and indirect. (See the general discussion on p. 86.)

The following even more striking problem than Goldbach’s has come
nowhere near a solution. It has been observed that primes frequently
occur in pairs of the form p and p 4+ 2. Such are 3 and 5, 11 and 13,
29 and 31, ete. The statement that there are infinitely many such pairs
is believed to be correct, but as yet not the slizhtest definite step has
been taken towards a proof.

§2. CONGRUENCES

1. General Concepts
‘Whenever the question of the divisibility of integers by a fixed integer
d occurs, the concept and the notation of “econgruence” (due to Gauss)
serves to clarify and simplify the reasoning.
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To introduce this concept let us examine the remainders left when
integers are divided by the number 5. We have

7= 18+2 —1=—1.5+4
8=1.5+3 —2=-1.5+3
9=15+4 -3 = —1.5+2
10 =2.54+0 —4 = —1.541
11 =25+1 -5 = -1.5 4+ 0
12=2.5+2 -6 = ~2.5+4
ete. ete.

‘We observe that the remainder left when any integer is divided by 5 is
one of the five integers 0, 1, 2, 3, 4. We say that two integers a and b
are “‘congruent modulo 5" if they leave the same remainder on division
by 5. Thus 2, 7, 12, 17, 22, ..., ~3, —8, —13, —18, ... are all
congruent modulo 5, since they leave the remainder 2. In general, we
say that two integers a and b are congruent modulo d, where d is a fixed
integer, if ¢ and b leave the same remainder on division by d, i.e., if
there is an integer n such that @ — & = nd. Forexample, 27 and 15 are
congruent modulo 4, since

27 = 6.4 + 3, 15 = 3.4 + 3.

The concept of congruence is so useful that it is desirable to have a

brief notation for it, We write

a=b (mod &)
to express the fact that @ and b are congruent modulo d. If there is
no doubt concerning the modulus, the “mod d” of the formula may be
omitted. (If a is not congruent to b modulo d, we shall write a 3 b
{mod d).)

Congruences oceur frequently in daily life. For example, the hands
on a clock indicate the hour modulo 12, and the mileage indieator on a
car gives the total miles traveled modulo 100,000,

Before proceeding with the detailed discussion of congruences the
reader should observe that the following statements are all equivalent:

1. a is congruent to b modulo 4.
2. a = b + nd for some integer n.
3. ddivides a — b,

The usefulness of Gauss's congruence notation lies in the fact that
congruence with respect to a fixed modulus has many of the formal
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properties of ordinary equality. The most important formal properties
of the relation ¢ = b are the following:

1) Always a = a,

2 Ha=bthendb = a.

3) Ha=bandb = ¢, thena =¢,
Moreover, if a = ¢’ and b = ¥/, then

4} a+b=a +b.

5a—-b=a -V

6) ab = a'b’.
These properties remain true when the relation a = b is replaced by the
congruence relation ¢ = b (mod d). Thus

1) Always a = a (mod d).

2') If a = b (mod d) then b = a (mod d).

8) If a = b (mod d) and b = ¢ (mod d), then a = ¢ (mod d).
The trivial verification of these facts is left to the reader.

Moreover, if @ = o' (mod d) and b = b’ (mod d), then

4 a+ b= a4 b (mod d).

5) a—b=a - b (modd).

6") ab = a'V (mod d).
Thus congruences with respect to the same modulus may be added, sub~
iracted, and multiplied, To prove these three statements we need only
observe that if

a=da + rd, Y 4 od,

then
atb=da+b+(r+9d
a~b=d — b+ (r— 3,
ab=a'b + (a's + b'r + rsd)d,
from which the desired conclusions follow.

The concept of congruence has an illuminating geometrical inter-
pretation. Usually, if we wish to represent the integers geometrically,
we choose a segment of unit length and extend it by multiples of its
own length in both directions. In this way we can find a point on the
line corresponding to each integer, as in Figure 6. But when we are
dealing with the integers modulo d, any two congruent numbers are con-
sidered the same as far as their behavior on division by a is concerned,




34 THE THEORY OF NUMBERS [

since they leave the same remainder. In order to show this geometri-
cally, we use a circle divided into d equal parts, Any integer when
divided by d leaves as remainder one of the d numbers 0, 1, ... ,d — 1,
which are placed at equal intervals on the circumference of the circle.
Every integer is congruent modulo d to one of these numbers, and hence
is represented geometrically by cne of these points; two numbers are
congruent if they are represented by the same point. Figure7 isdrawn
for the case d = 6. The face of a clock is another illustration from
daily life.

-3 ~2 -1 0 1 2 3

Fig, . Geometrical represcutntion of the integem.

Fig. 7. Geometricat representation of the integers modalo 8.

As an example of the use of the multiplicative property 67) of cone
gruences we may dctermine the remainders left when successive powers
of 10 are divided by a given number. For example,

10 = —1 {mod 11),
since 10 = —1 4 11. Successively multiplying this congruence by
itself, we obtain

10f =
10*
0=

=1 (mod 11),

“
’

“« L etes
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From this we can show that any integer
2=+ 0010 + 0 10° + ... + 4,10,
expressed in the decimal system, leaves the same remainder on division
by 11 as does the sum of its digits, taken with alternat..._ signs,
t=a—a+@;—a-+- ..

For we may write

2 — 1= a1l + 6(10° — 1) + a(10° + 1) + a(10* — 1) + --..
Since all the numbers 11, 10" — 1,10° + 1, - - - are congruent to 0 modula
11, z — ¢ is also, and therefore z leaves the same remainder on division
by 11 asdoest. It follows in particular that a number is divisible by 11
(i.e. leaves the remainder 0) if and only if the alternating sum of its digits
is divisible by 11. For example, since3 — 1+ 6 —2+8 — 1+ 9 =
22, the number z = 3162819 is divisible by 11. To find a rule for
divisibility by 3 or 9 is even simpler, since 10 = 1 (mod 3 or 9), and
therefore 10™ = 1 (mod 8 or 9) for any n. It follows that a number z
is divisible by 3 or 9 if and only if the sum of its digits

$=tatat - toa,

is likewise divisible by 3 or 9, respectively.

For congruences modulo 7 we have
10=3 10=2 100= -1, 10'= -3, 10°= ~2, 10° =1
The successive remainders then repeat. Thus z is divisible by 7 if and
only if the expression

7= a0+ 34; + 2a, ~ a3 — 3a¢ — 2a5 + as + 3a; + .-+

is divisible by 7.

Ezercise: Find a similar rule for divisibility by 13.

In adding or multiplying eongruences with respect to a fixed modulus,

say d = 5, we may keep the numbers involved from getting too large
by always replacing any number a by the number from the set

0, 1, 2, 3 4
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to which it is congruent. Thus, in order to caleulate sums and products
of integers modulo 5, we need only use the following addition and
muitiplication tables.

a+b a-b
b=0 1 2 3 4 b=01 2 3 4
a=0 01 2 3 4 a=0 0060 0 0
1 12340 1 61234
2 23401 2 02413
3 3401 2 3 831 42
4 490123 4 0 43 21

From the second of these tables it appears that a product ab is con-
gruent to 0 (mod 5) only if ¢ or bis = 0 (mod 5). This supgests the
general law

7) ab = 0 {mod d) only if eithera == G or b = 0 (mod d),
which is an extension of the ordinary law for integers which states that
ab = 0Qonlyifa=0orb = 0. Thelaw7) holds only when the modulus d
is @ prime. For the congruence

ab =0 (mod d)

means that d divides ab, and we have seen that a prime d divides a
product ab only if it divides & or b; that is, only if

a=0 (modd) or b=20 {mod d).
If d is not a prime the law need not hold; for we can write d = r.g,
where r and s are less than d, so that

r#0 {mod d), 8#£0 (mod d),
but
rs=d=0 (modd).

For example, 2 # 0 (mod 6) and 3 3 0 (mod 6), but 2.3 = 6 = 0
(mod 6).

Ezercise: Show that the following law of cancellation holds for con-
gruences with respect to a prime modulus:

If ab = acand a 5 0, then b = ¢,

Ezercises: 1) To what number between 0 and 6 incluaive is the product 1318+
2322-13-19 congruent modulo 77
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2) To what number between 0 and 12 inclusive is 3.7-11-17.19.28.29.113
congruent modula 137

3) To what number between 0 and 4 inclusive is the sum 1 + 2 4 20 + --- 4 2%
congruent modulo 562

2. Fermat’s Theorem

In the seventeenth century, Fermat, the founder of modern number
theory, discovered a most important theorem: If p s any prime which
does not divide the integer a, then
-t

=1

a {mod p).

This means that the (g — 1)st power of a leaves the remainder 1 upon
division by p.

Some of our previous calculations confirm this theorem; for example,
we found that 10° = 1 (mod 7), 10° = 1 (mod 3), and 10° = 1
{mod 11). Likewise we may show that 2 = 1 (mod 13) and 5" = 1
{mod 11). To check the latter congruences we need not actually cal-
culate such high powers, since we may take advantage of the muiti-
plicative property of congraences:

2 =16=3 (mod13), & =3 (mod 11},
2 =9= -4 “ , Fm9m~2 “« o,
M= —43=-12=1 ¢ . =4 “« o,

=34 =12=1
To prove Fermat’s theorem, we consider the multiples of a
mo=a,  mp=2a, my=3a, ..., ,myy = (p— la

No two of these integers can be congruent modulo p, for then p would
be a factor of m, — m, = {r ~ s)a for some pair of integers r, s with
1 <r<s<{p—1). Butthelaw 7) shows that this cannot oceur;
for since s — r is less than p, p is not a factor of s — r, while by assump-
tion p is not a factor of a. Likewise, none of these numbers can be
congruent to 0. Therefore the numbers m;, my, ... , myy must be
respectively congruent to the numbers 1, 2, 3, ... ,p — 1, in some
arrangement. It follows that

Mty g = 123 - (p — Da™ = 1.23 .- (p — 1) (mod p),
or, if for brevity we write K for 1.2.3 ... (p — 1},

K@~ D=0 (modp)
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But K is not divisible by p, since none of its factors is; hence by the
law 7), (@ ~ 1) must be divisible by p, i.e.

@' —1=0 (modp).
This is Fermat’s theorem.

To check the theorem once more, let us take p = 23 and ¢ = 5.
We then have, all modulo 23, 52 = 2,5' = 4,58 = 16 = ~7,5" =
49 = 3,5% = 12, 5¥ = 24 = 1. Witha = 4 instead of 5, we get,
again modulo 23, 4’ = ~7,4' = ~28 = -5, 4'= -0 =34 =
= —a5=1,4"=1

In the example above with @ = 4, p =23, and in others, we ob-
serve that not only the (p — 1)st power of 4, but also a smaller power
may be congruent to 1. It is always true that the smallest such power,
in this case 11, is a divisor of p — 1. (See the following Exercise 3.)

Exzercises: 1) Show by similar computation that 20 =1 (mod 17);3¢ = 1 (mod
17); 814 = ~1 (mod 20); 24 = ~1 (mod 20); 414 == 1 (mod 29); 5 = 1 (mod 29).

2) Check Fermat’s theorem for p = 5, 7, 11, 17, and 23 with different values
of a.

3) Prove the general theorem: The smallest positive integer ¢ for which a* = 1
(mod p) must be a divisor of p — 1. (Hint: Divide p — 1 by ¢, obtaining

p-1l=rketr,
where 0 < r < ¢, and use the fact that a#~! = o* = { (mod p).)

3. Quadratic Residues

Referring to the examples for Fermat's theorem, we find that not
only is @®™ == 1 (mod p) always, but (if p is a prime different from 2,
therefore odd and of the form p = 2p’ + 1) that for some values of a,
o” = a®™? = 1 (mod p). This fact suggests a chain of interesting
investigations. We may write the theorem in the following form:

1= —1=(@ - D@ +1)=0 (modp).

Sineé a produet is div lslble by p only 1f one of the factors is, it appears

immediately that either a”° — 1 or a® 4 1 must be di le by p, so
that for any prime p > 2 and any number o not divisible by », either
APV ] o PN e (mod 7).

From the beginning of modern number theory mathematicians have
been interested in finding out for what numbers @ we have the first
case and for what numbers the second. Suppose a is congruent modulo
P to the square of some number z,

a=2  (modp)
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Then a®"* = #*, which according to Fermat’s theorem is congruent
to 1 modulo p. A number a, not a multiple of p, which is congruent
modulo p to the square of some number is called a quadratic residue of p,
while a number b, not a multiple of p, which is not congruent to any
square is called a guadratic non-residue of p. We have just seen that
every quadratic residue @ of p satisfies the congruence ¢ ""* = 1
(mod p). Without serious difficulty it can be proved that for every
non-residue b we have the congruence b®* = —1 (mod p). More-
over, we shall presently show that among the numbers 1,2,3, -+, p~1
there are exactly (p — 1)/2 quadratic residues and (p ~ 1)/2 non-
residues.

Although much empirical data could be gathered by direct computa-
tion, it was not easy at first to discover general laws zoverning the
distribution of dratic residues and idues. The first deep-
lying property of these residues was observed by Legendre (1752-1833),
and later called by Gauss the Law of Quadratic Reciprocity. This
law concerns the behavior of two different primes p and g, and )
that ¢is a quadratic residue of p if and only if p is a quadratic vesiduc ot g,
provided that the product (p__; 1)- q—; ! is even. In case this
product is odd, the situation is reversed, so that p is a residue of ¢ if
and only if ¢ is a non-residue of p. One of the achievements of the
young Gauss was to give the first rigorous proof of this remarkable
theorem, which had long been a chailenge to mathematicians. Gauss’s
first proof was by no means simple, and the reciprocity law is not too
easy to establish even today, although a great many different proofs
have been published. Its true significance has come to light only re-
cently in connection with modern developments in algebraic number
theory.

As an example illustrating the distribution of quadratic residues, let
us choose p = 7. Then, since

o=9 1=

, =4, Fm2 £=2 F=4 =1

all modulo 7, and since the remaining squares repeat this sequence, the
quadratie residues of 7 are the numbers congruent to 1, 2, or 4, while
the non-residues are congruent to 3, 5, or 6. In the general case, the
quadratic residues of p consist of the numbers congruent to 1%,
2, (p — 1)". But these are congruent. in pairs, for

=~ (eodp) (eg,2°=5 (mod7),



40 THE THEORY OF NUMBERS 1]

since (p — z)° = p* — 2pz + 2° = 2’ (mod p). Hence half the num-
bers 1,2, «- 1 are quadratic residues of p and half are quadratic
non-residues.

To illustrate the quadratic reciprocity law, let us choose p = 5,
g = 11. Since 11 = 1’ (mod 5), 11 is a quadratic residue (mod 5);
since the product [(5 — 1)/2J{(11 ~ 1)/2] is even, the reciprocity law
tells us that 5 is a quadratic residue (mod 11). In confirmation of this,
we observe that 5 = 4” (mod 11). On the other hand, if p = 7, ¢ = 11,
the product {(7 — 1)/2}{(11 — 1)/2] is odd, and indeed 11 is a residue
(mod 7) (since 11 = 2' (mod 7)), while 7 is a non-residue (mod 11).

Ezercises: 1. 6! = 36 = 13 (mod 23). s 23 a quadratic residue (mod 13)?

2. We have scen that 28 m (p ~ 2)? (mod p). Show that these are the ondy
congruences among the numbers 12, 21, 34, «-- , (p —

§3. PYTHAGOREAN NUMBERS AND FERMAT'S
LAST THEOREM

An interesting question in number theory is connected with the
Pythagorean theorem, The Greeks knew that a triangle with sides
3, 4, 5 is a right triangle. This suggests the general question: What
other right triangles have sides whose lengths are mtegml multiples of

a unit length? The Pythag theorem is exp Igebraically by
the equation
) =

where a and b are the lengths of the legs of a right triangle and ¢ is the
length of the hypotenuse. The problem of finding all right triangles
with sides of integral length is thus equivalent to the problem of finding
all integer solutions (g, b, ¢} of equation (1). Any such triple of numbers
is called a Pythagorean number triple.

The problem of finding all Pythagorean number triples can be solved
very sxmply If a, b and ¢ form a Pythagorean number triple, so that
o’ + b = ¢, then we put, for abbrenaﬂon u/c =z, bfc=y =z and y
are rational numbers for which z* + ¢* 1. We then have 3
A~z +2),ory/(lL+2)=(1-—- z)/y. ‘The common value of Lhe
two sides of this equation is & number ¢ which is expressible as the
quotient of two integers, u/v. We can now write y = #1 + 2) and
(1 —z)=ty,or

-y = i, z+ty=1
From these simul iong we find i diately that
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Substituting for z, ¥ and ¢, we have

Therefore
a= (-,
(2) b = (2uo)r,
¢ = (W + o),
for some rational factor of proportionality ». This shows that if (a,b,¢)
isa Pythw orean number triple, then a, b, ¢ are proportional to v — u’,

2up, w' + o, respectively. Conversely, it is easy to see that any triple
{a, b, ¢c) deﬁned by (2) is a Pythagorean triple, for from (2) we obtain
&= - 2% + vy,
= ('),
& = (' + 2% + oY),
s0 that o' + b* = ¢\

This result may be simplified somewhat. From any Pythagorean
number triple (a, b, ¢) we may derive infinitely many other Pythagorean
triples (sa, b, sc) for any positive integer s. Thus, from (3, 4, 5) we
obtain (6, 8, 10), (9, 12, 15), etc. Such triples are not essentially dis-
tinet, since they correspond to similar rizht triangles. We shall there-
fore define & primitive Pythagorean number triple to be one where a,
b, and ¢ have no common factor. It can then be shown that the formulas

a=0 -
b = 2uy,
¢ =u+ 9,
for any positive integers u and v with v > u, where u and v have no com-

mon factor and are not both odd, yield all primitive Pythagorean number
triples.

*Bzercize: Prove the last statement.

As les of primitive Pytha n number triples we have u = 2,
v=1:(3,45),u=37» 205,12, 18}, u = 4,0 = 3: (7, 24, 25), -,

= 10, v = 7: (51, 140, 149), etc.
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This result ing Pyth b naturally raises the
guestion as to whether integers .a, b, ¢ can be found for which &’ + b* =
o or @' + b* = ¢!, or, in general, whether, for a given positive integral
exponent n > 2, the equation
@) " +b" ="
can be solved with positive integers ¢, b, c. An answer was provided
by Fermat in a spectacular way. Fermat had studied the work of
Diophantus, the ancient contributor to number theory, and was accus-
tomed to making comments in the margin of his copy. Although he
stated many theorems there without bothering to give proofs, all of
them have subsequently been proved, with but one significant exception.
While commenting on Pythagorean numbers, Fermat stated that
the equation (3) is not solvable in integers for any n > 2, but that the
elegant proof which he had found was unfortunately too long for the
margin in which he was writing.

Fermat's general statement has never been proved true or false,
despite the efforts of some of the greatest mathematicians since his
time. The theorem has indeed been proved for many values of n, in
particular, for ali 2 < 619, but not for all n, although no counter-
example has ever been produced. Although the theorem itself is not
so important mathematically, attempts to prove it have given rise to
many important investigations in number theory. The problem has
also aroused much interest in non-mathematical circles, due in part to a
prize of 100,000 marks offered to the person who should first give a
solution and held in trust at the Royal Academy at Géttingen. Until
the post-war German inflation wiped out the monetary value of this
prize, & great number of incorrect “solutions” was prescnted each year
to the trustees. Even serious mathematicians sometimes deceived
themselves into handing in or publishing proofs which collapsed after
some superficial mistake was discovered, General interest in the ques-
tion seems to have abated since the devaluation of the mark, though from
time to time there is an announcement in the press that the problem has
been solved by some hitherto unknown genius.

§4. THE EUCLIDEAN ALGORITHM

1. General Theory

The reader is familiar with the ordinary process of long division of one
integer a by another integer b and knows that the process can be carried
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out until the remainder is smaller than the divisor. Thus if a = 648
and b = 7 we have a quotient ¢ = 92 and a remainder r = 4.
92
71648 648 = 7.92 + 4.
63
18
14
4
‘We may state this as a general theorem: If a is any integer and b is
any inleger greater than 0, then we can always find an integer o such that
(6} a=bgtr,
where 1 is an integer satisfying the inequality 0 < r < b,
Ta prove this statement without making use of the process of long division we
need only observe that any integer a is either itself a multiple of b,
a = bg,
or lies between two successive multiples of b,
bg < a < blg+1) = bg-+b
In the first case the equation (1) holds with r = 0. In the second case we have,
from the first of the inequalities above,
= bg=1r>0
while from the second inequality we have
ea—bg=r<bh
80 that 0 < r < b as required by (1)

From this simple fact we shall deduce a variety of important conse-
quences. The first of these is a method for finding the greatest common
divisor of two integers.

Let a and b be any two integers, not both equal to 0, and consider the
set of all positive integers which divide both a and b, 'T'his set is cer~
tainly finite, since if a, for example, is 5 0, then no integer greater in
magnitude than a can be a divisor of a, to say nothing of b. Hence
there can be but a finite number of common divisors of @ and b, and of
these let d be the greatest. The integer @ is called the greatest common
divisor of a and b, and written d = (a,b). Thusfora = 8andb = 12
we find by direct trial that (8, 12) = 4, while fora = 5and b = 9 we
find that (5,9) = 1. When aand b are large, say @ = 1804 and b = 328,
the attempt to find (a. &) by trial and error would be quite wearisome.
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A short and certain method is provided by the Euclidean algorithm.
(An algorithm is a systematic method for eomputation.) It is based
on the fact that from any relation of the form

{2) a=bg+r
it follows that
3) (a, ) = (b,).

For any number » which divides both a and b,
a = su, b= tu,
also divides r, since r = a — bg = su — glu = (s — gf)u; and con-
versely, every number v which divides b and r,
= g, o= {y
also divides a, since a@ = bg + 7 = sug + v = (g + ). Hence
every cornmon divisor of a and b is at the same time a common divisor
of b and », and conversely. Since, therefore, the set of all common
divisors of a and b is identical with the set of all common divisors of b
and r, the greatest common divisor of @ and b must be equal to the
greatest common divisor of b and r, which establishes (3). The useful-
ness of this relation will be seen immediately.
Let us return to the question of finding the greatest common divisor
of 1804 and 328. By ordinary long division

1640
164
we find that
1804 = 5.328 + 164.
Hence from (3) we conclude that
(1804, 328) = (328, 164).
Observe that the problem of finding (1804, 328) has been replaced by a
problent involving smaller numbers. We may continue the process.
Since
2
164328
328

o,
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we have 328 = 2.164 4+ 0, so that (328, 164) = (164,0) = 164. Hence
(1804, 328) = (328, 164) = (164, 0) = 164, which is the desired result.

This process for finding the greatest common divisor of two numbers
is given in a geometric form in Euclid’s Elements. For arbitrary integers
a and b, not both 0, it may be described arithmetically in the following
terms.

We may suppose that b 0, since (@, 0) = a. Then by successive
division we can write

a=bn+n ©<r<b)
@ b=ngp+r O<r<r)
=G Ty O<n<m
=gt O<r<r)
50 long as the remainders 71, 7, 73, -+ are not 0. From an inspection
of the inequalities at the right, we see that the successive remainders
form a steadily d ing seq of positive
(5) b>n>n>n>n> .o >0

Hence after at most b steps (often many fewer, since the difference
between two successive r's is usually greater than 1) the remainder 0 must
appear:

Tasz = Taci@n + Ta

Fact = Tagasr + O
When this occurs we know that,

(a,b) =103

in other words, (a, b) s the last positive remainder in the sequence (5).

This follows from successive application of the equality (3) to the eg-
uations (4), since from successive lines of (4) we have

(e,b) = (b,m),  Gr)=(r,m), (1,7 =(n,75),
(re,m) = (1o oy oee (g, ) = (0 =1,
Ezercise: Carry out the Euclidean algorithm for find.  che greatest common
divisor of (a) 187, 77, (b) 106, 383. (c) 245, 193.
An extremely important property of (a, b) can be derived from equa-
tions (4). Ifd = (a, b), then positive or negative integers k and | can be
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found such that

(6) d==Fke+ b

To show this, let us consider the sequence (5) of successive remainders.
From the first equation in (4)

n=ge-gbh
80 that 74 can be written in the form ke + Lb (in this case & = 1,
I = —q). From the next equation,

r=b—qn=>b— pla+ )
= (—gkr)a + (1 — qal)b = kea + bb.
Clearly this process can be repeated through the successive remainders
g, 7e, -+ - until we arrive at a representation
7o = ka + I,
as was to be proved.
As an example, consider the Euclidean algorithm for finding (61, 24);
the greatest common divisor is 1 and the desired representation for 1
can be computed from the equations

61 = 2.24 + 13, 24 = 1.13 + 11, B=1.11+2
11 =5.24+1, 2=2.1+40.
‘We bave from the first of these equations
13 = 61 — 2.24,
from the second,
1 =24 — 13 = 24 — (61 — 2.24) = ~61 + 3.24,
from the third,
2 = 13 — 11 = (61 ~ 2.24) — (~61 + 3.24) = 2.61 ~ 5.24,
and from the fourth,
1=11-5.2= (-6l + 3.24) — 5(2.61 — 5.24) = —11.61 + 28.24.

2. Application to the Fundamental Theorem of Arithmetic

The fact that ¢ = (a, b) can always be written in the form @ =
ka 4 Ib may be used to give a proof of the fundamental theorem of
arithmetic that is independent of the proof given on page 23. First
wo shall prove, as a lemma, the corollary of page 24, and then from this
lemma we shall deduce the fundamental theorem, thus reversing the
previous order of proof.
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Lemma: If a prime p divides a product ab, then p must divide a or b.

If a prime p does not divide the integer @, then (a, p) = 1, since the
only divisors of p are p and 1. Hence we can find integers k and !
such that

1 = ka + lp.
Multiplying both sides of this equation by b we obtain
b = kab -+ Ipb.

Now if p divides ab we can write
ab = pr,
8o that
b = kpr + Ipb = plkr + ).
from which it is evident that p divides b. Thus we have shown that if
p divides ab but does not divide a then it must divide b, so that in any
event p must divide @ or b if it divides ab.

The extension to products of more than two intezers is immediate.
For example, if p divides abc, then by twice applying the lemma we can
show that p must divide at least one of the integers @, b, and ¢. Forif
p divides neither g, b, nor ¢, then it cannot divide eb and hence cannot
divide {ab)e = abe.

Ezercise: The extension of this argament to products of any number n of
integors roquires the explicit or implicit use of the principle of mathematical in-
duction. Supply the details of this argnment.

From this result the fundamental theorem of arithmetic f{ollows at
once. Let us suppose given any two decompositions of a positive in-
teger N into-primes:

N=ppr-pr=qqa- -
Since p, divides the left side of this equation, it must also divide the
right, and hence, by the previous exercise, must divide one of the
factors gz . But g is & prime, therefore p, must be equal to this gu.
After these equal factors have been cancelled from the equation, it
follows that p; must divide one of the remaining factors ¢, and hence
must be equal to it. Striking out p, and g, , we proceed similarly with
Py, oee,Pr. At the end of this process all the p’s will be cancelled,
leaving only 1 on the left side. No ¢ can remain on the right side,
since all the ¢’s are larger than one. Hence the p’s and ¢’s will be
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paired off into equal couples, which proves that, except perhaps for the
order of the factors, the two decompositions were identical,

3. Euler’s ¢ Function. Fermat's Theorem Again

Two integers a and b are said to be relatively prime if their greatest

common divisor is 1:
(@ b) =1
For example, 24 and 35 are relatively prime, while 12 and 18 are not.
1f & and b are relatively prime, then for suitably chosen positive or negative
integers k and | we can write
ka + =1

This follows from the property of (g, b) stated on page 45.

Bzercise: Prove the theorem: If an infeger  divides & product ab and is relatively
prime to a, then r must divide b. (Hint: if r is relatively prime to a then we can
find integers & and I such that

kr4la= 1
Multiply both sides of this equation by b.) This theorem includes the lemma

of page 46 ns a special case, since a prime p is relatively prime to an integer & if
and only if p does not divide a.

For any positive integer », let ¢(n) denote the number of integers from
1 to n which are relatively prime to n, This function ¢(n), first intro-
duced by Euler, is & “number-theoretical function” of great importance.
The values of ¢(n) for the first few values of 7 £re easily computed:

e(ly =1 since 1 is relatively prime to 1,

e(2) =1 since 1 is relatively prime to 2,

e(3) =2 since 1 and 2 are relatively prime to 3,

() =2 since 1 and 3 are relatively prime to 4,

o5) = 4 “ 1,234 Are relnhvely prime to 5,

o6) =2 “« 15 “« g

o(7) = 6 “ 1,23, 4,5, 6 are relatively prime to 7,
o(8) = 4 “ 1,357 1
0 =86 “ 1,2,4,578 « “ « wg
0(10) = 4 “« 1,3,7,9 « “ « g,
ete.

We observe that ¢(p) = p — 1if p is & prime; for & prime p has no
divisors other than itself and 1, and hence it is relatively prime to all
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of the integers 1, 2, 3,...,p — 1. If n is composite, with prime
decomposition

n=pl'pl" - P77,
where the 2’s represent distinet primes, each raised to a certain power,

then (n)—ﬂ(l‘“) (;—~)-~'(1"%)'

For example, since 12 = 2°.3,
#(12) = 12(1 = HA - §) = 2HA) =
as it should be. The proof is quite elementary, but will be omitted here.

* Exercise: Using Buler's ¢ function -eneralize Fermat's theorem of page 37.

The gencral theorem states: [/ nisan;  wger, and a is relatively prime to B, then
a®™ =1 (mod n).
4. Contil d Fracti Diophantine Ex

The Euclidean algorithm for finding the greatest common divisor of
two integers leads immediately to an important method for representing
the quotient of two integers as a composite fraction.

Applied to the numbers 840 and 611, for example, the Euclidean
algorithm yields the series of equations,

840 = 1.611 +4- 229, 611 = 2.229 + 153,

229 = 1.153 + 76, 153 = 2.76 + 1,
which show, incidentally, that (840, 611) = 1. From these equations
we may derive the following expressions:

840 220 1
ori ~ ' en T U gz
611 153

a9~ 2+ o =

29 _ 7 _ 1
= m e mm
13 o4 L
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On combining these equations we obtain the development of the rational

-840 .
number & the form

840
611

An expression of the form

() @ = gyt
o+

@+,
41

an'

where the @'s are positive integers, is called & continued fraction. The
Euclidean algorithm gives us a method for expressing any rational
number in this form.,

Ezercise: Find the continued fraction developments of
2 43 169
FE T
* Continued fractions are of great importance in the branch of higher arith-
metic known as Di ine analysis. A Diophantine eguation is sn alge-
braic equation in one or more unknowns with integer coefficients, for which integer
solutions are sought. Such an equation may have no solutions, a finite number,
or an infinite number of solutions. The simplest case is the linear Diophantine
equution in two unknowns,
®) az + by = ¢,
where a, b, and ¢ are given integers, and integer solutions z, y are desired. The
complete solution of an equation of this form may be found by the Euctidean
algorithm.
To begin with, let us find d = (, b) by the Euclidean algorithm; then for
proper choice of the integers k and I,
[} ak + bl = d.

Hence the equation (8) has the partioular solution = = &, y = ! for the case ¢ = d.
More generally, if ¢ is any multiple of d

¢ =dyg,
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then {rom {9) we obtain

alkg) + blg) = dg = o,
50 that (8) has the particular solution & = z* = kg, y = y* = lg. Conversely,
if (8) has any solution z,  for a given ¢, then ¢ must be a multiple of d = (g, b);
for d divides both @ and b, and hence must divide c. We have therefare proved
that the equation (8) has a solution if and only if ¢ is a multiple of (a, b).

To determine the other solutions of (8) we observe that if z = 2/, y = y'is
any solution other than the one, z = 2*, y = y* found above by the Euclidean
algorithm, then z = 2’ — 2%, y = ' — y* is & solution of the “‘homogeneous’”
equation
(10) az + by = 0.

For if
az' + by = ¢ and @z* + by* = ¢,
then on subtracting the second equation from the frat we find that
@@ ~ 2% + by ~ y*) = 0.
Now the most general solution of the equation (10) is ¢ = 7b/(a, b), ¥ = —ra/(a, b),
where r is any integer. (We leave the proof as an exercise. Hint: Divide by
(a, b) and use the Exercise on page 48.) It follows immediately that
z o= 2t 4 rb/(a, ), y =yt~ rafa, b).

To summarize: The linear Diophantine equation az + by = ¢, where g, b,
and ¢ are integers, has a solution in integers if and only if ¢ is a multiple of (a, b).
In the latter case, a particular solution z = z¥, y = y* may be found by the
Fuclidean algorithm, and the most general solution is of the form

z = z* + tb/(a, b), y = y* - raf(a, b),
where 7 is any integer.

Ezamples: The equation 3z + 8y = 22 has no integral solution, since (3,6) =
which does not divide 22.

The equation 7z + 11y = 13 has the particular solution r = —39, y = 26,
found as follows:

U=17+4 T=14+3 4=13+1 7 1)=
=4 =B=4-(T—4)=24~T=2011 ~7) =7 =21 ~37.
Hence
7(~3) +11(2) =1,
7-(—39) 4 11(26) =
The other solutions are given by
2= ~39 + 1lr, y =26 =7,
where 7 is any integer.

Baercise: Solve the Dloph&ulmccquauom (8) 82 — 4y = 29. (b}11z + 12y = 58,

(c) 163z — 34y =




CHAPTER 11
THE NUMBER SYSTEM OF MATHEMATICS

INTRODUCTION

We must greatly extend the original concept of number as natural
number in order to create an instrument powerful enough for the needs
of practice and theory. In a long and hesitant evolution zero, negative
integers, and fractions were gradually accepted on the same footing
2§ the positive integers, and today the rules of operation with these
numbers are mastered by the average school child. But to gain com-
plete freedom in algebraic operations we must go further by including
irrational and complex guantities in the number concept. Although
these extensions of the concept of natural number have been in use for
centuries and are at the basis of all modern mathematics it is only in
recent times that they have been put on a logically sound basis. In
the present chapter we shall give an account of this development.

§1. THE RATIONAL NUMBERS

1. Ratienal Numbers as a Device for Measuring

The integers are abstractions from the process of counting finite
collections of objects. But in daily life we need not only to count indi-
vidual objects, but also to measure quantities such as length, area,
weight, and time. If we want to operate freely with the measures of
these quantities, which are capable of arbitrarily fine subdivision, it
i8 neeessary to extend the realm of arithmetic beyond the integers.
The first step Is fo reduce the problem of measuring to the problem of
counting. First we selet, quite arbitrarily, a unit of measurement—
foot, yard, inch, pounc, ,.am, or second as the case may be-~to which
we assign the measure 1. Then we count the number of these units
which together make up the quantity to be measured. A given mass
of lead may weigh exactly 54 pounds. In general, however, the process
of counting units will not “come out even,” and the given quantity will
not be exactly measurable in terms of integral multiples of the chosen
unit. The most we can say is that it lies between two successive mul-

52
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tiples of this unit, say between 53 and 54 pounds. When this oceurs,
we take a further step by introducing new sub-units, obtained by sub-
dividing the original unit into a number n of equal parts. In ordinary
language, these new sub-units may have special names; for example, the
foot is divided into 12 inches, the meter into 100 centimeters, the pound
into 16 ounces, the hour into 60 minutes, the minute into 60 seconds,
etc. In the symbolism of mathematics, however, a sub-unit obtained
by dividing the original unit 1 into n equal parts is denoted by the
symbol 1/a; and if a given quantity contains exactly m of these sub-
units, its measure is denoted by the symbol m/n. This symbol iz
calied a fraction or ratio (sometimes written m:n). The next and de-
cisive step was consciously taken only after centuries of groping effort:
the symbol m/n was divested of its concrete reference to the process of

ing and the ¢ iti d, and instead considered as a
pure number, an cntity in itsclf, on the same footing with the natural
numbers. When m and n are natural numbers, the symbol m/n is
called a rational number.

The use of the word number (originally meaning natural number only)
for these new symbols is justified by the fact that addition and multi-
plication of these symbols obey the same laws that govern the operations
with natural numbers. To show this, addition, multiplication, and equal-
ity of rational numbers must first be defined. As everyone knows,
these definitions are:

a,e ad + be a ¢ _ac
b d bd ' bd o bd’
[¢))
a a N
=L i = Gif ad = be,
for any integers a, b, ¢, 4. For example:
2,4_25+34 10412 [P
375 T3 T 15 T 3°5°
3_
3= 1

Precisely these definitions are forced upon us if we wish to use the ra-
tional numbers as measures for lengths, areas, etc. But strictly speak-
ing, these rules for the addition, multiplication, and equality of our
symbols are established by our own definition and are not imposed upon
us by any prior necessity other than that of consistency and usefulness
for applications. On the basis f the definitions (1) we can show that
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the fundamental laws of the arithmetic of natural numbers continue to hold
in the domain of rational numbers:

ptg=q+p (commutative law of addition),
P+ @+ =@+ ¢+ r (associative law of addition),
@ Pg=gp ( ive law of multiplication),
plgr) = (pg)r (associative law of multiplication),

plg+ 1) =pg+ pr (distributive law).
For example, the proof of the commutative law of addition for fractions is
exhibited by the equations
a,c_ad+be_cb+da ¢

a
praT Tw T T Taty

of which the first and last equality signs correspond to the definition (1)
of addition, while the middle one is a consequence of the commutative
laws of addition and multipli of natural by The reader may
verify the other four laws in the same way.

For a real understanding of these facts it must be emphasized once
more that the rational numbers are our own creations, and that the rules
(1) are imposed at our volition. We might whimsically decree some
_atc
b
yield § 4 4 = 2/4, an absurd result from the point of view of measuring.
Rules of this type, though logically permissible, would make the arith-
metic of our symbols a meaningless game. The free play of the intellect
is guided here by the necessity of creating a suitable instrument for
handling measurements.

other rule for addition, such as g + 3 which in particular would

2. Intrinsic Need for the Rational Numbers. Principle of Generalization

Aside from the “practical’” reason for the introduction of rational num-
bers, there is a more intrinsic and in some ways an even more compelling
one, which we shall pow discuss quite independently of the preceding
argument. It is of an entirely arithmetical character, and is typical of
a dominant tendency in mathematical procedure.

In the ordinary arithmetic of natural numbers we can always carry
out the two fundamental operations, addition and multiplication.
But the “inverse operations” of subtraction and division are not always
possible. The difference b ~ a of two integers @, b is the integer ¢
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such that a + ¢ = b, i.e. it is the solution of the equation a + z = b.
But in the domain of natural numbers the symbol & — ¢ has a meaning
only under the restriction b > @, for only then does the equationa + 2 =
b have a natural number z as a solution. It was a very great step
towards removing this restriction when the symbol 0 was introduced by
setting a — a = 0. It was of even greater importance when, through
the introduction of the symbols ~1, ~2, —3, ... , together with the
definition

b—a=—(a—b
for the case b < @, it was assured that subtraction could be performed
without restriction in the domain of positive and negative integers. To
include the new symbols —1, —2, ~3, ... in an enlarged arithmetic
which embraces both positive and negative integers we must, of
course, define operations with them in such a way that the original rules
of arithmetical operations are preserved. For example, the rule
@) =D =1
which we set up to govern the multiplication of nezative integers, is a
consequence of our desire to preserve the distributive law a(b + ¢) =
ab + ac. For if we had ruled that (—1)(—1) = =1, then, on setting
a= —1,b=1¢= —1 weshould havehad —~1(1 ~ 1) = —~1 — } =
-2, while on the other hand we actually have —1(1 — 1) = —1.0 = 0.
Tt tock s long time for mathematicians to realize that the “rule of signs”
(3), together with all the other definitions governing negative integers
and fractions cannot be “proved.” They are ereated by us in order to
attain freedom of operation while preserving the fundamental laws of
arithmetic. What can—and must—be proved is only that on the basis
of these definitions the commutative, associative, and distributive laws
of arithmetic are preserved. Iven the great Euler resorted to a thor-
oughly unconvincing argument to show that (—1)(—1) “must” be
equal to +1. For, as he reasoned, it must either be 41 or ~1, and
cannot be —1, since —1 = (+1)(—1).

Just as the introduction of the negative integers and zero clears the
way for unrestricted subtraction, so the introduction of fractional num-
bers removes the analogous arithmetical obstacle to division. The
quotient z = b/a of two integers a and b, defined by the equation

(€3] ax = b,
exists as an tnleger only if a is a factor of b, If this is not the case, as for
examnie when @ = 2, b = 3, we simply introduce a new symbol b/a,
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which we call & fraction, subject to the rule that a(b/a) = a, so that
b/a is a solution of (4) “by definition.” The invention of the fractions
a8 new number symbols makes division possible without restriction—
except for division by zero, which is ezcluded once for all.

Expressions like 1/0, 3/0, 0/0, ete. will be for us meaningless symbols.
For if division by 0 were permitted, we could deduce from the true equa~
tion 0.1 = 0.2 the absurd consequence 1 = 2. [t is, however, some-
times useful to denote such cxpressions by the symbol e (read, “infin-
ity’"), provided that one does not attempt o operate with the symbol © as
though it were subject to the ordinary rules of caleulation with numbers.

The purely arithmetical significance of the system of all rational
numbers—integers and fractions, positive and negative--is now appar-
ent. For in this extended number domain not only do the formal asso-
ciative, commutative, and distributive laws hold, but the equations
a4z = band az = b now have solutions, z = b — g and z = b/a, without
restriction, provided in the latter case that a ¢ 0. In other words, in
the domain of rational bers the lled rational operati addi
tion, subtracti iplicati and divisi be performed
without restriction and will never lead out of this domain. Such a
closed domain of numbers is called a field. We shall meet with other
examples of fields later in this chapter and in Chapter III.

Extending a domain by introducing new symbols in such a way
that the laws which hold in the original domain continue to hold in the
larger domain is one aspect of the characteristic mathematical process
of generalization. The generalization from the natural to the rational
numbers satisfies both the theoretical need for removing the restrictions
on subtraction and division, and the practical need for numbers to
express the results of measurement. It is the fact that the rational
numbers fill this two-fold need that gives them their true significance.
As we have seen, this extension of the number concept was made possible
by the creation of new numbers in the form of abstract symbols like
0, —2, and 3/4. Today, when we deal with such numbers as a matter
of course, it is hard to believe that as late as the seventeenth century
they were not generally credited with the same legitimacy as the posi-
tive integers, and that they werc used, when necessary, with a certain
amount of doubt and trepidation. The inherent human tendency to
cling to the “concrete,” as exemplified by the natural numbers, was
responsible for this slowness in taking an inevitable step. Only in the
realm of the ahstract can a satisfactory system of arithmetic be created.
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3. Geometrical Interpretation of Rational Numbers

An illuminating geometrical interpretation of the rational number
system is given by the following construction.

On a straight line, the “number axis,” we mark off a segment 0 to 1,
as in Iig. 8. This establishes the length of the segment from 0 to 1
as the unit length, which we may choose at will. The positive and
negative integers are then rep. d as a set of idis! points on
the number axis, the positive numbers to the right of the point 0 and the

-2 -1 6 1 2 3
Fig. 8. The number azia.

negative numbers to the left. Torepresent fractions with the denomina-
tor n, we divide each of the segments of unit length into n equal parts;
the points of subdivision then represent the fractions with denominator
n. If we do this for every integer n, then ali the rational numbers will
be represented by points of the number We shall call such points
rational poinis, and we shall use the term.» *‘rational number” and “ra-
tional point” interchangeably.

In Chapter T, §1, we defined the relation 4 < B for natural numbers.
"T'his has its analog on the number axis in the fact that if natural number
4 is less than natural number B, then point 4 lies to the left of point B.
Since the geometrical relation holds between ell rational points, we are
led to try to extend the arithmetical relation in such a way as to preserve
the relative geometrical order of the corresponding points. This is
achieved by the following definition: The rational number 4 is said to be
less than the rational number B (4 < B), and B is said to be greater than
A (B> A),if B — A is positive. It then follows that, if 4 < B, the
points (numbers) between A and B are those which are both > 4 and <B.
Any such pair of distinct points, together with the points between
them, is called a segment, or inferval, [4, B}.

The distance of a point, A, from the origin, considered as positive,
is calied the absolute value of A and is indicated by the symbol

faf.

In words, if A > 0, we have | 4| = 4;if 4 <0, wehave {4 | = — 4.
It is clear that if A and B have the same sign, the equation | A + B|
= | A} + | B| holds, while if 4 and B have different signs, we have
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|4 4 B < 14|+ |B| Hence, bining these two
we have the general inequality

l4+Bls|af+]8],

which is valid irrespective of the signs of 4 and B.

A fact of fundamental importance is expressed in the statement: The
rational points are dense on the line. By this we mean that within each
interval, no matter how small, there are rational points. We need only
take a denominator n large enough so that the interval [0, 1/2]} is smaller
than the interval {4, B] in question; then at least one of the fractions
m/n must lie within the interval. Hence there is no interval on the line,
however small, which is free from rational points. It follows, moreover,
that there must be infinitely many rational peints in any interval; for,
if there were only a finite number, the interval between any two adjacent
rational points would be devoid of rational points, which we have just
seen to be impossible.

§2. INCOMMENSURABLE SEGMENTS, IRRATIONAL
NUMBERS, AND THE CONCEPT OF LIMIT
1. Introduction

In comparing the itudes of two line a and b, it may
happen that e is contained in b an exact integral number r of times.
In this case we can express the measure of the segment b in terms of that
of a by saying that the length of b is r times that of .  Or it may turn
out that while no integral multiple of a equals b, we can divide a into,
say, n equal segments, each of length a/z, such that some integral multi-
ple m of the segment a/n is equal to b:

) b= ’;"a.

When an equation of the form (1) holds we say that the two segments
a and b are commensurable, since they have as a common measure the
segment a/n which goes n times into @ and m times into . The totality

EES I TE T ¥
Fig. 0. Rational points.

of all segments commensurable with a will be these whose length can be
expressed in the form (1) for some choice of integers m and n (n = 0).
If we choose a as the unit segment, [0, 1}, in Figure 9, then the segents
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commensurable with the unit segment will correspond to all the ra-
tional points m/n on the number axis. For all practical purposes of
measuring, the rational numbers are entirely sufficient. Even from a
theoretical viewpoint, since the set of rational points covers the line
densely, it might seem that all points on the line are rational points.
If this were true, then any segment would be commensurable with the
unit. It was one of the most surprising discoveries of early Greek mathe-
matics (the Pythagorean school) that the situation is by no means so
simple. There exist incommensurable segments or, il we assume that to
every segment corresponds a number giving its length in terms of the
unit, frrational numbers. This revelation was a scientific event of the
highest importance. Quite possibly it marked the origin of what we
consider to be the specifically Greck contribution to rigorous procedure
in mathematics. Certainly it has profoundly affected mathematics
and philosophy from the time of the Grecks to the present day.

Tudoxus’ theory of incommensurables, presented in geometrical form in
Buelid's Elements, is a masterpicee of Greek mathematics, though it is
usually omitted from the dituted high-school versions of this elassical
work. The theory became fully appreciated only in the late nine-
teenth century, after Dedekind, Cantor, and Weierstrass had constructed
a rigorous theory of irrational numbers. We shall present the theory
in the modern arithmetical way.

First we show: The diagonal of a square is incommensurable with its
side. We may suppose that the side of the given square is chosen as
the unit of length, and that the diagonal has the length 2. Then, by
the Pythagorcan theorem, we have

d=1+1=2

(We may denote z by the symbol 1/2.) Now if z were commensurable
with I, we could find two integers p and g such that x = p/g and
@) P =2
We may suppose that p/g is already in lowest terms, sinee any common
factor in numerator and denominator could be cancelled out at the begin-
ning. Since 2 appears as a factor of the right side, p* is an even number,
and hence p itsell is even, because the square of an odd number is odd
We may therefore write p = 2r. Equation (2) then becomes

4% = 2¢°, or 2 = ¢\
Since 2 is a factor of the left side, 9°, and hence ¢ must also be even.
Thus p and g are both divisible by 2, which contradicts the assumption
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that p and ¢ had no common factor. Therefore, equation (2) cannot
hold, and z cannot be a rational number.

Our result can be expressed by the statement that there is no rational
number equal to /2.

The argument of the preceding paragraph shows that a very simple
geometrical construction may result in a segment incommensurable with
the unit. If such a segment is marked off on the number axis by means
of a compass, the point so constructed cannot coincide with any of the

) P

Fig. 10. Construction of v/,

rational points: The system of rational points, although it is everywhere
dense, does not cover all of the number azts. To the naive mind it must
certainly appear very strange and paradoxical that the dense set of ra-
tional points does not cover the whole line. Nothing in our “intuition”
can help us to “see” the irrational points as distinct from the rational
ones. No wonder that the discovery of the incommensurable stirred
the Greek phil hers and h icians, and that it has retained
even today its provocative effect on thoughtful minds.

1t would be very easy to construct as many segments incommensurable
with the unit as we want, The end-points of such segments, if marked
off from the point 0 on the number axis, are called érrational points.
Now, the guiding principle in introducing fractions was the measuring
of lengths by numbers, and we should like to maintain this principle in
dealing with segments incommensurable with the unit. If we demand
that there should be a mutual correspondence between numbers on the one
hand and points of a straight line on the other, it is necessary to introduce
irrational numbers.

Summarizing the situation thus far we may say that an irrational
number represents the length of a segment incommensurable with the
unit, In the following sections we shall refine this somewhat vague and
entirely geometrical definition, until we arrive at one more satisfactory
from the point of view of logical rigor. Our first approach to the sub-
ject will be by way of the decimal fractions.

Exercises: 1) Prove that /3, V3, v, /3 are not rational. (Hint: Use the
lemma of p. 47). R B
2) Prove that V2 + v and V2 + +/2 are not rational. (Hint: If eg. the
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firat of these numbers were equal to a rational number r then, writing
V3 = r — v/2 aud squaring, +/2 would be rational,

3) Prove that /2 + v/3 + v/Gisirrationsl. Try to make up similar and more
general examples.

2. Decimal Fractions. Infinite Decimals

In order to cover the number axis with a set of points everywhere
dense, we do not need the totality of all rational numbers; for example,
it suffices to consider only those numbers which originate by subdivision
of each unit interval into 10, then 100, 1000, etc. equal sezments. The
points so obtained correspond to the “decimal fractions.” For example,
the point 0.12 = 1/10 + 2/100 corresponds to the point lying in the
first unit interval, in the second subinterval of length 107, and at the
initial point of the third “sub-sub-” interval of length 107 (a™
means 1/6") Such a decimal fraction, if it contains n digits after the
decimal point, has the form

f=2+ al0” + aal07 + 0107 + ... + 107",

where 2z is an integer and the a’s are digite—0, 1, 2, - .. , 3—indicating
the tenths, hundredths and so on. The number f is represented in the
decimal system by the abbreviated symbol z.a000y -+ - an. We see
immediately that these decimal fractions can be written in the ordinary
form of a fraction p/q where ¢ = 10”; for example, f = 1.314 = 1 -
3/10 + 1/100 -+ 4/1000 = 1314/1000. If p and ¢ have a common
divisor, the decimal fraction may then be reduced to a fraction with &
denominator which is some divisor of 10". On the other hand, no frac-
tion in lowest terms whose denominator is not a divisor of some power of

2.
0

0.2, and 556 = 1-65() = 0.004; but , cannot be written as s decimal

fraction with a finite number n of decimal places, however great n be
chosen, for an equation of the form

4= b/10"

10 can be represented 2s a decimal fraction. For example, é =

would imply
10" = 3b,
whieh is absurd, since 3 is not a factor of any power of 10.

Now let us choose any point P on the number axis which does not
correspond to a decimal fraction; e.g. the rational point 4 or the irra~
tional point 4/3. Then in the process of subdividing the unit interval
into ten equal parts, and so on, P will never occur ag the initial point
of a subinterval. Still, P can be included within smaller and smaller
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intervals of the decimal division with any desired degree of approxi-
mation. This approximation process may be described as follows,

Buppose that P lies in the first unit interval. We subdivide this
interval into 10 equal parts, each of length 107, and find, say, that P
lies in the third such interval. At this stage we can say that P lies
between the decimal fractions 0.2 and 0.8. We subdivide the interval
from 0.2 to 0.3 into 10 equal parts, each of length 107, and find that P
lies, say, in the fourth such interval. Subdividing this in turn, we find
that P les in the first interval of length 107, We can now say that P
lies between 0.230 and 0.231.  This process can be continued indefinitely,
and leads to an unending sequence of digits, ay, @z, @s, «-+ , @, +++ ,
with the following property: whatever number n we choose, the point P
is included in the interval I, whose left-hand end-point is the decimal
fraction O.maay «-- a,18, and whose right-hand end-point is
0.4:0203 + -+ Gn-g(@n + 1), the length of I, being 107", I we choose in
suecession n = 1, 2, 3, 4, ... , we see that each of these intervals,
I, I, Is, --- , is contained in the preceding one, while their lengths,
1074, 107% 107% ..., tend to zero. We say that the point P is con-
tained in a nested sequence of decimal intervals. For example, if P is
the rational peint }, then all the digits a;, @, @3, - -~ are cqual to 3,
and P is contained in every interval I, which extends from 0.333 ... 33
to 0.333 ... 34; ie, } is greater than 0.333 -.. 33 but less than
- -+ 34, where the number of digits may be taken arbitrarily large.
We express this fact by saying that the n-digit decimal fraction 0.333
-« 33 “tends to 4" as n increases. We write

=033 ...,
the dots indicating that the decimal fraction is to be extended “in-
definitely.”

The irrational point +/2 defined in Article 1 also leads to an in-
definitely extended decimal fraction. Here, however, the law which
determines the values of the digits in the sequence is by no means ob-
vious. In fact, no explicit formula that determines the successive
digits is known, although one may calculate as many digits as desired:

P=1<2<2=4
(14)° = 1.96 < 2 < (1.5)* = 2.25
(141)° = 1.9881 < 2 < (1.42)° = 2.0264
(1.414)° = 1.999396 < 2 < (1.415)" = 2.002225

(1.4142)° = 1.99996164 < 2 < (1.4143)" = 200024449, ete.
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As & general definition we say that a point P that is not represented
by any decimsl fraction with a finite number » of digits is represented

by the infinite decimal fraction, z.aumas - - - , if for every value of n the
point P lies in the interval of length 107" with z.a1a:a5 - - - @, as its initial
point.

In this manner there is established & correspondence between all the
points on the number axis and all the finite and ¢nfinite decimal fractions
‘We offer the tentative definition: a “number” is & finile or infinite deci-
mal. Those infinite decimals which do not represent rational numbers
are called irrational numbers.

Until the middle of the nineteenth century these iderati were
accepted as a satisfactory explanation of the system of rational and
irrational numbers, the continuum of numbers, The enormous advance
of mathematics since the seventeenth century, in particular the de-
velopment of analytic geometry and of the differential and integral
calculus, proceeded safely with this concept of the number system as &
basis. But during the period of critical re-examination of principles
and consolidation of results, it was felt more and more that the coneept
of irrational number required a more precise analysis.  As a preliminary
to our account of the modern theory of the number continuum we shall
discuss in a more or less intuitive fashion the basic concept of limif.

Exercise: Caloulate /3 and +/5 with an accuracy of at least 10°2.

3. Limits. Infinite Geometrical Series

As we saw in the preceding section, it sometimes happens that a
certain rational number s is approximated by a sequence of other rational
numbers s, , where the index n assumes consecutively all the values
1,2,3, ..., Forexample, if s = 1/3, then s = 0.3, 5, = 0.33, 8 =
0.333, ete.  As another example, let us divide the unit interval into two
halves, the second half again into two equal parts, the second of these
again into two equal parts, and so forth, until the smallest intervals thus
obtained have the length 27", where n is chosen arbitrarily large, e.g. n =
100, n = 100,000, or any number we please. Then by adding together
all the intervals except the very last one we obtain a total length
equal to

1 1 1 1
@ =gyttt

1

2

We see that s, differs from 1 by (3)”, and that this difference becomes ar-
bitrarily small, or “"tends to 2ero” as n increases indefinitely. It makesno




84 NUMBER SYSTEM OF MATHEMATICS [y

sense to say that the difference i's zero if » {sinfinite. The infinite enters
only in the unending procedure and not as an actual quentily. We
deseribe the behavior of s, by saying that the sum s, approaches the
Iimit 1 ag n tends to infinity, and by writing

@ S S R s

where on the right we have an infinite series. This “equation” does
not mean that we actually have to add infinitely many terms; it is only
an abbreviated expression for the fact that 1 is the limit of the finite
sum 8, 88 n tends fo infinity (by no means 7s infinity). Thus equation
(4) with its incomplete symbol “+ -..” is merely mathematical short~
hand for the precise statement

1 = the limit as # tends to infinity of the quantity
L
2~
In an even more abbreviated but expressive form we write

_l, 11
5 =gttt t

) Sa—lasn— o,

As another example of limit, we consider the powers of a number ¢.
If ~1 <g<1legg=1/30rg= —4/5 then the successive powers
of g,

[T AT PRITIY SRYEN
will approach zero as n increases. If ¢ is negative, the sign of ¢" will
alternate from + to —, and ¢" will tend to zero from alternate sides
Thus if ¢ = 1/3, then ¢* = 1/9, ¢ = 1/27,¢" = 1/81, ... , while if ¢ =
—1/2, then ¢ = 1/4, ¢ = —1/8,¢" = 1/18, ... . We say that the
it of q°, as n tends to infinity, is zero, or, in symbols,

o g > 0asn— o for -1 < g < 1.

(Incidentally, if ¢ > 1 or ¢ < —1 then ¢" does not tend to zero, but in-
creases in magnitude without limit.)

To give a rigorous proof of the assertion (7) we start with the inequal-
ity proved on page 15, which states that (1 + p)” > 1 + np for any
positive integer nand p > ~1. If ¢ is any fixed number between 0 and
1,e.g. ¢ = 9/10, we have ¢ = 1/{1 + p), where p > 0. Hence

‘1—{,=<1+P>"21+"P>"%
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or (see rule 4, p. 322)

0<g < L
P
¢" is therefore included between the fixed bound 0 and the bound
(1/p)(1/n) which approaches zero as n increases, since p is fixed. This
makes it evident that ¢" - 0. If g is negative, we haveq = —1/(1 + p)
and the bounds become (—1/p)(1/n) and (1/p){1/r) instead of O
and (1/p)(1/n). Otherwise the reasoning remains unchanged.
We now consider the geometrical series

) se=ltatd+g+ -+

{The case ¢ = 1/2 was discussed above.) As shown on page 13, we
can express the sum s, in 2 simple and concise form. If we multiply
s, by g, we find

(82) =gt g g+

and by subtraction of (8a) from (8) we see that all terms except 1 and

nel

¢""" cancsl out. We obtain by this device
(A~ gsa=1~¢",
or, by division,

The concept of limit comes into play if we let n increase. As we have
seen, ¢"*' = g « ¢" tends to zero if ~1 < g < 1, and we obtain the
fimiting relation

(9) s..—»l%qasn——-voo,for—l<q<l.

Written as an infinite geometrical series this becomes

10) 1ot @ +d 4 = -, for -1 < g <1,

For example,

1 1 1
EUPRE-R- R e
in agreement with equation (4), and similarly

9 9 9 9

Brwto T

1

9
teetwmimyw e




66 NUMBER SYSTEM OF MATHEMATICS [

50 that 0.99999 --- = 1, Similarly, the finite decimal 0.2374 and the
infinite decimal 0.23739999999 - -~ represent the same number,

In Chapter VI we shall resume the general discussion of the limit
concept in the modern spirit of rigor.

Ezercises: 1) Prove that 1 — g 4 ¢ = g2+ gl = o = ; Siflel <t

2) What is the limit of the sequence a1a,as, '+ , Where aq = n/(n -+ 1)?
(Hint: Write the expression in the form n/{n 4 1) = 1 = 1/(n + 1) and observe
that the second term tends to zero.)

N
) What is the tionit of “r-E20 for 1 7 (3tint: Waite the expression
in the form
11
T+,
nw
1 1
Ttatw
1
4) Prove, for [ g} < 1, that 1 4 2¢ + 3¢* + 4¢* + -+ = i (Hint:
- g
Use the result of exercise 3 on p. 18.)
5) What is the limit of the infinite scries
12+ 3 = dg* 4 - 7
2 o b
6 What is the limit of =i 2t 3 F i n o +F ; 2 andof
n

D24 tn

s
——— ¢ (Hint: Use the results of pp. 12, 14, 15.)

4. Rational Numbers and Periodic Decimals

Those rational numbers p/g which are not finite decimal fractions can
be expanded into infinite decimal fractions by performing the elementary
process of long division, At each stage in this process there must be a
non-zero remainder, for otherwise the decimal fraction would be finite.
All the different remainders that arise in the process of division will be
integers between 1 and g~ 1, so that there are at most ¢— 1 different possi-
bilitics for the values of the remainders, This means that within at
most g divisions some remainder & will turn up for a second time. But
then all subsequent remainders will repeat in the same order in which
they appeared after the remainder & first appeared. This shows that
the decimal expression for any rational number is periodic; after some finite
set of digits bas appeared initially, the same digit or group of digits will
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repeat itsclf infinitely often. For example, 1/6 = 0.166666666 ... ;
1/7 = 0.142857142857142857 ... ;1/11 = 0.09090908 ... ; 122/1100 =
0.1109090909 ... ; 11/90 = 0.122222222 ... ; ete. (Those rational
numbers which can be represented as finite decimal fractions may be
thought of as having periodic decimal expansions with the figure 0
repeating itself infinitely often after a finite number of digits.) We see,
incidentally, that some of these periodic decimals have a non-periodic
head before the periodic tail begins.

Conversely, it may be shown that all periodic decimals are rational
numbers. As an example, let us take the infinite periodic decimal

p = 0.3322222 ... .
We have p = 33/100 + 107°2(1 + 107" + 107 + ...). The expression
in parentheses is the infinite geometrical series
1 10

-1 -2 = . 1o
1+ 107 4 107 4 10 +~-r=~—1/1—0——9.

Hence
) 210 _ 2070 + 20 _ 2090 _ 209
P=qgg H 0y 96 T T 8000 T 600"
The proof in the genera! case is essentially the same, but requires &
more general notation, In the general periodic decimal

P = 0010105 -+ - Ambiby - - bubiby - o« bobiby <o Bo v
we set (hiby - -+ ba = B, so that B represents the periodic part of the
decimal. Then p becomes
p=0ma - am+ 107"B{ + 107" + 207" 4 107" ...).
The expression in parentheses is an infinite geometrical series with
= 107", Its sum, according to equation (10) of the previous article,
i8 1/(1 — 107", and therefore

0B
= Qtally + -+ O = .
e T
1 2 3 1 2 . .
Ezercises: 1) Expand the fmo(mns into decimal fractions

TEB T
and determine the period.

*2) The namber 142,357 has the property that multiplication with any one of
the numbers 2, 3, 4, 5, or 6 produces only a cyclic permutation of its digits, Bx-
plain this property, using the expansion of § iuto u decimal fraction.

3) Expand the rational numbers of exercise 1 58 *‘decimals’ with bases 5, 7.
and 12.

4) Expand one-third as a dyadic numbec.
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5) Write .11212121 -+ - as & fraction. Find the value of this symbol if it is
meant in the systems with the bases 3 or 5.

5. General Definition of Irrational Numbers by Nested Intervals

On page 63 we adopted the tentative definition: 2 “number” is a
finite or infinite decimal. We agreed that those infinite decimals which
do not represent rational numbers should be called irrational numbers.
On the basis of the results of the preceding section we may now formu-
late this definition as follows: the continuum of numbers, or real number
system (“rea)” in contrast to the “imaginary” or “complex” numbers
to be introduced in §5) 78 the fotality of infinite decimals. (Finite decimals
may be considered as a special case where all digits from & certain point
on are zero, or one might just as well prescribe that, instead of taking a
finite decimal the last digit of which is a, we write down an infinite decimal
with a—1 in place of a, followed by an infinite number of digits all equal
t09. This expresses the fact that .999 ... = 1, according to Article 3.)
The rational numbers are the periodic decimals; the irrational numbers
are the non-periodic decimals. Even this definition does not seem
entirely satisfactory; for, as we have seen in Chapter I, the decimal sys-
tem is in no way singled out by the nature of things. We might just as
well have gone through the reasoning with the dyadic or any other
system.  For this reason it is desirable to give a more general definition
of the number continuum, detached from special reference to the base
ten. Perhaps the simplest way to do this is the following:

Let us consider any sequence Iy, Io, +++ , I, .+ . of intervals on the
number axis with rational end-points, each of which is contained in the
preceding one, and such that the length of the n-th interval I, tends
to zero as n increases. Such a sequence is called a sequence of nested
intervals, In the case of decimal intervals the length of I, is 107" but
it may just as well be 27" or merely Testricted to the milder requirement,
that it be lessthan 1/n.  Now we formulate as a basic postulate of geom-
etry: corresponding fo each such sequence of mesied inlervals there is
Iy one point on the number-axis which is contained in all of them.

s seen directly that there cannot be more than one point common
to all the intervals, for the lengths of the intervals tend to zero, and two
different points could not both be contained in any interval smaller than
the distance between them.) This point is called by definition a real
number; if it is not a rational point it is called an drrational number.
By this definition we blish a perfect corresponds between points
and numbers. It is nothing but a more general formulation of what was
expressed by the definition using infinite decimals.
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Here the reader may be troubled by an entirely legitimate doubt.
What is this “point” on the number axis, which we assumed to belong
to all the intervals of a nested sequence, in case it is not & rational point?
Qur answer is: the existence on the number axis (regarded as a line)
of a point contained in every nested sequence of intervals with rational
end-points is & fundamental postulate of geometry. No logical reduction
of this postulate to other mathematical facts is required. We accept it,
just as we accept other rxioms or postulates in mathematics, because
of its intuitive plausibility and its usefulness in building a consistent
system of mathematical thought. From a purely formal point of view,
we may start with a line made up only of rational points and then define

Fig. 11, Nested intervls, Lot of sonuences,

an irrational point as just a symbol for a certain sequence of nested rational
intervals.  An irrational point is completely described by a sequence
of nested rational intervals with lengths tending to zero. Henee our
fundamental postulate really smounts to & definition. To make this
definition after having been led to a sequence of nested rational intervals
by an intuitive feeling that the irrational point “‘exists,” is to throw
away the intuitive crutch with which our ;ensoninp, proceeded and to
realize that all the mathematical properties of irrational points may be
expressed as properties of nested sequences of rational intervals,

We have here a typical instance of the philosophical position deseribed
in the introduction to this book; to discard the naive “realistic” approach
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that regards a mathematical object as a “thing in itself” of which we
humbly investigate the properties, and instead to realize that the only
relevant existence of mathematical objects lies in their mathematical
properties and in the relations by which they are interconnected. These
relations and propertics exhaust the possible aspects under which an
object can enter the realm of mathematical activity. We give up the
mathematical “thing in itself” as physics gave up the unobservable
ether. This is the meaning of the “intrinsic’” definition of an irrational
number as a nested sequence of rational intervals.

The mathematically important point here is that for these irrational
numbers, defined as nested sequences of rational intervals, the operations
of addition, multiplication, ete., and the relations of “less than" and
“greater than,” are capable of immediate generalization from the field of
rational numbers in such & way that all the laws which hold in the ra-
tional number field are preserved. ¥or example, the addition of two
irrational numbers « and 8 ean be defined in terms of the two sequences
of nested intervals defining o and A respeetively. We construct & third
sequence of nested intervals by adding the initial values and the end
values of corresponding intervals of the two sequences. The new
sequence of nested intervals defines o - 8. Similarly, we may define the
product o, the difference o — 8, and the quotient a/3.  On the basis
of these definitions the avithmetieal laws discussed in §1 of this chapter
can be shown to hold for irrational numbers also. The dotails are
omitted here.

The verification of these laws is simple and straightforward, though
somewhat tedious for the beginner who is more anxious to learn what
ean be done with mathematics than to analyze its logieal foundations.
Some modern textbooks on mathematics repel many students by starting
with a pedantieally complete analysis of the real numbe The
reader who simply disregards these introductions may find comfort in
the thought that until late in the nineteenth century all the great mathe-
maticians made their discoveries on the basis of the “naive” con-
cept of the number system supplied by their intuition.

From a physical point of view, the definition of an irrational number
by a sequence of nested intervals corresponds to the determination of the
value of some observable quantity by a sequence of measurements of
greater and greater aceuracy. Any given operation for determining,
say, & length, will have a practical meaning only within the lmits of a
certain pt Jle error which measures the precision of the operation.
Since the rational numbers arc dense on the line, it is impossible to deter-
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mine by any physical operation, however precise, whether a given length
is rational or irrational. Thus it might seem that the irrational numbers
are unnecessary for the adequate description of physical phenomena.
But as we shull see more clearly in Chapter VI, the real advantage which
the introd of i b brings to the mathemahcal
description of physical ph is that this descri y
simplified by the free use of the limit concept, for whmh the number
continuum is the basis.

*6. Alternative Methods of Defining Irrational
Numbers. Dedekind Cuts

A somewhat different way of defining irrational numbers was chosen
by Richard Dedekind (1831-1816), oné of the great pioneers in the logical
and philosophical analysis of the foundations of mathematics. His
essays, Stetigheit und irrationale Zahlen (1872) and Was sind und was
sollen die Zahlen? (1887), exercised a profound influence on studies in
the foundations of mathematics. Dedekind preferred to operste with
general abstract ideas rather than with specific sequences of nested
intervals. His procedure is based on the definition of a “cut,” which
we shall describe briefly.

Suppose there is given some method for dividing the set of all rational
numbers into two classes, 4 and B, such that every element b of class B
is greater than every element @ of class 4. Any classification of this
sort is called a cuf in the set of rational numbers, For a cut there are just
three posslbllmes, one and only one of which must hold:

1) There is a largest clement a* of A. This is the case, for example,

if A consists of all rational numbers < 1 and B of all rational num-
bers > 1.

2) There is a smallest clement b* of B. 'This is the case, for example,
if A consists of all rational numbers < I and B of all rational num-
bers > 1.

3) There is neither o largesi element in A nor @ smallest element in B.
This is the case, for example, if 4 consists of all negative rational
numbers, 0, and all positive rational numbers with square less than
2 and B of all rational ~ nhars with square greater than 2. 4
and B together include tal numbers, for we have proved
that there is no rational +vhose square is equal to 2.

The case in which 4 hasalt  _. ciement a* and B a smallest element,

b* is impossible, for then the rational number {(¢* + b*)/2, which lies
halfway between a* and b%, would be larger than the largest element of
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A and smaller than the smallest element of B, and hence could belong
to neither.

In the third case, where there is neither a largest rational number in
A nor a smallest rational number in B, the cut is said by Dedekind to
define or simply to be an irrational number. It is essily seen that this
lefinition is in t with the definition by nested intervals; any
sequence I, Iz, Iy, + -+ of nested intervals defines a cut if we place in
the class A all those rational numbers which are exceeded by the left-
hand end-point of at least one of the intervals I, and in B all other
rational numbers.

Philosophically, Dedekind’s definition of irrational numbers involves a rather
high degree of abstraction, aince it places no restrictions on the nature of the
mathematical law which defines the two classes 4 and B. A more concrete
method of defining the real number continuum is due to Georg Cantor (1845~
1918).  Although at first sight quite different from the method of nested intervals
or of cuts, it is equivalent to either of them, in the sense that the number systems
defined in these three ways have the same properties. Cantor's idea was sug-
gested by the facts that 1) real numbers may be regarded as infinite decimals,
and 2) infinite decimals are limits of finite decimal fractions. Freeing ourselves
from dependence on the decimal system, we may state with Cantor that any
sequence ai, 4z, a1, - of rational numbers defines a real number if it “‘con-
verges.” Convergenee is understood to mean the' the difference (aa — ax)
between any two members of the sequence tends to zoro when aw and a are suffi-
ciently far out in the sequence, i.c. a8 m and = tend to infinity. (The successive
decimal approximations to any number have this property, since any two after
the nth can difier by at most 10-%.) Since there are many ways of approaching
the same real number by & sequence of rational numbers, we say that two con-
vergent sequences of rationals a1, Gz, as, ++- and br, bs, by, --- defiue the
same real number if G, — ba tends to zero asn increases indefinitely. The oper-
stions of addition, etc., for such sequences are quite easy to define.

§3. REMARKS ON ANALYTIC GEOMETRYt
1. The Basic Principle

The number continuum, whether it is accepted as a matter of course
or only after a critical examination, has been the basis of mathematics
and in particular of analytic geometry and the calculus—since the
seventeenth century.

Introducing the continuum of numbers makes it possible to associate
with each line segment a definite real number ag its length.  But we may

1 For readers who are not familiar with the subject, o series of exercises on the
elements of analytic geometry will be found in the appendix at the end of the
book, pp. 489-404.
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go much farther. Not only length, but every geometrical object and every
geometrical operation can be referred to the realm of numbers. The decisive
steps in this arithmetization of geometry were takenas early as 1629
by Fermat (1601-1655) and 1637 by Descartes (1596-1650). The
fundamental idea of analytic geometry is the introduction of “codrdi-
nates,” that is, numbers attached to or codrdinated with a geometrical
object and char izing this object letely. Known to most read-
ers are the so-called rectangnlar or Cartesian coérdinates which serve
to characterize the position of an arbitrary point P in a plane. We
start with two fixed perpendicular lines in the plane, the “z-axis” and
the “y-axis,” to which we refer every point. These lines are regarded as
directed number axes, and measured with the same unit. To each point
P, as in Figure 12, two codrdinates, z and y, are assigned. These arc

v 12
¢ I T
¥
o o x
Fig, 12. Rectangular coirdinates of m point. Fig. 13. The four quadrants,

obtained as follows: we consider the directed segment from the “origin”
O to the point P, and p-oject this directed segment, sometimes called
the “position vector” of the point P, perpendicularly on the two axes,
obtaining the directed segment OP' on the s-axis, with the number z
measuring its directed length from 0, and likewise the directed segment
0Q' on the y-axis, with the number y measuring its directed length from
0. The two numbers z and y are called the codrdinates of P
Conversely, if z and y are two arbitrarily prescribed numbers, then the
corresponding point P is uniquely determined. If z and y are both
positive, P is in the first quadrant of the cobrdinate system (see Tig. 13);
if both are negative, P is in the third quadrant; if z is positive and y
negative, it is in the fourth, and if = is negative and y positive, in the
second.
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The distance between the point P; with codrdinates 1, ¥ and the
point P, with codrdinates . , ¥~ is given by the formula
(6] d* = (@ — @)+ -
This follows immediately from the Pythcgorean theorem, as may be
seen from Figure 14,

Y4

s
I B S ]

Tig. 14. The distance betweon two points,

*2. Equations of Lines and Curves
If C is o fixed point with cobrdinates = a, y = b, then the locus of
2l points P having a given distance r from C is a circle with C as center
and radius 7. It follows from the distance formula (1) that the points
of this circle have codrdinates z, y which satisfy the equation

@ ~a+ @ -t ="
This is called the equatwn of the circle, because it expresses the complete
(necessary and suff 3] dition on the cobrdinates z, ¥ of a point P
v
3

Fig. 15. The circls.

that Hes on the circle around € with radius r. If the parentheses are
expanded, equation (2) takes the form

3) 2+ o — 20z ~ 2by = k.
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where k = " — &* — ¥’ Conversely, if an equation of the form (3) is
given, where a, b, and % are arbitrary constants such that k + a° + b*
is positive, then by the algebraic process of “completing the squarc”
we can write the equation in the form

@—af+@-b =7
where r* = k& + o’ + % It follows that the equation (3) defines &
cirele of radius r around the point € with cosrdinates a and b.

The equations of straight lines are even simpler in form. For example,
the z-axis has the equation ¥ = 0, since y = 0 for all points on the
z-axig and for no other points. The y-axis has the equation z = 0.
The lines through the origin bisecting the angles between the axes have

the equations x = y and z = —y. It is ensily shown that any straight
line has an equation of the form
(4) az + by = ¢,

where a, b, ¢ are fixed constants characterizing the fine. The meaning
of equation (4) is again that all pairs of real numbers z, y which satisfy
this cquation are the codrdinates of a point of the line, and con versely.
The reader may have learned that the equation
2 2
z

(5 Ft %Z =1

represents an ellipse (Fig. 16). This curve cuts the z-axis at the points
A(p, 0) and A’(—p, 0), and the y-axis at B(0, ¢) and B'(0, —g). (The
notation P(x, y) or simply (z, y) is used as a shorter way of writing
“the point P with codrdinates z and .”) If p > g, the segment 44",
of length 2p, is called the major axis of the ellipse, while the segment
BB, of length 2g, is called the minor axis. This ellipse is the locus of
all points P the sum of whose distances from the points F(+/7? — ¢
and F'(—+/p" = ¢, 0) is 2p. As an exercise the reader may verify
this by using formula (1). The points ¥ and F’ are called the foci

(singular, focus) of the ellipse, and the ratio ¢ = is called the

eccentricity of the ellipse.
An equation of the form

(6)

represents a hyperbola. This curve consists of two branches which cut
the z-axis at A (p, 0) and 4’(—p, 0} (Fig, 17) respectively. The seginent
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AA’, of length 2p, is called the transverse axis of the hyperbola. The
hyperbola approaches more and more nearly the two straight lines
gz = py = 0 as we go out farther and farther from the origin, but it
never actually reaches these lines. They are called the asymptotes of
the hyperbola. The hyperbola is the locus of all points P the
difference of whose distances to the two points F(1/p? + ¢, 0) and
F'(~A/p* + ¢ 0) is 2p. These points are again called the foci of

the hyperbola; by its eccentricity we mean the ratio e = @

i
B

¥ig. 18. The ellipse; F and 7 are the foci, Fig. 17.© perbola; F and F* are the focl.
The equation
{7 zy = 1
also defines a hyperbola, whose asymptotes now are the two axes (Fig. 18).
The equation of this “equilateral” hyperbola indicates that the area

of the rectangle determined by P is equal to 1 for every point P on the
curve. An equilateral hyperbola whose equation is

(7a) Ty = ¢,

¢ being a constant, is only a special case of the general hyperbola, just as
the circle is a special case of the ellipse. The special character of the
equilateral hyperbola Hes in the fact that its two asymptotes (in this
case the two cobrdinate axes) are perpendicular to each other.

For us the main point here is the fundamental idea that geometrical
objects may be completely represented in numerical and algebraic terms,
and that the same is true of geometrical operations. For example, if
we want to find the point of intersection of two lines, we consider their
two equations
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ar + by = ¢
a's + by = ¢
The point common to the two lines is then found simply by determining
its codrdinates as the solution z, y of the two simultaneous equations
(8). Similarly, the points of intersection of any two curves, such as
the circle 2 + y* — 2az — 2by = k and the straight line az + by = ¢,
are found by solving the two corres di i imult, usly.

®

!

Fig. 18. The oquilatersl hyperbola zy = 1. The ares v of the reotangle dstermined by the point
P s, y)isoqual to 1,

#. THE MATHEMATICAL ANALYSIS OF INFINITY
1. Fundamental Concepts
The sequence of positive integers
1,23, ...

is the first and most important example of an infinite set. There is no
mystery about the fact that this sequence has no end, no “finis”; for,
however large be the integer n, the next integer, n + 1, can always be
formed. But in the passage from the adjective “infinite,” meaning
simply “without end,” to the noun “infinity” we must not make the
assumption that “infinity,” usually expressed by the special symbol =,
can be considered as though it were an ordinary number. We cannot
include the symbol « in the real number system and at the
same time preserve the fundamental rules of arithmetic. Neverthe-
less, the concept of the infinite pervades all of mathematics, since
mathematical objects are usually studied, not as individuals, but as
members of classes or aggregates containing infinitely many objects of
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the same type, such as the totality of integers, or of real numbers, or of
triangles in a plane. For this reason it is necessary to analyze the
mathematical infinite in a precise way. The modern theory of sets,
created by Georg Cantor and his school at the end of the nineteenth
century, has met this challenge with strikir.g success. Cantor’s theory
of sets has penetrated and strongly influenced many fields of mathe-
matics, and has become of basic importance in the study of the logical
and philosophical foundations of mathematics. The point of departure
is the general concept of a set or aggregate. By this is meant any collec-
tion of objects defined by some rule which specifies exactly which ob-
jects belong to the given collection. As examples we may consider the
set of all positive integers, the set of all periodic decimals, the set of
all real numbers, or the set of all straight lines in three-dimensional space.

For comparing the “magnitnde” of two different sets the basic notion
is that of “equivalence.”” If the elements in two sets A and B may be
paired with each other in such a way that to each element of 4 there
corresponds one and only one element of B and to each element of B
corresponds one and only one element of 4, then the correspondence
is said to be biunique and 4 and B are said to be equivalent. The notion
of equivalence for finife sets coincides with the ordinary notion of
equality of number, since two finite sets have the same number of elements
if and only if the elements of the two sets can be put into biunique
correspondence. This is in fact the very idea of counting, for when we
count a finite set of objects, we simply establish a biunique correspond-
ence between these objects and a set of number symbols 1, 2,3, -+- , n.

1t is not always necessary to count the objects in two finite sets to establish
their equivalence. For example, we can assert without counting that any finite
set of circles of radius 1 is equivalent to the set of their centers.

Cantor’s idea was to extend the coneept of equivalence to infinite sets
in order to define an “arithmetic” of infinities. The set of all real
numbers and the set of all points on a straight line are equivalent, since
the choice of an origin and a unit allows us to associate in a biunique
manner with every point P of the line a definite real number z as its
coordinate:

Pz,

The even inlegers form a proper subset of the set of all integers, and
the sniegers form a proper subset of the set of all rational numbers.  (By
the phrase proper subset of a set S, we mean a set 8’ consisting of some,
but not all, of the objects in 8.)  Clearly, if a set is finite, i.e. if it contains
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some number n of elements and no more, then it cannol be equivalent to
any one of ils proper subsels, sinee any proper subset could contain at
most n — 1 elements. But, if a sef contains infinitely many objects,
then, paradoxically enough, it may be equivalent to a proper subset of
itself. For example, the codrdination

IR !
2 4 6 8 10...°2n
blishes a biuni correspond: between the set of positive integers

and the proper subset of even integers, which are thereby shown to be
equivalent. This contradiction to the familiar truth, “the whole is
greater than any of its parts,” shows what surprises are to be expected
in the domain of the infinite.

2. The Denumerability of the Rational Numbers and
the Non-Dx bility of the Contil

One of Cantor’s first discoveries in his analysis of the infinite was that
the set of rational numbers (which contains the infinite set of integers
as a subset and is therefore itself infinite) is equivalent to the set of

At first sight it seems very strange that the dense set of
should be on the same footing as its sparsely sown sub-~
set of integers. True, one cannot arrange the positive rational numbers
in order of size (as one can the integers) by saying that a is the first
rational number, b the next larger, and so forth, because there are in-
finitely many rational numbers between any two given ones, and hence
there is no “next larger.” But, as Cantor observed, by disregarding
the relation of itude between successive el it is possible to
arrange all the rational numbe

in asingle row, ri, ra, 15, 1o, oo, like
that of the integers. In this sequence there will be a first rational
number, a second, a third, and so forth, and every rational number will
appear exactly once. Such an arrangement of a set of objects in a
sequence like that of the integers is called. a denumeration of the set.
By exhibiting such a denumeration Cantor showed the set of rational
numbers to be equivalent with the set of integers, since the cor-
respondence

1 2 3 4.vm.ns

U
FI T2 Ty TaeesThoene
is biunique. One way of d ing the rational bers will now be

described.
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Every rational number can be written in the form a/b, where @ and b
are integers, and all these numbers can be put in an array, with a/b in
the ath column and bth row. For example, 3/4 is found in the third
column and fourth row of the table below. All the positive rational
numbers may now be arranged according to the following scheme: in
the array just defined we draw a continuous, broken line that goes
through all the nurbers in the array. Starting at I, we go horizontally
to the next place on the right, obtaining 2 as the second member of the
sequence, then diagonally down to the left until the first column is
reached at the position oceupied by 1/2, then vertically down one place
to 1/3, diagonally up until the first row is reached again at 3, across to
4, diagonally down to 1/4, and so on, as shown in the figure. Travelling
along this broken line we arrive at a sequence 1, 2, 1/2, 1/3, 2/2, 3, 4,
3/2,2/3,1/4,1/5,2/4,3/3,4/2, 5, - - - containing the rational numbers
in the order in which they occur slong the broken line, 1In this sequence
we now cancel all those numbers a/b for which a and b have a common
factor, so that each rational number 7 will appear exactly once and in
its simplest form, Thus we obtain a sequence

123 4567

Vi h s bt
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Yieeds s
11348 g

Fig. 19. De-umeration of the rational bumbers.

1,2,1/2,1/3,3,4,3/2,2/3,1/4,1/5, 5, ... which contains each positive
rational number once and only once. This shows that the set of all
positive rational numbers is denumerable. In view of the fact that the
rational numbers correspond in a biunique manner with the rational
points on a line, we have proved at the same time that the set of posi-
tive rational points on a line is denumerable.

Ezercises: 1) Show that the set of all positive and negative integers is de-

numerable. Show that the sct of all positive and negative rational numbers is
denumerable.
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2) Show that the set § + T (see p. 110) is denumersble if S and T are denumer-
able sots. Show the same for the sum of three, four, or any umber, n, of scts,
and finally for & set of bly many sts.

Since the rational numbers have been shown to be denumerable, one
might suspect that any infinite set is denumerable, and that this is the
ultimate result of the analysis of the infinite. This is far from being
the case. Cantor made the very significant discovery that the set of all
real numbers, rational and irrational, is not denumerable. In other words,
the totality of real numbers presents a radically different and, so to
speak, higher type of infinity than that of the integers or of the rational
numbers alone. Cantor’s ingenious indireet proof of this fact has be-
come a model for many mathematical demonstrations. The outline of
the proof is as follows. We start with the tentative assumption that all
the real numbers have actually been denumerated in a sequence, and
then we exhibit 8 number which does not oceur in the w«mmed denumera-
tion. This provides a diction, since the T was that all
the real numbers were included in the denumeration, and this assump-
tion must be false il even one number has been left out. Thus the as-
sumption that a denumeration of the real numbers is possible is shown
to be untenable, and hence the opposite, i.e. Cantor’s statement that
the set of real numbers is not denumerable, is shown to be true.

To carry out this program, let us suppose that we have denumerated
all the real numbers by arranging them in a table of infinite decimals,

Ist number Ny @;a20;047 - -«
2nd number  Na.bibibsbebs - - -

3rd number Ny eicaeseqs - -

where the N''s denote the integral parts and the small letters denote the
digits after the decimal point. We assume that this sequence of decimal
fractions coutains all the real numbers. The essential point in the proof
is now to construct by a “diagonal process” a new number which we can
show to be not included in this sequence. To do this we first choose a
digit @ which differs from a; and is neither 0 nor 9 (to avoid possible
ambiguities which may arise from equalities like 0.999 - .. = 1.000 .. .),
then a digit b different from b, and again unequal to @ or 9, similarly ¢
different from ¢;, and so on. (For example, we might simply choose

= 1 unless a; = 1, in which case we choose a = 2, and similarly down
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the table for all the digits b, ¢, d, ¢, ---.) Now consider the infinite
decimal
z = Q.abede .- .

This new number z is certainly different from any one of the numbers
in the table abgve; it cannot be equal to the first because it differs
from it in the first digit after the decimal point; it cannot be equal to the
secand since it differs from it in the second digit; and, in general, it
cannot be identical with the nth number in the table since it differs
from it in the nth digit. This shows that our table of consecutively
arranged decimals does not contain all the real numbers. Hence this set
is not denumerable.

The reader may perbaps imagine that the reason for the non-
denumerability of the number continuum lies in the fact that the straight
line is infinite in extent, and that & finite segment of the line would
contain only a denumerable infinity of points. This is not the ease, for

Fig 20 Fig 21
Fig. 20. Biunique correspondance bet.r,  the paints of & bent segment #nd a wholo straight line.
Fix. 21 Biunique corseapondsnce between the poini « of two segments of ifferent length.

it is easy to show that the entire number continuum is equivalent to
any finite segment, say the segment from 0 to 1 with the endpoints
excluded. The desired biunique correspondence may be obtained by
bending the segment at } and % and projecting from & point, as shown
in Figure 20. It follows that even a finite segment of the number
axis contains a non-denumerable infinity of points,

Ezercise: Show that any interval [A, B] of the number axis is equivalent to
any other interval {C, D].

It is worthwhile to indicate another and perhaps more intuitive proof
of the non-denumerability of the number continuum, In view of what
we have just proved it will be sufficient to confine our attention to the
set of points between 0 and 1. Again the proof is indirect. Let us
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suppose that the set of all points on the line between 0 and 1 can be ar-
ranged in a sequence

1y a1, Gz, s, .
Let us enclose the point with coérdinate a; in an interval of length
1/10, the point with coérdinate a; in an interval of length 1/10? and so
on. If all points between 0 and 1 were included in the sequence (1),
the unit interval would be entirely covered by an infinite sequence of
possibly overlapping subintervals of lengths 1/10, 1/10%, --- . (The
faet that some of these extend beyond the unit interval does not influ-
ence our proof.) The sum of these lengths is given by the geometric
series

V10 4+ 11068+ 1400 4 oo = ] L
] D
10
Thus the assumption that the sequence (1) eontains all real numbers
from 0 to 1 leads to the passibility of covering the whole of an interval
of length 1 by a set of intervals of total length 1/9, which is intuitively
absurd. ‘We might accept this contradiction asa proof, although from
a logical point of view it would require fuller analysis.

The reasoning of the preceding paragraph serves * Hlish & thecrem of
great importance in the modern theory of “measurs’ ¢ g the intervals
above by smaller intervals of length ¢/10, where « s 4y small positive
number, we see that any denumerable set of points o1 e can be included

in a set of intervals of total length /9. Since ¢ was arbitrary, the latter number
can be made as small ay we please. In the terminology of measure theory we say
that o denumerable set of points hes the measure zero,

Exercise: Prove that the same result holds for a denumerable set of points
in the plane, replacing lengths of intervals by areas of squares.

3. Cantor’s “Cardinal Numbers”

In summary of the results thus far: The number of elements in a
finite set A eannot equal the number of elements in a finite set B
if A contains more elements than B. If we replace the concept of “sets
with the same (finite) number of elements” by the more general concept
of equivalen! sefs, then with infinite sets the previous statement does
not hold; the set of all integers contains more elements than the set of
even integers, and the set of rational numbers more than the sct of in-
tegers, but we have seen that the: ts are equivalent. One might
suspect that ell infinite sets are equivalent and that distinctions other
than that between finite numbers and infinity could not be made, but
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Cantor’s result disproves this; there is a the real number continuum,
which is not equivalent to any. denumerable set.

Thus there are at lewst two different types of “infinity,” the denumer-
able infinity of the integers and the non-denumerable infinity of the
continuum. If two sets A and B, finite or infinite, are equivalent, we
shall say that they have the same cardinal number. This reduces to the
ordinary notion of same natural number if A and B are finite, and may
be regarded as a valid generalization of this concept. Moreover, if a
set A is equivalent with some subset of B, while B is not equivalent to
4 or to any of its subsets, we shall say, following Cantor, that the set
B has a greater cardinal number than the set A. This use of the word
“number” also agrees with the ordinary notion of greater number for
finite sets. The set of integers is a subset of the set of real numbers,
while the set of real numbers is neither equivalent to the set of integers
nor to any subset of it (i.e. the set of real numbers is neither denumerable
nor finite). Hence, according to our definition, the continuum of real
numbers has a greater cardinal number than the set of integers.

* As a matter of fact, Cantor actually showed how to cont.ruct a whole sequence
of infinite sets with greater and greater cerdinal numbess, Since we may start
with the set of positive integers, it clearly suffices to show that given any set A
it ig possible to construct another set B with a greater cardinal number. Because
of the great generality of this theorem, the proof is necessarily somewhat abstract.
We define the set B to be the set whose elements are all the different subsets of
the set A, By the word “subset” we shall include not only the proper subsets
of 4 but also the set A itzelf, and the empty “‘subset’” 0, containing no elements
at sll. (Thus, if A consists of the three integers 1, 2, 3, then B contains the 8
different elements {1, 2, 3}, {1, 2}, {1, 3}, (2, 3}, {1}, {2}, {3}, and 0.) Each
element of the set B is itaelf a sef, consisting of certain elements of 4. Now
suppose that B is equivalent to A or to some subset of it, i.e. that there is some
rule which correlates in a biunjque manner the elements of 4 or of a subset of
A with all the elements of B, i.e. with the subsets of A:

2) 3 S,,

where we denote by Se the subset of 4 corresponding to the clement a of A. We
: at a contradiction by exliibiting an element of B (i.e. & subset T of 4}
which cannot have any element a correlated with it. In order to construet this
subset we observe that for any clement z of 4 two possibilities exist: either the
set S. assigned to 7 in the given correspondence (2) contains the element z, or
Se does not contain 7, We define T as the subset of A consisting of all those elements x
such that S, does not contain x. This subset differs from every So by at least the
element g, since if Sa containg o, T does not, while if Sa does not contain a, 7' does.
Hence T is not included in the onrrespondence (2). This shows that it is im-

arri
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possible to set up a hiunique correspondence between the elements of A or of
any subset of 4 and those of B. But the correlation

@ «— la}
defines a biunique correspondence between the elements of 4 and the subset of B
consisting of all one-element subsets of A, Hence, by the definition of the lagt
paragraph, B has a greater cardinal number than A.

¥ Ezercise: 1f A containg n elements, where nis a positive integer, show that B,
defined as above, contains 2" elements. If A consists of the sct of all positive
integers, show that B is equivalent to the continuum of real numbers from 0 to 1.
(Hint: Symbolize a subset of A in the first case by a finite and in the second
case by an infinite sequence of the symbols 0 and 1,

aazag vy
where an = 1 or 0, nccording as the nth element of A does or does not belong to
the given subset.)

One might thiok it a simple matter to find uset of poinis with a greater cardinal
number than the sct of rcal numbers from 0 to 1. Certainly a square, being
“4wo-dimensional,” would appear to contain ‘‘more” points than a “‘one-dimen-
eional” segment. Surprisingly enough, this is not so; the cardinal number of the
set of points in a square is the same as the cardinal number of the set of points on a
segment. To prove this we set up the following correspondence

1f (z, ) i5 & point of the unit square, z and y may be written in decimal form aa

z = 0.0;8:0304 =-> ,
y = 0bibsbibe -,

where to avoid ambiguity we choose, for example, 0.250000 --- instead of
0.249999 -+« for the rational number }. To the point (z, y) of the square we then
assign the point

z = O.a:biabsashsadbs » v

of the segment from 0 to 1. Clearly, different points (z, y) and (z', 3} of the
square will correspond to different points z and 2’ of the segment, 5o that the
cardinal number of the square cannot exceed that of the segrment.

(As n matter of fact, the correspondence just defined is biunique between the
set of il points of the square and n proper subset of the unit segment; no point
of the square could correspond Lo the point 02140909090 -« , for example, sineo
the form 0.26000 - rather than 0.24400 --- was chosen for the number . But
it is possible to modify the correspondence slightly so that it will be biunique
between the whole square and the whole segment, which are thus seen to have
the same cardinal number.)

A similar argunient shows that the cardinal number of the points in a cube is
no greater than the cardinal number of the segmen

Although these results seem to contradiet th: intuitive motion of dimen-
sionality, we must remember that the correspondence we have aefined is not
“‘continuous’; if we travel along the sc_ment from 0 to I continuously, the corre-
sponding points in the square will not form a continuous curve but will appear
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in a completely chaotic order. The dimension of a set of points depends not
only on the cardinal number of the set, but also on the manner in which the
points are distributed in space. In Chapter V we shall return to this subject.

4. The Indirect Method of Proof

The theory of cardinal numbers is but one aspect of the general
theory of sets, created by Cantor in the face of severe eriticism by
some of the most distinguished mathematicians of the time. Many of
these critics, such as Kronecker and Poincaré, objected to the vague-
ness of the general concept of “set,” and to the non-constructive char-
acter of the reasoning used to define certain sets.

The objecti to tructive ing refer to what may be
called essentially mdmnt proofs. Indwect proofs themselves are a
familiar sort of r : to establish the truth of a

statement 4, one makes the tentative assumption that 4/, the contrary
of 4, is true. Then by some chain of reasoning one produces a con-
tradiction to 4’, thus demonstrating the absurdity of A, Hence, on
the basis of the fundamental logical principle of the “excluded middle,”
the absurdity of A’ establishes the truth of 4.

Throughout this book we shall meet with examples where an indirect
proof can easily be converted into a direct proof, though the indirect
form of proof often has the advantages of brevity and freedom from
details not necessary for the immediate objective. But there are some
theorems for which it has not yet been possible to give other than in-
direct proofs. There are even theorems, provable by the indirect
method, for which direct constructive proofs could not possibly be given
even in principle, because of the very nature of the theorems them-
selves. Such, for example, is the theorem on page 81. On different
occasions in the history of mathematics, when the efforts of mathema-
ticians were directed towards consiructing solutions for certain problems
in order to show their solvability, someone else came along and side-
stepped the task of construction by giving an indirect and non-construc-
tive proof.

There is an essential difference hetween proving the existence of an
object of a certain type by constructing a tangible example of such an
object, and showing that if none existed one could deduce contradictory
results. In the first case one has a tangible object, whi! in the sccond
case one has only the contradicti Some distinguist
ticians have recently advocated the more or less eumph.te banishment
from mathematics of all non-constructive proofs. Even if such a
program were desirable, it would at present involve tremendous com-~
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plication and even the partial destruction of the body of living mathe-
maties. For this reason it is no wonder that the school of “intui-
tionism,"” which has adopted this program, has met with strong resistance,
and that even the most thoroughgoing intuitionists cannot always live
up to their convictions.

5. The Paradoxes of the Infinite

Although the uncompromising position of the intuitionists is far too
extreme for most mathematicians, & serious threat to the beautiful
theory of infinite aggregates arose when outright logical paradoxes in
the theory became apparent. It was soon observed that unrestricted
freedom in using the concept of “set” must lead to contradiction. One
of the paradoxes, exhibited by Bertrand Russell, may be formulated
as follows. Most sets do not contain themselves as elemeats. For
example, the set 4 of all integers contains as elements only integers; 4,
being itself not an integer but & set of integers, does not contain itself as
element. Such a set we may call “ordinary.”” There may possibly be
sets which do contain themselves as elements; for example, the set S
defined as follows: “S contains as elements all sets definable by an
English phrase of less than twenty words” could be considered to con-
tain itsell as an element. Such sets we might call “extraordinary” sets.
In any case, however, most sets will be ordinary, and we may exclude
the erratic behavior of “extraordinary” sets by confining our attention
to the set of all ordinary sets, Call this set €. Each element of the set
C is itself a set; in fact an ordinary set. The question now arises, is C
itself an ordinary set or an extraordinary set? It must be one or the
other. If C'is ordinary, it contains itself as an element, since C is de-
fined as containing all ordinary sets. This being so, ¢ must be extra-
ordinary, since the extraordinary sets are those containing themselves
88 members, This is a contradiction, Hence ¢ must be extraordinary.
But then C contains as a member an extraordinary set (namely C itself),
which contradicts the definition whereby C was to contain ordinary sets
only. Thus in either case we see that the assumption of the mere exist-
ence of the set C has led us to a contradiction.

6. The Foundations of Mathematics

Paradoxes like this have led Russell and others to a systematic study
of the foundations of mathematies and logic. The ultimate aim of
their efforts is to provide for mathematical reasoning a logical basis
which can be shown to be free from possible contradiction, and which
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still covers everything that is considered important by all {or some)
mathematicians. While this ambitious goal has not been attained and
perhaps cannot ever be attained, the subject of mathematical logic has
attracted the fon of i L of 1 Many
problems in this field which can be stated in very simple terms are very
difficult to solve. As an example, we mention the Hypothesis of the
Continuum, which states that there is no set whose cardinal number is
greater than that of the set of the integers but less than that of the set
of real numbers. Many interesting consequences can be deduced from
this hypothesis, but up to now it has neither been proved nor disproved,
though it has recently been shown by Kurt Gédel that if the usual
postulates at the basis of set theory are consistent, then the enlarged
set of postulates obtained by adding the Hypothesis of the Continuum
is also consistent. Questions such as this ultimately reduce to the ques-
tion of what is meant by the concept of mathematical existence. TLuckily,
the existence of mathematics does not depend on a satisfactory answer.
The school of “formalists,” led by the great mathematician Hilbert,
asserts that in mathematics “existence” simply means “freedom from
contradietion.” It then becomes necessary to construct a set of postu-
lates from which all of mathematics can be deduced by purely formal
reasoning, and to show that this set of postulates will never lead to a
contradiction. Recent results by Gédel and others seem to show that
this program, at least as originally conceived by Hilbert, cannot be
carried out. Significantly, Hilbert’s theory of the formalized strueture
of mathematics is essentially based on intuitive procedure. In some
way or other, openly or hidden, even under the most uncompromising
formalistic, logical, or postulational aspect, constructive intuition always
remains the vital element in mathematics.

§5. COMPLEX NUMBERS
1. The Origin of Complex Numbers

For many reasons the concept of number has had to be extended even
beyond the real number continuum by the introduction of the so-called
complex numbers. One must realize that in the historical and psycho-
logical devel of math ics, all these extensions and new inven-
tions were by no means the products of some one individual's efforts.
They appear rather as the outcome of a gradual and hesitant evolution
for which no single person can receive major credit. It was the need
for more freedom in formal calculations that brought about the use of
negative and rational numbers. Only at the end of the middle ages
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did mathematicians begin to lose their feeling of uneasiness in using
these concepts, which did not appear to have the same intuitive and
concrete character as do the natural numbers. It was not until the
middle of the nineteenth century that mathematicians fully realized
that the essential logical and philosophical basis for operating in an ex-
tended number domain is formalistic; that extensions have to be created
by definitions which, as such, are free, but which are useless if not
made in such a way that the prevailing rules and properties of the
original domain are preserved in the larger domain. That these exten-
sions may sometimes be linked with “real” objects and in this way
provide tools for new applications is of the highest importance, but this
can provide only & motivation and not a logical proof of the validity
of the extension.

The process which first requires the use of complex numbers is that
of soluing quadratic equations. We recall the concept of the linear equa-
tion, ax = b, where the unknown quantity  is to be determined. The
solution is simply z = b/a, and the requircment that every linear
equation with integral coefficients @ ¢ 0 and b shall have a solution ne-
cessitated the introduction of the rational numbers. Equations such as
1) 2t =2,
which has no solution z in the field of rational numbers, led us to con-
struct the wider field of real numbers in which a solution does exist.
But even the field of real numbers is not wide enough to provide a com-

plete theory of d A simple ion like
@) 2= -1
has no real solution, since the square of any real number is never

negative.

We must either be content with the statement that this simple equa-
tion is not solvable, or follow the familiar path of extending our concept
of number by introducing numbers that will make the equation
solvable. This is exactly what is done when we introduce the new
symbel £ by defining ¥ = —1. Of course this object 7, the “imaginary
unit,” has nothing to do with the concept of a number as a means of
counting. Ttis purely a symbol, subject to the fundamental rules’ = 1,
and its value will depend entirely on whether by this introduction a
really use 1 and workable extension of the number system can be
effected.

Since we wish to add end multiply with the symbol ¢ as with an or-
dinary real number, hould be able to form symbols like 2z, 37, ~3,
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2 4 57, or more generally, @ + b, where a and b are any two real num-
bers. If these symbols are to obey the familiar commutative, associa-
tive, and distributive laws of addition and multiplication, then, for
example,
2+3)+A+4)=Q+ )+ B+ =3+T7
2+ 30)(1 + 4i) = 2 -+ 8 + 80 + 127
=(2~12) + @+ 8) = —10 + 11..
Guided by these considerations we begin our systematic exposition
by making the following definition: A symbol of the form a -+ bz, where
a and b are any two real numbers, shall be called a complez number
with real part a and imaginary part b. The operations of addition
and multiplication shall be performed with these symbols just as though
4 were an ordinary real number, except that i* shall always be replaced
by —1. More precisely, we define addition and multiplication of com-
plex numbers by the rules
(@a+b) + e+ di) = (a+ ) + b+ d),
(a + bi)(c + di) = (ac — bd) + (ad + be)i.
In particular, we have
4) (@ + bi)(@a — bi) = a® — abi + abi — b%* = o* + b%
On the basis of these definitions it is easily verified that the commuta-
tive, associative, and distributive laws hold for complex numbers
Moreover, not only addition and multiplicati but also subt
and division of two complex numbers lead sgain to numbers of the
form a + bi, so that the complex numbers form a field (sce p. 56):
(@ +bi) ~ (c + di) = (a~ &) + (b — ),
B adbi_ (ot bi)(c—di) _ fuc+bd (bc—ad)i
c+di (c+di)(c — di) ¢+ d* d+a )
(The second equation is meaningless when ¢ + di = 0 4 04, for then
¢+ d = 0. So again we must exclude division by zero, i.e. by 0 + 05.)
For example,

3)

(2+30) ~ (14 4) =14
243 _ 2431 -4 _2-8i+3i+12_14 5

T+& 1T+&1T-4 1+16 Y]
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‘The field of complex numbers includes the field of real numbers as a
subfield, for the complex number @ + 0/ is regarded as the same as
the real number a. On the other hand, a complex number of the form
0 + bi = bi is called & pure imaginary number.

Baercises: 1) Express ot D@ FDCHD 0o tbi

=1
2) Express

(et
in the form a + bi.

3) Express in the form a + bi:
1+4 144 1 1 a=mp
1-i" 24" (“2+ D0 ~3) (2 -3
4) Calealate /5 + 12i. (Hint: Write /8 & 131 = z + yi, square, and equate
res! and imaginary parts.)

By the introduction of the symbol £ we have extended the field of real
numbers to a field of symbols @ + b¢ in which the special quadratie
equation

z = -1
bas the two solutions ¢ = ¢ and z = —i. For by definition,
i = (—i)(—i) = ¢ = —1. In reality we have gained much more:

we can easily verify that now every quadratic equation, which we may
write in the form

6) ar +bzr+c=0,
has a solution. For from (6) we have

b c
=0,
a

s b B
z+ii2+~i'a_*_

B\
@) (z+-2:1»)=
x+2b—é=
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Now if ¥* — 4ac > 0, then /2 — 4ac is an ordinary real number, and

the solutions (7) are real, while if & — 4ac < 0, then 4ac — & > 0

and /B~ dac = v/~ (dac — ) = V/4ac — b1, so that the solutions

(7) are complex numbers. For example, the selutions of the equation
2 -5z +6=0

arez = (5 & /25 — 24)/2 = (5 = 1)/2 = 2 or 3, while the solutions
of the equation

2 -2+ 2=0,
arez = (2 VE-8)/2=222)/2=1+iorl—i.

2. The Geometrical Interpretation of Complex Numbers

As early the si h century ici were lled

to introduc pressions for square roots of negative numbers in order
to solve all quadratic and cubic equations. But they were at a loss to
explain the exact meaning of these expressions, which they regarded
with superstitious awe. The name “imaginary” is a reminder of
the fuct that these ex) ions were considered to be how fictiti
and unreal. Finally, early in the nineteenth century, when the im-
portance of these t in many b hes of matl ics had
become manifest, a simple geometric interpretation of the operations
with complex numbers was provided which set to rest the lingering
doubts about their validity. Of course, such an interpretation is
unnecessary from the modern point of view in which the justification
of formal calculations with complex numbers is given directly on the
basis of the formal definitions of addition and multiplication. But the
geometric interpretation, given at about the same time by Wessel
(1745-1818), Argand (1768-1822) and Gauss, made these operations
seem more natural from an intuitive standpoint, and has ever since
been of the utmost importance in applications of complex numbers in
mathematics and the physical sciences.

This geometrical interpretation consists simply in representing the
complex number z = z + y7 by the point in the plane with rectangular
coordmates z, ¥ Thus the real part of z is its 2-coéirdinate, and the

part is its Grdi A correspondence is thereby estab-
lished between the complex numbers and the points in & “number
plane,” just as a correspondence was established in §2 between the
real numbers and the points on a line, the number axis. The points on
the z-axis of the number plane correspond to the real numbers
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z = z <+ 07, while the points on the y--~'s correspond to the pure
imaginary numbers z = 0 + yi.
It

z=za+yi
is any complex number, we call the complex number
Z=2x -yl
the conjugate of 2. The point Z is represented in the number plane by
the reflection of the point z in the z-axis 8s in a mirror. If we denote

¥ig 22, Geome_cal representation of complex numbers, The point s has the rectangular codrdinates 7, y.

the distance of the point 2 from the origin by p, then by the Pythagorean
theorem
F= =ty - ) =
The real number p = /22 + y? is called the modulus of z, and written
= |z}

If 2 lies on the real axis, its modulus is its ordinary absolute value. The
complex numbers with modulus 1 lie on the “unit circle” with center
at the origin and radius 1.

If |z| = 0 then z = 0. This follows from the definition of |z | as
the distance of z from the origin. Moreover the modulus of the product
of two complex numbers 1s equal to the product of their moduli:

fazl=lal]al
This will follow from a more general theorem to be proved on page 95.

Ezerc 1. Prove this theorem directly {rom the definition of multiplication
of two ec “umbers, z; = z; + i and 23 = T35 -+ yai.
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2. From the fact that the product of two real numbers is 0 only if one of the
factors is 0, prove the corresponding theorem for complex nuxbers. (Hint: Use
the two theorems just stated.)

From the definition of addition of two complex numbers, 2 = 2y + i
and z; = 2 4 pt, we have

atz= (0t o)+ &+ i

Hence the point z; + 2z is represented in the number plane by the
fourth vertex of & parallelogram, three of whose vertices are the

_________ 2ot

Fig. 23, Parallelogram law of addition of complez numbers.

points O, 2, z2. This simple geometrical construction for the sum of
two complex numbers is of great importance in many applications.
From it we can deduce the important consequence that the modulus
of the sum of two complex numbers does not exceed the sum of the moduli
(compare p. 58):

itz <lal+ 2]

This follows from the fact that the length of any side of a triangle
cannot exceed the sum of the lengths of the other two sides.

Exercise: When does the equality |z + 2| = | 2| + | 2 | hold?

The angle between the positive direction of the xz-axis and the line
Oz is called the angle of 2, and is denoted by ¢ (Fig. 22). The modulus
of % is the same as the modulus of z,

=1z}

but the angle of 2 is the negative of the angle of z,

b= ¢

Of course, the angle of 2 is not uniquely determined, since any integral
multiple of 360° can be added to or subtracted from an angle without
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affecting the position of its terminal side. Thus
6, ¢ + 360°% ¢ + 720° ¢ 4 1080°, ...,
¢ — 360° ¢ — 720° ¢ —~ 1080° ...
all represent graphically the same angle. By means of the modulus o
and the angle ¢, the complex number z can be written in the form
®) 2=z + yi = plcos ¢ + ¢sin ¢);
for, by the definition of sine and cosine (see p. 277),
z = pcos ¢, Yy = psin ¢,
Egfore=1¢p=16 = 00°%sothati = {cos 90° + ¢ sin 90°);

for  z=1+43 p= /2, ¢ = 45°, sothat
1+ 4= /3 (cos 45° -+ i sin 45%);
for  z=1~4 p=/2,¢ = —45° sothat

1 -1 = +/2cos (—45° + i sin (—45%)];
for 2= —-14++/34 p=2¢ = 120° 80 that *

~1 4 /3¢ = 2 (cos 120° + 1 sin 120%).
The reader should confirm these statements by substituting the values
of the trigonometrical functions.

The trigonometrical representation (8) is of great value when two
complex numbers are to be multiplied. 1f

z = p{cos ¢ + { sin 4},
and 2’ = p'(cos ¢’ + ising"),
then 22" = pp’{{cos & cos ¢’ — sin & sin ¢)
+ #(cos ¢ sin ¢’ + sin ¢ cos ¢')}

Now, by the fundamental addition theorems for the sine and cosine,

wos ¢ cos ¢ — sin ¢ sin ¢’ = cos (p + ¢’),

©cos ¢ sin ¢ + sin ¢ cos ¢” = sin ( + ).
Hence
) ' = po'{eos (¢ + &) + {in (& + ¢N)].
This is the trigonometrical form of the complex number with modulus

po’ and angle ¢ + ¢'.  In other words, to multiply two complex numbers,
we multiply their moduli and add their angles (Fig. 24). Thus we
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see that multipli of complex bers has hing to do with
rotation. To be more precise, let us call the directed line segment
pointing from the origin to the point z the vector 2; then p = |z | will be
its length, Let 2’ be a number on the unit circle, so that o’ = 1; then
multiplying z by 2’ simply rotates the vector z through the angle ¢'.
If o' # 1, the length of the vector has to be multiplied by o after the
rotation. The reader may illustrate these facts by multiplying various
numbers by z; = i (rotating by 90°); zz = —i (rotating by 90° in the
opposite sense); 23 = 1 + i;and z, = 1 —

Fig. 4. ipli i tex aums. and the moduli muitiplied.
Formula (8) has a particularly important consequence when z = 2/,
for then we have
2 = p*(cos 2 + 1 sin 2¢).
Multiplying this result again by z we obtain
2 = p(cos 3¢ + i sin 3¢),
and continuing indefinitely in this way,
10) 2" = p" (cos ng + 1 sin ng) for any integer n.

In particular, if z is a point on the unit circle, with p = 1, we obtain
the formula discovered by the English mathematician A. De Moivre
(1667-1754):

(083} {cos ¢ + isin¢)” = cos ng -+ 7 sin ng.
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This formula is one of the most remarkable and useful relations in
elementary mathematics. An example will illustrate this. We may
apply the formula for n = 3 and expand the left hand side according
to the binomial formula,

(u 4+ v)* = u® + 3u' + 3w’ + o,
obtaining the relation
€03 3¢ + 7 sin 3¢ = cos' ¢ ~ 3 cos ¢ sin’ ¢ + (3 cos” ¢ sin ¢ — sin’ ).

A single equation such as this between two complex numbers ¢+  nts
to a poir of equations between real numbers. For when two comylex
numbers are equal, both real and imaginary parts must be equal. Hence
we may write

cos3p = cos' ¢ — Bcospsin®,  sin 3 = 3 cos’ ¢ sin ¢ — sin’ .
Using the relation

cos’¢ + sin’p = 1,

we have finally
c0s 3¢ = cos' ¢ — 3 cos ¢(1 ~ cos’¢) = 4 cos’ ¢ — 3 cos g,
sin3¢ = ~4sin’ ¢ + 3 sin ¢.
Similar formulas, expressing sin n¢ and cos n¢ in terms of powers of
sin ¢ and cos ¢ respectively, can easily be obtained for any value of n.

Ezercises: 1) Find the corresponding formulas for sin 46 and cos .

2) Prove that for a point, z = cos ¢ + f sin ¢, on the unit circle. 1/z =
cosé — ising,

3) Prove without caloulation that (2 + bi)/(a ~ bi) always has the absolute
value 1,

4) If 2, and 25 are two complex numbers prove that the angle of z; — z, is equal
to the angle between the real axis and the vector pointing from 2. to z; .

5) Tuterpret the angle of the complex number (25 — #2)/(s — #) in the triangle
formed by the points z: , z:, and zs .

6) Prove that the quotient of two complex numbers with the same anrle is real.
2~ 2
n

7) Prove that if for four complex numbers z; , 23 , 25, 2« the angles of
2

—z

aml ——— are the eame, then the four numbers lie on a circle or on 2 straight
-

line, and convergely.

8) Prove that four points 21, 22, #1, 2 lie on a circle or on & straight line if
and only if

B-n fa-z

-t ta—n
in roat.
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3. De Moivre’s Formula and the Roots of Unity

By an nth root of a number @ we mean a number b such that 5" = a.
In particular, the number 1 has two square roots, 1 and —1, since
1* = (—1)* = 1. The number 1 has only one resl eube root, 1, while
it has four fourth roots: the real numbers 1 and ~1, and the imaginary
numbers ¢ and —7. These facts suggest that there may be two more
cube roots of 1 in the complex domain, making a total of three in all.
That this is the case may be shown at once from De Moivre’s formula.

an
N

Fig. 25. The twvelve twelith roots of 1.

We shall see that in the field of complex numbers there are exactly n
different nth roots of 1. They are represented by the certices of the regular
a-sided polygon inscribed in the unit circle and having the point z = 1 as
one of ils vertices, 'This is almost immediately clear from Figure 25
(drawn for the case n = 12). The first vertex of the polygonis1. The
next is

o
(12) a = ms + 78I — 360

since its angle must be the nth part of the total angle 360°. The next
vertex is a-a = &, since we obtain it by rotating the vector o through
the anglf-?io- . The next vertex is a’, ete., and finally, after n steps,
we are l)ack at the vertex 1, i.e., we huve

=1,
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which also follows from formula (11), since

o
[cos —9(—)—+' i 3%0—] = ¢0s 360° + 7 8in 360° = 1 + 04,

1t follows that o' =  is a root of the equation z* = 1. The same is
true for the next vertex ' = cos TZO) + ¢sin (720 ) We can see
this by writing

(a!)» - Qh = (an>2 - (1)2 = l,
or from De Moivre’s formula:

o
(@) = cus( 72 0) +zsn(n7~i-o—)
=c0s720° +{sin720° =1+ 0i = 1.
In the same way we see that all the n numbers
Lo a0
are nth roots of 1. To go farther in the sequence of expounents or to
use negative exponents would yield no new roots. For o™ = 1/a =
afa=a""and " = 1, a"" = (a)"a = l.a = q, etc,, so that the
previous values would simply be repeated. Tt is left as an exercise to
show that there are no other nth roots.

If » is even, then one of the vertices of the n-sided polygon wili lie at
the point — 1, in accordance with the algebraie fact that in this case —1
is an nth root of 1.

The equation satisfied by the nth roots of 1

(13) 2" —1=0

is of the nth degree, but it can easily be reduced to an equation of the
(n — 1)st degree. We use the algebraic formula

(14) 2" =l (= DE" AT ).

Since the product of two numbers is 0 if and only if at least one of the
two numbers is 0, the left hand side of (14) vanishes only if one of the
two factors on the right hand side is zero, i.e. only if either z = 1, or
the equation

15) A A A R ]

is satisfied. This, then, is the equation which must be satisfed by
the roots a, o, ... &™; it is called the cyclolomic (circle-dividing)
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equation. For example, the complex cube toots of 1,
a = ¢os 120° 4 i 8in 120° = §(—1 + i/3),
o = cos 240° 4 7 5in 240° = H(—1 — i/3),
are the roots of the equation
F4z+l=0,

a8 the reader will readily see by direct substitution. Likewise the fifth
roots of 1, other than 1 itself, satisfy the equation

(16) bzl =0,
To construct a regular pentagon, we have to solve this fourth degree
equation. By a simple algebraic device it can be reduced to a quadratic
equation in the quantity w = z + 1/z. We divide (16) by z* and re-
arrange the terms:
SHitrtlir=o,

z x
or, since (r + 1/z)" = 2 + 1/2° + 2, we obtain the equation

v w—1=0
By formula {7) of Article 1 this equation has the roots

.=l 5 1-+5
2 ’ 2 :

wy Wy =

Hence the complex fifth roots of 1 are the roots of the two quadratic
equations

24 -=w, or 2+ H/E~Dz+1=0,

1
z
and

z+£=u,y, or ¥ —3VE+Dz+1=0,

which the reader may solve by the formula already used.

Baercise: 1) Fiud the 6th roots of 1. 2) Find (1 + )",
3) Find all the different values of /i 4 1, /7 ~ /i, ¥

R
1
4) Caleulate = (7 - ).
2
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*4. The Fundamental Theorem of Algebra

Not only is every equation of the form ax’ + bz + ¢ = 0 or of the form
2" ~ 1 = 0 solvable in the field of complex numbers, but far more is
true: Brery algebraic equation of any degree n with real or complex
coeflicients,

A7) f@) = 2"+ anaz"™ + g™ 4 o az o =0,
has solutions in the field of complex numbers, For equations of the 3rd
and 4th degrees this was established in the sixteenth century by Tar-
toglis, Cardan, and others, who solved such equations by formulas es-
sentially similar to that for the quadratic equation, although much more
complicated. For almost two hundred years the general equations of
5th and higher degree were intensively studied, but au efforts to solve
them by similar methods failed. [t was a great achievement when the
young Gauss in his doctoral thesis (1799) succeeded in giving the first
lete proof that solutions exsst, although the question of generalizing
the classical formulas, which express the solutions of equations of degree
Iess than 5 in terms of the rational operations plus root extraction, re-
mained unanswered * the fime. (See p. 118.)

Gauss's theorem ¢ tes that for any algebraic equation of the form (17),
where 018 a posilive integer and the o’s are any real or even complex num-
bers, there exists at least one complex number a = ¢ + di such that

Sflay = 0.
The number a is called aroof of the equation (17). A proof of this
theorem will be given on page 269.  Assuming its truth for the moment,
we can prove what is known as the fundamental theorem of algebra (it
should more fittingly be called the fundamental theorem of the complex
number system): Fvery polynomial of degree n,

(18) J@) = 2"+ ™ + o oz + o,
can be factored into the product of exaclly n factors,
(19} fz) = (& - a)z = ) - (z— an),
where oy, @y, @y, «- -, an are complex numbers, the roots of the equaiion
f(x) = 0. As an example iHllustrating this theorem, the polynomial
fiay =g -1

may be factored into the form

f@) = (2~ D@ — Dz + )+ 1).
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That the a's are roots of the equation f{z) = 0is ¢ lent from the
factorization (19), since for £ = a, one factor of f(zj, :d hence f(z)
itself, is equal to zero,

In some cases the factors (z ~ @), (@ — as), +* of a polynomial
1(x) of degree n will not all be distinct, as in the example

f@) =2 =24+ 1= (z~ 1)z — 1),

which has but one root, z = 1, “counted twice” or “‘of multiplicity 2.
In any case, a polynomial of degree n ean have no more than n distinet
factors (z — a) and the corresr  ling equation n roots.

To prove the factorization the.rem we again make use of the alge-
braic identity
(20) 2* — o = (z ~ )z + a2 P+ ST - QR+ Y,
which for @ = 1 is merely the formula for the geometrical series. Since
we are assuming the truth of Gauss’s theorem, we may suppose that
a = ey is a root of equation (17), so that

flew) = of + Gnaof ™ + @nadd F 4 o+ @sen + w0 = 0.
Subtracting this from f(z) and rearranging the terms, we obtain the
identity
@) f@) = f(z) ~ fla) = @ = &) + @alz"" = o)
+ ot alz o).
Now, because of (20), we may factor out (x — a;) from every term of
(21), so that the degree of the other factor of each term is reduced by 1.
Hence, on rearranging the terms again, we find that
@) = (& — a)gla),
where g(z) is a polynomial of degree n — 1:
9@) = 2"+ baz™ o bz b
{For our purposes it is quite to calculate the coeffici
bx.) Now we may apply the same procedure to g(z). By Gauss’s
theorem there exists a root ay of the equation g(z) = 0, so that
9(@) = (z = w)h(z),

where h(z) is a polynomial of degree n — 2. Proceeding a total of
(n ~ 1) times in the same way (of course, this phrase is merely a sub-
stitute for an argument by mathematical induction) we finally obtain
the complete factorization

(22) J@@) = (z — )@~ )z ~ &) o0 (2 — @)
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From (22) it follows not only that the complex numbers s , aa, « -+ , otn
are roots of the equation (17), but also that they are the only roots. For
if y were a root of equation (17), then by (22)

) = (y — a}ly — o) -+ (y — @) = 0.
We have seen on page 94 that a product of complex numbers is equal to
0if and only if one of the factors is equal to 0. Hence one of the factors
(¥ — o) must be 0, and ¥ must be equal to a, , a8 was to be shown.

*§6. ALGEBRAIC AND TRANSCENDENTAL
NUMBERS

1. Definition and Existence

An algebraic number is any number z, real or complex, that satisfies
some algebraic equation of the form
1) @z" + @uer@™™ 4 v Fax @ = 0 (n 21, a5 0)
where the a; are integers. For example, v/% is an algebraic number,
since it satisfies the equation

@~ 2=0
Similarly, any root of an equation with integer coefficients of third,
fourth, fifth, or any higher degree, is an algebraic number, whether or
not the roots can be expressed in terms of radicals. The concept of
algebraic number is & natural generalization of rational number, which
constitutes the special case when n = 1.

Not every real number is alzebraic. This may be shown by a proof,
due to Cantor, that the totality of all algebraic numbers is denumerable.
Since the set of all veal numbers is non-denumerable, there must exist
real numbers which are not algebraic.

A method for denumerating the set of algebraic numbers is as follows:
To cach equation of the form (1) the positive integer

h=lan]+ [@qeal+ -+ fa|+|ai+n
is assigned as its “height.” ¥or any fized value of k there are only & finite
number of equations (1) with height 2. Each of these equations can
have at most n different roots. Therefore there can be but a fnite
number of algebraic numbers whose equations are of height #, and we
can arrange all the algebraic numbers in a sequence by starting with
those of height 1, then taking those of height 2, and so on.

This proof that the set of algebraic numbers is d ble assures
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the existence of real numbers which are not algebraic; such numbers are
called transcendental, for, as Euler said, they “transcend the power of
algebraic methods.”

Cantor’s proof of the exi of tr can hardly
be called constructive. Theoretically, one could construct a transcen-
dental number by applying Cantor’s diagonal process to a denumerated
table of decimal expressions for the roots of algebraic equations, but this
procedure would be quite impractical and would not lead to any number
whose expression in the decimal or any other system could actually be
written down. Moreover, the most interesting problems concerning
transcendental numbers lie in proving that certain definite numbers
such as = and ¢ (these numbers will be defined on pages 297 and 299)
are actually transcendental,

a + 1

**2. Liouville’s Theorem and the Construction of
Transcendental Numbers

A proof for the existence of transcendental numbers which antedates
Cantor’s was given by J. Liouville (1809-1882). Liouville’s proof
actually permits the construction of examples of such numbers. It is
somewhat more difficult than Canter’s proof, as are most constructions
when compared with mere existence proofs. Tue proof is included here
for the more advanced reader only, though it requires no more than
high school mathematics.

Liouville showed that irrational algebraic numbers are those which
cannot be approximated by rational numbers with a very high degree
of accuracy unless the d inators of the approximating fractions are
quite large.

Suppose the number z satisfies the algebraic equation with integer
coefficients

2 f@) =amtagt @ + -+ a" =0 (o #0),

but no such equation of lower degree. Then z is said to be an algebraic
number of degree n. For example, z = /2 is an algebraic number of
degree 2, since it satisfies the equation z* — 2 = 0 but no equation of
the first degree; z = /3 is of the th'rd degree because it satisfies the
equation 2 — 2 = 0 and, as we shall see in Chapter ITI, no equation
of lower degree. An algebraic number of degree » > 1 cannot be
rational, since a rational number z = p/g satisfies the equation
gr ~ p = 0 of degree 1. Now each irrational number z can be ap-
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proximated to any desired degree of accuracy by a rational number;
this means that we can find a sequence

nops
alq’
of rational numbers with larger and larger denominators such that
P

T
qr
Liouville’s theorem asserts: For any algebraic number z of degree n > 1
such an approximation must be less accurate than 1/¢™"; ie., the
inequality

p|, 1
® }Z*EP,’,"“
must hold for sufficiently large denominators .

We shall prove this theorem presently, but first we shall show how it
permits the construction of transcendental numbers. Let us take the
number (see p. 17 for the definition of the symbol nf)
7= @007 + e 107 4 ap 107 L g 107

+ g 1077 4L

= 0.6:4:0002,000000000000000002.0000000 - ,
where the a; are arbitrary digits from 1 to ¢ (we could, for example,
choose all the a; equal to 1). Such a number is characterized by
rapidly increasing stretches of O's, interrupted by single non-zero digits.
Let us denote by z, the finite decimal fraction formed by taking only
the terms of z up to and including a.-10"™. Then
O] [z — 2| < 10.107DY
Suppose that z were algebraic of degree n. Then in (3) let us set
p/q = 2» = p/10™, obtaining

for sufficiently large m. Combining this with (4), we should have
i 10 1
ForE < g T e
so that (n + 1m! > (m + 1)1~ 1 for all sufficiently large m. But this
is false for any value of m greater than = (the reader should give a de-
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tailed proof of this statement), which gives a contradiction. Hence z
is transcendental.

It remains to prove Liouville’s theorem. Suppose z is an algebraic
number of degree n > 1 which satisfies (1), so that
5 1) =
Let 2m = pn/gn be a sequence of rational numbers with z, — 2. Then
fzn) = flzm) — f(2) = @s(2m = 2) + @alzf — &) + -+ + aaleh — 7).
Dividing both sides of this equation by 2z, — 2, and usuy; the algebraic
formula

u =" B Y T N SN S S
u-v
we obtain
L:)Z = o+ aalem +2) + aldn 4 2nz + ) 4 <o

®

+anlen™ b e 2.
Since 2, tends to z as a limit, it will differ from 2 by less than 1 for suffi-
ciently large m. We can therefore write the following rough estimate
for sufficiently large m:

o 12| <tale2ialGeienatm e

dnlami(z] 410" =
which is a fixed number, since z is fixed in our reasoning. If now we
choose m so large that in z,, = q— ™ the denominator ¢, is larger than M,
then

® lew sul > )] \_[gz_m

For brevity let us denote pn by p and gn by ¢. 'Then
© \/(z)|—-="°" + g zz+ +anpw‘
Now the rational number z,, = p/g cannot be u root of f(z) = 0, for if

it were we could factor oat (z ) from f(2), and z would satisfy an
equation of degree less than n. Hence f(2,) # 0. But the numerator
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of the right hand side of (9) is an integer, so it must be at least equal to
1. Hence from (8) and (9) we have
1

eyl

(10) !z—z,..l>7ﬁ;

which proves the theorem.

During the last few decades, investigations into the possibility of
approximating algebraic numbers by rational numbers have been car-
ried much farther. For cxample, the Norwegian mathematician A,
Thue (1863-1922) proved that in Liouville’s inequality (3) the ex-
ponent n + 1 may be replaced by (n/2) + 1. C. L. Siegel later showed
that the even sharper statement (sharper for large ) with the exponent
24/7 holds.

The subject of transcendental numbers has always fascinated mathe-
maticians, But until recently, very few examples of numbers interest-
ing in themselves were known which could be shown to be transcenden-
tal. (In Chapter III we shall discuss the transcendental character of
#, from which follows the impossibility of squaring the circle with ruler
and compass.) In a famous address to the international congress of
mathematicians at Paris in 1900, David Hilbert proposed thirty mathe-
matical problems which were easy to formulate, some of them in ele-
mentary and popular language, but none of which had been solved nor
seemed immediately accessible to the mathematical technique then
existing. These “Hilbert problems” stood as a challenge to the sub-
sequent period of mathematical development. Almost all have been
solved in the meantime, and often the solution meant definite progress
in mathematical insight and general methods One of the probiems
that seemed most hopeless was to prove that

2vVT

is a transcendental, or even that it is an irrational number. For almost
three decades there was not the slightest suggestion of a promising line
of attack on this problem. Finally Siegel and, independently, the young
Russian, A. Gelfond, discovered new methods for proving thA transcen-
‘dental character of many b i in h

the Hilbert number 2‘/_ and, more generally, any number a® where
a is an algebraic number £ 0 or 1 and b is any irrational algebraic
number.




SUPPLEMENT TO CHAPTER II
THE ALGEBRA OF SETS

1. General Theory

The concept of a class or set of objects is one of the most fundamental
in mathematics. A set is defined by any property or attribute ¥ which
each objeet considered must either possess or not possess; those objects
which possess the property form a corresponding set 4. Thus, if we
consider the integers, and the property ¥ is that of being a prime, the
corresponding set A4 is the set of all primes 2,3,5,7, -+ .

The mathematical study of sets is based on the fact that sets may be
combined by certain operations to form other sets, just as numbers
may be combined by addition and multiplication to form other numbers.
The study of operations on sets comprises the “algebra of sets,” which
has many formal similarities with, as well as differences from, the algebra
of numbers. The fact that algebraic methods can be applied to the
study of non-numerical objects like sets illustrates the great generality
of the pts of modern h i In recent years it has become
apparent that the algebra of sets illuminates many branches of mathe-
matics such as measure theory and the theory of probablhty it is also
helpful in the sy ic reduction of h ts to their
logical basis.

Tn what follows, I will denote a fixed set of objects of any nature,
called the universal set or umiverse of discourse, and 4, B, C,
will denote arbitrary subsets of 7. If I denotes the set of all integers, 4
may denote the set of all even integers, B the sot of all odd integers, C
the set of all primes, ete. Or I might denote the set of all points of a
fixed plane, A the set of all points within some circle in the plane, B the
set of all points within some other circle in the plane, ete. For con-
venience we include as “subsets” of I the set I itself and the “empty
set” O which contains no elements. The aim of this artificial extension
i8 to preserve the rule that to each property ¥ corresponds the subset
4 of all el of I 505! this property. In case ¥ is some uni-
versally valid property such as the one specified by the trivial equation
z = z, the corresponding subset of T will be I itself, since every object

108
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satisfies this equation, while if ¥ is some self-contradictory property
like z ¢ z, the corresponding subset will contain no objects, and may
be denoted by the symbol 0.

The set 4 is said to be a subset of the set B if there is no object in 4
that is not also in B.  When thia is the case we write

ACB or B DA,

For example, the set A of all integers that are multiples of 10 is a sub-
set of the set B of all integers that are multiples of 5, since every
multiple of 10 is also a multiple of 5. The statement 4 < B does not
exclude the possibility that B € A. If both relations hold, we say that
the sets 4 and B are equal, and write
A= B

For this to be true every element of 4 must be an element of B, and
conversely, so that the sets A and B contain exactly the same elements.

The relation 4 C B has many similarities with the order relation
a < b between real numbers. In particular, it is true that

1) ACA.

2) fACBand BT A4,then4 = B,

3) HACBand BCC,thend CC.
For this reason we also call the relation 4 < B an “order relation.”
Its chief difference from the relation @ < b for numbers is that, while
for every pair of numbers a and b at least one of the relations ¢ < b or
b < a always holds, this is not true for sets. For example, if A denotes
the set consisting of the integers 1, 2, 3,

4 = 11,23},
and B the set consisting of the integers 2, 3, 4,
B =1{2,3,4},

then neither A C B nor B C A. For this reason, the relation A C B
is said to determine a partial ordering among sets, whereas the rela-
tion & < b determines a complete ordering among numbers.

In passing, we may remark that from the definition of the relation
A <& B it follows that

4) O C 4 for any set 4, and,
5 AcCl,
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where A is any subset of the universe of discourse I. The relation
4) may seem somewha! doxi but it is in ag t with & strict
interpretation of the definition of the sign €. For the statement 0 C 4
could be false only if the empty set O contained an object not in 4,
and since the empty set contains no objects at all, this is impossible no
matter what the set 4.

We shall now define two operations on sets which have many of the
algebraic properties of ordinary addition and multiplication of numbers,
though they are conceptually quite distinct from those operations. To
this end, let A and B be any two sets. By the “union” or “logica)
sum” of A and B we mean the set which consists of all the objects
which are in either 4 or B (including any that may be in both). This
set we denote by the symbol 4 + B. By the “intersection” or “logical
product” of 4 and B we mean the set consisting only of those clements
which are in both 4 and B. This set we denote by the symbal 4-B or
simply AB. To illustrate these operations, we may again choose as
A and B the sets

A= {1,2,3}, B = {2,3,4}.
Then A+ B=11,234}), AB= (23}
Among the important algebraic properties of the operations A + B
and AB we list the following. They should be verified by the reader
on the basis of the definition of these operations:

6) A+B=B+4 7) AB = B4
8 A+ (B+O)=(A+B)+C 9) A(BC) = (4B)C
0)A+4=4 1) 44 = A

12) A(B+C) = (4B + AC) 13) A+ (BC) = (A + B)(A +C)
MyA+0=4 15) Al =4

16) A+ 1=1 17) A0 = 0

18) the relation 4 < B is equivalent to either of the two relations
A+ B =B, AB = A.

The verification of these laws is & matter of el ¢ logie. For
example, 10) states that the set consisting of t* ity which are
either in 4 or in 4 is pr Iy the set 4, whi < e that the set
consisting of those objects which are in A4 and awo i either B or € is
the same as the set consisting of those objects which are either in both
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A and B or in both A and C. The logical reason.. ; involved in this
and other arguments may be illustrated by representing the sets 4, B, ¢
a3 areas in & plane, provided that one is careful to provide for all the
possibilities of the sets involved having elements distinct from and in
eommon with each other.

Fig. 26. Union and inte

The reader will have observed that th_ _.ws 6, 7, 8, 9, and 12 are
identical with the familiar commutative, associative, and distributive
laws of algebra. It follows that all rules of the ordinary algebra of

bers which are of the ive, associative, and
distributive laws are also valid in the algebra of sets. Thelaws 10,11,
and 13, however, have no numerical analogs, and give the algebra of
sets a simpler structure than the algebra of numbers. For example,
the binomial theorem of ordinary algebra is replaced in the algebra of
sets by the equality

(A+B=@+B)-A+B) - A+B)=Ad+B

which is a consoquence of 11. Laws 14, 15, and 17 indicate that the
properties of O and I with respect to union and intersection of sets are
largely similar to the properties of the numbers 0 and 1 with respect to
¢ linary addition and multiplication. ILaw 16 has no analog in the
algebra of numbers.

1t remains to define one further operation in the algebra of sets. Let
A be any subset of the universal set . Then by the complement of A
in I we mean the set which consists of all the objects in 7 which are not
in 4. This set we denote by the symbol A’.  Thus if I is the set of all
natural numbers and 4 the set of primes, A’ consists of 1 and the compos-
ites. The operation A’, which has ro exact analog in the algebra of
numbers, possesses the following properties:
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19) A+ 4’ =1 20) Ad' =0

21 O =1 2y I'=0

2B) A" =4

24) The relation 4 € B is equivalent to the relation B’ < A’,
25) (4 + B)Y = A'B’ 26) (AB) = A"+ B'.

Again we shall leave the verification of these laws to the reader.
The laws 1 to 26 form the basis of the ajgebra of sets. They possess
the remarkable property of “duality,” in the following sense:
If in any one of the laws } to 26 the symbols
< and ol
O aend 1

+ and

are everywhere interchanged (insofar as they appear), then the result is

again one of these latos.
¥or example, the law 6 becomes 7, 12 becomes 13, 17 becomes 16, etc.
It follows that fo any theorem which can be proved on the basis of the laws
1 to 26 there corresponds another, “‘dual” theorem, cbtained by making
the interchanges above. For, since the proof of any theorem will consist
of the suceessive application at each step of certain of the laws 1 to 26,
the application at each step of the dual law will provide a proof of
the dual theorem. (For a similar duality in geometry, see Chapt. IV}

2. Application to Mathematical Logic

The verification of the laws of the algebra of sets rested on the analysis
of the logica! meaning of the relation A & B and the operations 4 + B,
AB, and 4’.  We can now reverse this process and use the laws 1 to 26
r8 the basis for an “slgebra of logic.” More precisely, that part of
logic which concerns sets, or what is equivalent, properties or atiribules
of objects, may be reduced to a formal algebraic system based on the
laws 1 to 26. The logieal “universe of discourse” defines the set I;
each property or attribute % of objects defines the sel 4 consisting of all
objects in T which possess th “ribute.  The rules for translating the

usual Jogical terminology in anguage of sets may be illustrated
by the following examples:
“Fither A or B” A+ B

“Both 4 and B” AB
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“Not A" A
“Neither 4 nor B {A + BY, or equivalently, A'B’
“Not both A and B” (ABY, or equivalently, 4’ + B’
“All 4 are B”or "[f Athen B"or“4 A CB
implies B”
“Some 4 are B AB # 0
“No A are B” AB =0
“Some 4 are not B” AB' # 0
“There are no 4” A =0

In terms of the algebra of sets, the syllogism “Barbara,” which states:
“If all A are B, and all B are C, then all A are C,”” becomes simply

3) IfA CBand BC Cthend CC.

Likewise, the “law of contradiction,” which states: “An object cannot
both possess an attribute and not possess it,” becomes

20) A4’ =0,

while the “law of excluded middle” whichs “An object must either
possess 8 given attribute or not possess it -vomes

19) A+ 4 =1

Thus the part of logic which is expressible in terms of the symbols C,
<4, +, and ' can be treated as a formal algebraic system, subject to the
laws 1 to 26. This fusion of the logical analysis of mathematics with
the mathematical analysis of logic has resulited in the creation of a new
discipline, mathematical logic, which is now in the proeess of vigorous
development.

From the point of view of axiomatics, it is a remarkable fact that the
statements 1 to 26, together with all other theorems of the algebra of
sets, can be deduced from the following three equations:

A+B=B+4
27) A+B)+C=4+B+C0)

4"+ BY + (A" + BY = A.
It follows that the algebra of sets can be constructed as a purely dedue-
tive theory like Euclidean geometry on the basis of these three state-
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meunts taken as axioms. When this is done, the operation AB and the
order relation 4 B are defined in terms of 4 + B and A”:

AB means the set (4’ + B'Y
4 C Bmeans that 4 + B = B,

A quite different example of a mathematical system satisfying all the
formal Jaws of the algebra of sets is provided by the eight numbers
1,2,8, 5,6, 10, 15, 30, where a + b is defined to mean the least common
multiple of a and b, ab the greatest common divisor of @ and b, a < b
the statement “a is a factor of b, and o’ the number 30/a. The
existence of such examples has led to the study of general algebraic
systems satisfying the laws 27). These systems are called “Boolean
algebras” in honor of George Boole (1815-1864), an English mathema-
tician and logician whose book, An Investigation of the Laws of Thought,
appeared in 1854.

3. An Application to the Theory of Probability

‘The algebra of sets greatly illuinates the theory of probability. To con-
sider only the simplest ease, let us imagine an experiment with & finite number
of possible outcomes, all of which are assumed to be “equally likely,” The experi-
ment may, for example, consist of drawing a card at random from & well-shuffled
deck of 52 cards. I the set of possible outcomes of the experiment is denated by
I, and if 4 denotes any subset of , then the probability that the outcome of the
experiment will belong to the subset 4 is defined to be the ratio

pa) = number of elementa in 4

number of elementsin 7

1F we denotc the number of clements in any set 4 by the symbol a(d), then this
dofinition may be written in the form

n(4)

PN

In our example, if 4 denotes the subset of bearts, then n(4) = 13, n(I) = 52,

ay p(d) =

and p(4) = 3 = i

The mmepm of the algebra of sets enter into the calculation of probabilities
when the probabilities of certain sets are known and the probability of others are
required. For example, from a knowledge of p(4), p(B), and p(4B) we may
compute the probability of p(A4 + B):
2) p(4 + B) = p(d) + p(B) — p(dB).
The proof is simple. We bave

n(A + B) = n(4) + n(B) — n(4B),
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since the elements common to A and B, i.e. the elements in AB, will be counted
twice in the sum n(4) + n(B), and hence we must subtract n{AB) from this sum
in order to obtain the correet count for n(4 + B). Dividing each term of this
equation by n(l), we obtain equation (2).

A more interesting formuls ariscs when we consider three subsets, 4, B, C,
of 1. From (2) we have

p(A + B+ C) = pl(4 + B) + Cl = p(4 + B) + p(C) — pl(4 + B)C].
From (12) of the preceding section we know that (4 + B)C = AC + BC! Henco

Pl{A + BIC| = p(AC + BC) = p(AC) + p(BC) ~ p(4BC).
Substituting in the previous equation this value for p{(4 + B)C} and the value
of p(A + B) given by (2), we obtain the desired formula:
P+ B+ C) = p(d) + p(B)
+ p(C) ~ p{AB) — p(AC) — p(BC) + p(ABC),
As an example, let us consider the following experiment. The three digits
1, 2, 3 are written down in rendom order. What is the probability that at least
one digit will occupy its proper place? Let A denote the set of all arrancements
in which the digit 1 comes first, B the set of all arrangements in which  digit
2 comes second, and € the set of all arrangements in which the digit 3 come. third,
Then we wish to caleulate p(4 + B + C). It is clear that
p(A) =pB) =p(C) = = §;

for when one digit ocoupies its proper place there are two possible orders for the
remaining digits, out of a total of 3-2-1 = 6 possible arrangements of the three
digits. Moreover,

@)

P(4B) = p(4C) = p(BC) = }
and
P(ABC) = 3,

since there is only one way in which each of these cases may occur. It follows
from (3) that

PA+B+C)=33~30)+1
~it+i-
Erercise: Find a corresponding formula for p(4 + B + C + D) and apply it

to the case of four digits, The corresponding probability is § = 0.6250.
The general formula for the union of » subsots is

pldit At - +40 =2 pl4d) — 7,2 plAid)) + 2 pldid;da)

= 0.6666 -~

— ek p(Arda o AW,
where the symbols 2‘, ?, 2.7, n-,n.‘.'_,xstund for summation of the possible com~

binations of the sets 41, Az, «++ , Aa taken one, two, three, «-+, (n — 1) at a
time. This formula may be established by mathematical induetion iu procisely
the same way that we derived (3) from (2). From (4) it is easy to show that if
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the n digita 1,2, 3, -+, n are written down in random order, the probability that
at least one digit will occapy its proper place is
1 1 1 1
PSR S N S 0
® P TR I R

where the last term is taken with a plus or minus si n according as # is odd or
even. In particular, for n = 5 the probability is
1
41
We ghall see in Chapter VIII that us n tends to infinity the expreasion
1 1 1 1
Sramata T
tends to alimit, 1/e, whose value to five places of decifualn is ,36788. Since from
(6) pa = 1 = S, this shows that as » tends to infinity

P = 1/e = 63212,

Pl 119 .
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CHAPTER III

GEOMETRICAL CONSTRUCTIONS. THE ALGEBRA OF
NUMBER FIELDS

INTRODUCTION

Construction problems have always been a favorite subject in geom-
etry. With ruler and compass alone a great variety of constructions
may be performed, as the reader will remember from school: & line seg-
ment or an angle may be bisected, a line may be drawn from a point
perpendicular to a given line, a regular hexagon may be inscribed in a
circle, ete. In all these problems the ruler is used merely as a straight-
edge, an instrument for drawing a straight line but not for measuring
or marking off distances. The traditional restriction to ruler and com-
pass alone goes hack to antiquity, although the Greeks themselves did
not hesitate to use other instruments.

One of the most famous of the classical comstruction problems is
the so-called contact problem of Apollonius (cirea 200 B.C.) in which
three arbitrary circles in the plane are given and a fourth cirele tangent
to all three is required. In particular, it is permitted that one or more
of the given eircles have degenerated into a point or a straight line
{a “circle” with radius zero or “infinity,” respectively). ¥or example,
it may be required to construct a circle tangent to two given straight
lines and passing through a given point. While such special cases are
rather easily dealt with, the general problem is considerably more
difficult.

Of all construction problems, that of constructing with ruler and
compass a regular polygon of n sides has perhaps the greatest interest.
For certain values of n-—e.g. n = 3, 4, 5, 6~ the golution has been known
since antiquity, and forms an important part of school geometry. But
for the regular heptagon (n = 7) the construction has been proved
impossible. There are three other classical Greek problems for which
a solution has been sought in vain: to trisect an arbitrary given angle,
to double a given cube (i.e. to find the edge of a cube whose volume shall
be twice that of a cube with a given segment as its edge) and to square
the circle (i.e. to construet a square having the same area as a given

ur
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circle). In all these problems, ruler and compass are the only instru-
ments permitted.

Unsolved preblems of this sort gave rise to one of the most remarkable
and novel developments in mathematics, when, after centuries of futile
search for solutions, the suspicion grew that these problems might be
definitely unsolvable. Thus mathematicians were challenged to investi-
gate the question: How is it possible to prove that certain problems cannot
be solved?

In algebra, it was the problem of solving equations of degree 5 and
higher which led to this new way of thinking. During the sixteenth
century mathematicians had learned that algebraic equations of degree
3 or 4 could be solved by a process similar to the elementary method
for solving quadratic equations. All these methods have the following
characteristic in common: the solutions or “roots” of the equation can
be written as algebraic expressions obtained from the coefficients of the
equation by a sequence of operations, each of which is either a rational
operation—addition, subtraction, multiplication, or division--or the ex-
traction of a square root, cube root, or fourth root. One says that
algebraic equations up to the fourth degrce can be solved “by radicals”
(radix is the Latin word for root), Nothing seemed more natural
than to extend this procedure to equations of degree 5 and higher, by
using roots of higher order, All such attempts failed. Even distin-
guished b of the eigl h century deceived themselves
into thinking that they had found the solution. Tt was not until early
in the nineienth century that the Ftalian Ruffini (1765-1822) and the
Norwegian genius N. H. Abel (1802-1829) conceived the then revolu-
tionary idea of proving the impossibility of the solution of the general
algebraic equation of degree n by means of radicals. One must clearly
understand that the question is not whether any algebraic equation of
degree n possesses solutions. This fact was first proved by Gauss in
his doctoral thesis in 1799. So there is no doubt about the ezistence
of the roots of an equation, especially since these roots can be found by
suitable procedures to any degree of accuracy. The art of the nu-
merical solution of equations is, of course, very important and highly
developed. But the problem of Abel and Ruffini was quite different:
can the solution be effected by means of rational operations and radicals
alone? It was the desire to attain full clarity about this question that
inspired the magnificent development of modern algebra and group
theory started by Ruffini, Abel, and Galois (1811 1832).

The question of proving the impossibility of certain geometrical con-
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structions provides one of the simplest examples of this trend in algebra.
By the use of algebraic concepts we shall be able in this chapter to
prove the impossibility of trisecting the angle, construeting the regular
heptagon, or doubling the cube, by ruler and compass alone. (The
problem of squaring the circle is much more difficult to dispose of; see
p- 140.) Our point of departure will be not so much the negative question
of the impossibility of certain constructions, but rather the positive
question: How can all constructible problems be completely charae-
terized? After we have answered this question, it will be an easy
matter to show that the problems mentioned above do not fall into this
category.

At the age of Gauss in ij d the constructibility of
regular “p-gons” (polygons with p sides), where p is a prime number.
The construction was then known only for p = 3 and p = 5. Gauss
discovered that the regular p-gon is constructible if and only if p is a
prime “Fermat number,”

p=2"+1

The first Fermat numbers are 3, 5, 17, 257, 65537 (see p. 26). So
overwhelmed was young Gauss by his discovery that he at once gave
up his intention of becoming a philologist and resolved to devote his
life to mathematics and its applications. He always looked back on
this first of his great feats with particular pride. After his death, a
bronze statue of him was erected in Goettingen, and no more fitting
honor could be devised than to shape the pedestal in the form of a
regular 17-gon.

When dealing with a geometrical construction, one must never forget
that the problem is not that of drawing figures in practice with a certain
degree of accuracy, but of whether, by the use of straightedge and
compass alone, the solution can be found theoretically, supposing our
instruments to have perfect precision. What Gauss proved is that his
constructions could be performed in principle. His theory does not
concern the simplest way actually to perform them or the devices which
could be used to simplify and to cut down the number of necessary steps.
This is a question of much less theoretical importance. From a prac-
tical point of view, no such construction would give as satisfactory a
result as could he obtained by the use of a good protractor. Failure
properly to understand the theoretical character of the question of geo-
metrical construction and stubbornness in refusing to take cognizance
of well-established scientific facts are ible for the persk ce of
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an unending line of anzle-tnsectors and circle-squarers. Those among
them who are able to und y math ics might profit
by studying this chapter.

Once more it should be emphasized that in some ways our concept
of geometrical construction seems artificial. Ruler and compass are
certainly the simplest instruments for drawing, but the restriction to
these instruments is by no means inherent in geometry. As the Greek
mathematicians recognized long ago, certain problems—for example
that of doubling the cube—can be solved if, e.g., the use of a ruler in the
form of a right angle is permitted; it is just as easy to invent instruments
other than the compass by means of which one can draw ellipses, hyper-
bolas, and more complicated curves, and whose use enlarges considerably
the domain of constructible figures. In the next sections, however, we
shall adhere to the standard concept of geometrical constructions using
only ruler and compass.

PART I
IMPOSSIBILITY PROOFS AND ALGEBRA
§1. FUNDAMENTAL GEOMETRICAL CONSTRUCTIONS

1. Construction of Fields and Square Root Extraction

To shape our general ideas we shall begin by examining a few of the
classical constructions. The key to a more profound understanding
lies in translating the geometrical problems into the language of aigebra.
Any geometrical construction problem is of the following type: a certain
set of line segments, sav @, b, ¢, ---, is given, and one or more other
segments 7, y, - - - , are sought. It is always possible to formulate prob-
lems in this way, even when at first glance they have a quite different
aspect. The required segments may appear as sides of a triangle to be
constructed, as radii of circles, or as the rectangular codrdinates of
certain points (see e.g. p. 137). For simplicity we shall suppose that
only one segment z is required. The geometrical construction then
amounts to solving an algebraic problem: first we must find a relation-
ship {equation) between the required quantity = and the given quanti-
ties @, b, ¢, - -+ ; next we must find the unknown quantity z by solving
this equation, and finally we must determine whether this solution can
be obtained by algebraic processes that correspond to ruler and compass
constructions. It is the principle of analytic geometry, the quantita-
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tive characterization of geometrical objects by real numbers, based on
the introduction of the real number continuum, that provides the
foundation for the whole theory.

First we observe that some of the simplest algebraic operations corre-
spond to elementary geometrical constructions. If two segments are
given with lengths a and b (as measured by a given “unit” segment),
then it is very easy to construct a + b, @ — b, ra (where 7 is any rational
number), a/b, and ab.

To construct a + b (Fig. 27) we draw a straight line and on it mark
off with the compass the distances OA = a and AB = b. Then OB =
a 4+ b Similarly, for a — b we mark off 04 = a and AB = b, but
this time with AB in the opposite direction from OA. Then OB =
a — b. To construct 3a we simply add a + a + a; similarly we can

Fig. 20. Conatraction of a/b. Fig. 30. Construction of ab.

construct pa, where p is any integer.  We coustruct a/3 by the following
device (Fig. 28): we mark off 04 = a on one line, and draw any second
line through O.  On this line we mark off an arbitrary segment OC = ¢,
and construct OD = 3¢, We connect A and D, and draw a line through
€ parallel to AD, intersecting 04 at B. The triangles OBC and OAD
are similar; bence OB/a = OB/0A = OC/0OD = 1/3, and OB = o/3.
In the same way we can construct a/g, where ¢ is any integer. By
performing this operation on the segment pa, we can thus construct ra,
where r = p/q is any rational number.

To construet a/b (Fig. 29) we mark off OB = b and 04 = a on the
sides of any angle O, and on OB we mark off OD = 1. Through D we
draw a line parallel to AB meeting 04 in C. Then OC will bave the
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length a/b.  The construction of eb is shown in Figure 30, where ADisa
line parallel to BC through 4.

From these considerations it follows that the “rational” algebraic proc-
esses,—addition b i Itiplicati and division of known
quantities—can be performed by geometrical constructions. From any
given d by real bers a, b, ¢, -+, we can, by sue-
cessive application of these simple constructions, construet any quantity:
that is expressible in terms of a, b, ¢, + - - in a rational way, i.e. by re-
peated application of addition, subtraction, multiplication and division.
The totality of quantities that can be obtained in this way from
@, b, ¢, -+ constitute what is called a number field, a set of numbers
such that any rational operations applied to two or more members of
the set again yield & number of the set. We recall that the rational
numbers, the real numbers, and the complex numbers form such fields.
In the present case, the field is said to be generated by the given numbers
a, b, ¢ e

The decisive new construction which carries us beyond the field just
obtained is the extraction of a square root: if a segment a is given,
then /g can also be constructed by using
only ruler and compass. On a straight line we
mark off 04 = e and 4B = 1 (Fig. 31). We
draw a circle with the segment OB as its dia-
meter and construct the perpendicular to OB
through A, which meets the circle in . The
triangle OBC has a right angle at C, by the
theorem of elementary geometry which states that an angle inscribed
in a semicircle is a right angle. Hence, ZOCA = ZABC, the right
triangles 0AC and CAB are similar, and we have for z = 4C,

Fig. 3' Conatruction of va.

z :
=i F=a, z=/a.

LIk

2. Regular Polygons

Tet us now consider a few somewhat more elaborate eonstruction
problems. We begin with the regular decagon. Suppose that a regular
decagon is inscribed in a circle with radius 1 (Fig. 32), and call its
side z. Since z will subtend an angle of 36° at the center of the circle,
the other two angles of the large triangle will each be 72°, and hence
the dotted line which bisects angle 4 divides triangle O4B into two
isosceles triangles, each with equal sides of length z. The radius of the
circle is thus divided into two segments, » and 1 — z. Since OAB is
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similar to the smaller isosceles triangle, we have 1/z = z/(1 — z).
From this proportion we get the quadratic equation 2 +z — 1 = 0,
the solution of which is z = (/5 — 1)/2. (The other solution of the
equation is irrelevant, since it yields a negative z.) From this it is
clear that z can be constructed geometrically. H. “~g the length x, we
may now construct the regular decagon by marking off this length ten
times as a chord of the circle. The regular pentagon may now be
constructed by joining alternate vertices of the regular decagon.

Instead of construeting +/3 by the method of Figure 31 we can also obtain
it 28 the hypotenuse of a right triangle whose other sides have lengths | and 2.
We then obtain z by subtracting the unit length from /5 and bisecting the result.

The ratio OB:4B of the preceding problem has been called the
golden ratio, because the Greek mathematicians considered a reetangle

A,

Fig. 32 Regular decagon, Fig. 3. Regular hexagon.

whose two sides are in this ratio to be aesthetically the most pleasing.
Its value, incidentally, is about 1.62.

Of all the regular polygons the hexagon is simplest to construct. We
start with a circle of radius 7; the length of the side of a regular hexagon
inscribed in this circle will then be equal to 7. The hexagon itself can
be constructed by successively marking off from any point of the circle
chords of length r until all six vertices are obtained.

From the regular n-gon we can obtain the regular 2n-gon by bisecting
the are subtended on the circumscribed circle by each edge of the n-gon,
using the additional points thus found as well as the original vertices for
the required 2n-gon,  Starting with the diameter of a cirele (a “2-gon”’),
we can therefore construct the 4, 8, 16, +++ , 2"gon. Similarly, we can
obtain the 12-, 24, 48-gon, ete. from the hexagon, and the 20-, 40-gon,
ete. from the decagon.
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1f s, denotes the length of the side of the regutar n-gots inseribed in the unit
circle (circle with radius 1), then the side of the 2n-gon is of length
o= V218

This may be proved as follows: In Figure 34 s, it equal to DE = 2DC, 810 equal
to DB, and AB equal to 2. The ares of the right triangle ABD is given by
4BD-AD and by §4B-CD. Since AD = /A = DB, we find, by substituting
AB w2, BD = 831, CD = }s,, and by equating the two expressions for the area,

= nV/E -, or o 8 (4~ 53).

Bolving this quadratic equation for z = s;, and observing that z must be less
than 2, one easily finds the formula given above.

D

Fig. M.

From this formula and the fact that s, (the side of the aquare) is equal to /3
it follows that

w=V2_+/2, -..-\/é‘\/7+\/§,
’“=V3"‘/2+\/2+\/i,m4
As 8 general formula we obtain, for n > 2,

i Viivi o

with n — 1 nested square roots. The circumference of the 2"-gon in the circle
is 2"s;m . As n tends to infinity, the 2%-gon tends to the circle. Hence 27sp;
approaches the length of the circumference of the unit circle, which is by defini-
tion 2z, Thus we obtain, by substituting m for n — 1 and cancelling a factor 2,
the limiting formula for

TV NV okt~ r m— w,
NEERALALS AL AL

m 8quare roots
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Eeercise: Since 27 ~+ o, prove
T

n square roots.

a consequence that

SN2 o 2 a s

The results obtained thus far exhibit the following characteristic

feature: The sides of the 2"-gon, the 5.2"-gon, and the 3-2"-gon, can all

- be found entirely by the processes of addition, subtraction, muliiplication,
division, and the extraction of square roots.

*3. Apoiionius’ Problem

Another construction problem that becomes quite simple from the
algebraic standpoint is the famous contact problem of Apollonius already
mentioned. In the present context it is unnecessary for us to find a
particularly elegant construction. What matters here is that in prin-
ciple the problem can be solved by straightedge and compass alone.
We shall give a brief indication of the proof, leaving the question of 8
more elegant method of construction to page 161.

Let the centers of the three given circles have cobrdinates (x5, 1),
{2z, ¥2) and (23 , ¥+), respectively, with radii»,, ra, and rs. Denote the
center and radius of the required circle by (z, ¥) and r. Then the condi-
tion that the required circle be tangent to the three given circles is
obtained by observing that the distance between the centers of two
tangent circles is equal to the sum or difference of the radii, according
as the circles are tangent externally or internally. This yields the
equations

) (=) + @G-~ rxn) =0
@ -z + @G-~ xn) =0
(&) @=a)+ Y-y =) =0

or

(te) &+~ —fm— Ity —r =0,

ete. The plus or minus sign is to be chosen in  ch of these equations
according as the circles are to be externally or internally tangent. (See
Fig. 35.) Eguations (1), (2), (3) are three quadratic equations in three
unknowns z, y, 7 with the property that the second degree terms are
the same in each equation, as is seen from the expanded form (Ia).
Hence, by subtracting (2) from (1), we get a linear equation in 2, y, 72
“) ar + by + ¢or = d,

where a = 2(z; — z1), ete. Similarly, by subtracting (3) from (1), we
get another linear equation,

(5) 'z + by 4 o = d.




126 GEOMETRICAL CONSTRUCTIONS [y

Solving (4) and (5) for z and y in terms of 7 and then substituting in (1)
we get a quadratic equation in r, which can be solved by rational opera-
tions and the extraction of a square root (see p. 91). There will in
general be two solutions of this equation, of which only one will be
positive.  After finding r from this equation we obtain z and y from the
two linear equations (4) and (5). The circle with center {z, ) and
radius r will be tangent to the three given circles. In the whole process
we have used only rational operations and square root extractions. It
follows that r, z, and y can be constructed by ruler and compass alone.

o2
S

Fig. 36. Apollonius circles.

There will in general be eight solutions of the problem of Apolionius,
corresponding to the 2.2.2 = § possible combinations of + and — signs
in equations (1), (2), and (3). These choices correspond to the condi-
tions that the desired circles be externally or internally tangent to each
of the three given circles. It may happen that our algebraic procedure
does not actually yield real values for @, ¥, and r. This will be the
ecase, for example, if the three given eircles are concentric, se that no
solution to the geometrical problem exists. Likewise, we must expect
possible “degenerations” of the solution, as in the case when the three
given circles deger '~ into three points on a line. Then the Apol-
lonius circle dege: nto this line. We shall not discuss these
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possibilities in detail; a reader with some algebraic experience will be
able to complete the analysis.

*§2. CONSTRUCTIBLE NUMBERS AND NUMBER FIELDS
1. General Theory

oo

Qur previous d the general braic background
of geometrical constructions. Every ruler and compass construction
consists of a sequence of steps, each of which is one of the following:
1) connecting two points by a straight line, 2) finding the point of
intersection of two lines, ) drawing a circle with a ~iven radius about
a point, 4) finding the points of intersection of a circle with another
circle or with a line, An element (point, line, or cirele) is considered to
be known if it was given at the outset or if it has been constructed in
some previous step. For a theoretical analysis we may refer the whole
construction to a codrdinate system z, y (see p. 73). The given ele-
ments will then be represented by points or segments in the z, y plane.
1f only one segment is given at the outset, we may take this as the unit
length, which fixes the point z = 1, ¥ = 0. Sometimes there appear
“arbitrary” elements: arbitrary lines are drawn, arbitrary points or radii
are chosen. (An example of such an arbitrary element appears in
constructing the midpoint of a segment; we draw two circles of equal
but arbitrary radius from each endpoint of the segment, and join their
intersections.) In such cases we may choose the element to be rational;
i.e. arbitrary points may be chosen with rational coordinates x, y, arbi-
trary lines ax + by + ¢ = O with rational coefficients a, b, ¢, arbitrary
circles with centers having rational coordinates and with rational radii.
We shall make such a choice of rational arbitrary elements throughout;
if the elements are indeed arbitrary this restriction cannot affect the
result of a construction.

For the sake of simplicity, we shall assume in the following discussion
that only one clement, the unit length 1, is given at the ontset. Then
according to §1 we can construct by ruler and compass all numbers
that can be obtained from unity by the rational processes of addition,
subtraction, multiplication and di n, i.c. all the rational numbers
r/s, where 7 and s are integers. The system of rational numbers is
“closed” with respect to the rational operations; that is, the sum, differ-
ence, product, or quotient of any two rational numbers--excluding divi-
sion by 0, as always--is again a rational number. Any set of numbers
possessing this property of closure with respect to the four rational
operations is called a number field.

]
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Ezercise: Show that every field contains all the rational numbers at least.
{(Hint: ¥ o 0 is 2 number in the field F, then a/a = 1 belongs to F, and from 1
we can obtain any rational number by rational operations.)

Starting from the unit, we can thus construct the whole rational
number field and hence all the rational points (i.e. points with both
cobrdinates rational) in the z, y plane. We can reach new, irrational,
numbers by using the compass to construct e.g. the number 4/2" which,
as we know from Chapter II, §2, is not in the rational field. Having
constructed 4/2 we may then, by the “rational” constructions of §1,
find all numbers of the form
1) a+ b2,
where a, b are rational, and therefore are themselves constructible. We
may likewise construct all numbers of the form

a4 5/2 s
— or @+ bv2)(e + dv/?2,
ooy ¢ V(e + dv/2),
where a, b, ¢, d are rational. These numbers, however, may always be
written in the form (1). For we have
a+bv2 _a+bVv2 ¢~ dv32
c+dV2 c4+dV2 c—dV32
ac — d | be — ad
= s tapVE=r+av?,
where p, g are rational, (The denominator ¢* ~ 2d* cannot be zero,
for if ¢ ~ 24* = 0, then /3 = ¢/d, contrary to the fact that 4/2 is
irrational) Likewise
(@ + bv/2)(c + dv/Z) = (ac + 2bd) + (b + ad)n/3 = r + s3/3,
where r, s are rational. Hence all that we reach by the construction
of 4/2 is the set of numbers of the form (1), with arbitrary rational a, b.
Ezercises: Fromp = 1 + /2, ¢ = 2~ /3, r = —8 4 /3 obtain the numbers

? 2, (p-pnd, PAL Pt
q,p+p.(p p)r,‘+1,,q+pr,,

in the form (1).

These numbers (1) again form a field, as the preceding discussion
shows. (That the sum and difference of two numbers of the form (1)
are also of the form (1) is obvious.) This field is larger than the rational
field, which is a part or subfield of it. But, of course, it is smaller
than the field of all real numbers. Let us call the rational field F, and
the new field of numbers of the form (1), F1. The constructibility of
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every number in the “extension field” F; has been established. We may
now extend the scope of our constructions, e.g. by taking & number
of Fy,say k = 1 4+ /2, and extracting the square root, thus obtaining
the constructible number o
Vi+ V2= VE,

and with it, according to §1, the field consisting of all the numbers
@ p+ vk
where now p and ¢ may be arbitrary numbers of ¥y, i.e. of the form
a + bv/Z, with @, b in Fo, Le. rational,

Ezercises: Represent

. 1 - - .1
- 2VE+Y TH L+ V)2 - VE, 2477
iy, 1 VYRGS LV vi(vity,
. = — =
1+VE (Vi)' -3 1+V2k

in the form (2).

All these numbers have been constructed on the assumption that only one
segment was given st the outset. If two segments are given we may select one
of them &s the unit length. In terms of this unit suppose that the length of the

other segment is @. Then we can construct the field G consisting of all numbers
of the form

ana® + Gt ek ha ot G

boa + bt That b
where the numbers do, ++ , n and bo, «- , by are rationsl, and m snd n are
srbitrary positive integers,

Brercise: If two segments of lengths 1 and « are given, give actua! construc-
tions for L + a + o, (1 + a}/(1 — a), a®

Now let us assume more generally that we are able to construct all
the numbers of some number field F.  We shall show that the use of the
ruler alone will never lead us out of the field ¥. The equation of the
straight line through two points whose cotrdinates a, , b, and az, 7, are
in Fis (by = b)z + (& — @)y + (@bs ~ b)) = 0 (see p. 491); its
coefficients are rational expressions formed from numbers in F, and
therefore, by definition of & field, are themselves in F. Moreover,
if we have two lines, az + 8y — v = 0 and o'z + 8y — v’ = 0, with
coefficients in F, then the codrdinates of their point of intersection,

. .

found by solving these two simultaneous equations, are z = Zg, - a:i" ,
. ‘

y = Y% Since these are likewise numbers of F, it is clear that
8

the use of the ruler alone cannot take us beyond the confines of the
field F.
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Ezercises: The lines z + v/3y — 1 = 2z — y + 4/ = 0, have coefficients in
the field (1). Calculate the codrd of their point of i ion, and verify
that these have the form (1).—Join the points (1, v/2) and (4/2, 1 ~ 4/2) by a
line az + by -+ ¢ = 0, and verify that the coefficients are of the form (1).—Do
the same with respect to the field (2) for the lines V1 + v/3z + y/3y = 1,
(14 v/2)z = y=1— /1 + v/, and the points (v/8, — 1), (14 /3, V1 +v3),

respectively.

We can only break through the walls of F by using the compass,
For this purpose we select an element k of F which is such that v/k
is not in F. Then we can construct 4/% and therefore all the numbers
@ a+bvE,
where ¢ and b are rational, or even arbitrary elements of . The sum
and the difference of two numbers @ + b4/k and ¢ + d\/F%, their
product, (@ + by/F)(e + dvE) = (ac + kbd) + (ad + be)y/%, and
their quotient,

a+bvE _ (a+0VE)(c - dvE) _ac — kbd be — ad\/E

c+dvE &~ kd ‘c’—~kd’+c"kd" '
are again of the form p + ¢+/% with p and gin F. (The denominator
¢ — kd® cannot vanish unless ¢ and d are both zero ; for otherwise we
would have v/% = ¢/d, a number in F, contrary to the assumption
that v/Eis not in £.) Henee the set of numbers of the form @ + by/E
forms a field F’.  The field F” contains the original field F, for we may,
in particular, choose b = 0. F’ s called an extension field of F, and F
a subfield of F'.

As an example, let F be the field @ + b+/2 with rational q, b, and take
k = 4/2. Then the bers of the ion field F* are r d
by p + ¢v/2 where pand garein F, p = a + bv/2, ¢ = o’ + b'4/%
with rational a, b, o', ¥". Any number in F’ can be reduced to that
form; for example

R VE- 2 V22
VItV

W2+ V8E-V8 ~ t-vE

SR L V2 VAREVE (VD)
2-4V2 2-+2 42 4-2
T+ v2) - 1+ 1V V2

Ezercise: Let I be the field p + ¢v/2 + -

fn

here p and g are of the forw
2.

a + by/2. a, brational, Represent 2-'+—

-3V/2
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We have seen that if we start with any field F of constructible num-
bers containing the number %, then by use of the ruler and a single
application of the compass we can construct +/k and hence any number
of the form a + by/&, where a, b, are in F.

‘We now show, conversely, that by a single application of the compass

* we can obtain enly numbers of this form. TFor what the compass does

" in a construction is to define points (or their codrdinates) as points of
intersection of a circle with a straight line, or of two circles. A circle

_ with center £, 4 and radius r has the equation (z — §° + (y — )’ = 7;
hence, if £, #, r are in F, the equation of the cirele can be written in
the form

xz+yz+2ax+2ﬁy+'y=0,
with the coefficients «, 8, v in F. A straight line,
ar + by + ¢ =0,

joining any two points whose coordinates are in F, has coefficients ¢, b, ¢
in F, as we have seen on page 129. By eliminating y from these simulta-
neous equations, we obtain for the z-codrdinate of a point of inter-
seetion of the circle and line & quadratic equation of the form

A+ Bz +C =0,

with coefficients 4, B, C in F (explicitly: 4 = o* + ¥, B =
2(ac + b'a — abB), C = ¢’ — 2be8 + b'y). The solution is given by the
formula

B VB
24
which is of the form p + ¢+/%, with p, ¢, k¥ in F. A similar formula
holds for the y-coérdinate of a point of intersection,
Again, if we have two circles,
2+ g+ 2ar + 2y v =0,
24y 2+ 28+ =0,

then by subtracting the second equation from the first we obtain the
linear equation

2a ~ o)z + 28— B+ (v =) =0,

which may be solved with the equation of the first circle as before.
In either case, the construction yields the z- and y-coérdinates of either

< 3AC
z o
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one or two new points, and these new quantities are of the form
p + gk, with p, ¢ kin F. In particular, of course, v/F may itself
belong to ¥, e.g., when £ = 4. Then the construction does not yield
anything essentially new, and we remain in F. But in general this will
not be the case.

Ezercises: Consider the circle with radius 21/% about the origin, and the line
joining the points (1/2, 0), (13/%, 4/%). Find the field F” determined by the
cobrdinates of the poinis of intersection of the cirele and the fine. Do the same
with respect to the intersection of the given cirele with the circle with redius
+/2/2 snd center (0, 24/2).

Summarizing again: If certain quantities are given at the outset, then
we can construct with a straightedge alone all the quantities in the
field F generated by rational processes from the given gquantities.
Using the compass we can then extend the field ¥ of econstructible
quantities to a wider extension field by selecting any number k of ¥,
extracting the square root of k, and constructing the field #” consisting
of the numbers @ + b4/k, where a and b arein . Fis called a subfield
of F7; all quantities in F arc also contained in 7, since in the expression
a + bv/k we may choose b = 0. (It is assumed that /% is a new
number not lying in ¥, since otherwise the process of adjunction of
+/F would not lead to anything new, and ' would be identical with #.)
We have shown that any step in a geometrical construction (drawing
& line through two known points, drawing a circle with known center
and radius, or marking the intersection of two known lines or circles)
will either produce new quantities lying in the field already known to
consist of constructible numbers, or, by the construction of a square
root, will open up a new ion field of construetible

The totality of all constructible numbers can now be described with
precision. We start with & given field Fy , defined by whatever quanti-
ties are given at the outset, e.g. the field of rational numbers if only a
single segment, chosen as the unit, is given, Next, by the adjunc-
tion of v/ks , where keis in Fy | but \/ko is not, we construct an extension
field F, of constructible numbers, ing of all numbers of the form
a0 + bev/ky, where ao and be may be any numbers of Fy. Then £y,
a new extension field of Fy, is defined hy the numbers @ + by/Fr,
where a, and by are any numbers of £, and 4 is some number of ¥y
whose square root does not lie in Fy. Repeating this procedure, we
shall reach a field F\, after n adjunctions of square roots. Construcithle
numbers are those and only those which can be reached by such a sequence of
extension fields; that is, which lie in a field ¥u of the type described. The
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size of the number n of necessary extensions does not matter; in & way
it measures the degree of complexity of the problem.

The following example may illustrate the process. We want to reach
the number

Ve+ VNVt it vats
Let Fg denote the rational field. Putting ko = 2, we obtain the field ¥y,
which contains the number 1 + /2. We now take ky = 1 + /2
end ks = 3. As a matter of fact, 3 is in the original field Fo, and
& fortiori in the field Fy, so that it is perfectly permissible to take
bs = 3. We then take ky = V1 -+ +/2 + /3, and finally ke =

V\/l + /2 + /3 4+ 5. The field Fy thus constructed contains the
desired number, for /6 is also in Fy , since v/2 and /3, and therefore
their product, are in Fy and therefore also in Fy .

Exercites: Verify that, starting with the rational field, the side of the regutar
2n.gon (see p.124) is & constructible number, with n = m — 1. Determine the
sequence of extension fields. Do the same for the numbers

Vit VI+~3+ 5
Ve AR+ VI Ve

2. All Constructible Numbers are Algebraic

If the initial fieid Fs is the rational field generated by a single segment, then
all constructible numbers will be algebraic. (For the definition of algebraie
numbers see p. 103). The numbers of the field F; are roots of quadratic equa-
tions, those of Fy are roots of fourth degree equations, and, in general, the num-
bers of Fa are roots of equations of degree 2%, with rationsl coefficients. To show
this for a field Fy we may firat consider a8 an example s = V24 /3 & v3. We
have (z — v2)? = 3+ V2,21 + 2~ 2Viz =84+ V2, or 2~ 1 = VE(2z + 1),
& quadratic equation with coefficients in a field £, . By squaring, we finally
obtain

(2t ~ 1)% = 202z + 1,
which is an equation of the fourth degree with rational coefficients.
In general, any number in a field ¥4 has the form
@ z=p+ oV,

where p, g, w sre in a field F1, and hence have the form p = a + bv/& g =
¢+ dv/a, w = e+ f\/3 where 4, b, ¢, d, ¢, f, s sre rational, From (4) we have

2t 2pz + Pt = Pw,
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where all the coefficients are in a field F: , generated by v/5. Hence this equa-
tion may be rewritten in the form
2+ uz + v = Va(rz + 1),

where 7, s, ¢, u, v are rational. By squaring both sides we obtain an equation
of the fourth degree
®) (2 + uz + )t = s(rz + O)F
with rational coefficients, as stated.

F:em 1) Find the equations with rational coefficients for 8) z =
bz =24 V302 =1/\B+ Vi

2) )-md by a similar method equations of the eighth ¢ rree fur‘ a) =
V2EVERVE D = VI VI VEi Q) 2 = 4 VEF VIV

To prove the theorem in general for z in a field Fy with arbitrary &, we show
by the procedure used above that z satisfies a quadratic equation with coeffi-
cients in a fild Fiy . Repeating the procedure, we ind that # satisfies an equa-
tion of degree 2? = 4 with coellicients in a field Fi_s, ete.

Exercise: Complete the general proof by using mathemat ual induction to
show that z satisfies an equation of degree 2* with coefficients in & field Fy.t,
0 < 1< k. This statement for I = k is the desired theorem.

*§3. THE UNSOLVABILITY OF THE THREE GREEK PROBLEMS
1. Doubling the Cube

Now we are well prepared to investigate the old problems of trisecting
the angle, doubling the cube, and constructing the regular heptagon.
We consider first the problem of doubling the cube. 1f the given eube
has an edge of unit length, its volume will be the cubic unit; it is required
that we find the edge z of a cube with twice this volume. The required
edge z will therefore satisly the simple eubic equation

1) -2 =

Our proof that this number z eannot be construeted by ruler and compass
alone is indirect.  We assume tentatively that a construction is possible.
According to the preceding discussion this means that z lies in some
field Fy obtained, as above, from the rational field by successive exten-
sions through adjunction of square roots. As we shall show, this
assumption leads to an absurd consequence.

We already know that z cannot lie in the rational field Fy , for v/2
is an irrational number (see Exercise 1, p. 60). Hence z can only
lie in some extension field Fx, where & is a positive integer.  We may
as well assume that & is the least positive integer such that z lies in
some Fy. It follows that = can be written in the form

=p+ gV
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where p, g, and w belong to some Fi;, but 4/ does not. Now, by s
simple but important type of algebraic reasoning, we shall show that if
z = p + ¢gv/w is a solution of the cubic equation (1), then y =
2 — g/t is also a solution. Since z is in the field Fy, z* and 2° ~ 2
are slso in Fi, and we have

2 ~ 2= a+ bV,
where a and b are in Py
a =9+ 3pgw — 2,b

then a substitution of —g for g in the;
that

expressions for @ and b shows

) ¥ —2=a- bV
Now z was supposed to be a root of 2’ — 2 = 0, hence
6] o+ by = 0.

This implies—and here is the key to the argument—that a and b must
both be zero. If b were not zero, we would infer from (3) that /% =
—a/b.  But then v/w would be a number of the field Fi; in which a
and b lie, contrary to our assumption. Hence & = 0, and it follows
immediately from (3) that e = 0 also.

Now that we have shown that @ = b = 0, we immediately infer
from (2') thaty = p — ¢+/w is also & solution of the cubic equation (1),
since y° —~ 2 is equal to zero. Furthermore, y 5 z, ie. 2 — y # 0;
for, z ~ y = 24/ can only venish if ¢ = 0, and if this were so then
z = p would Hie in Fiq, contrary to our assumption.

We have therefore shown that, if z = p + gv/w is a root of the
cubic equation (1), then y = p ~ g+/% is a different root of this equa-
tion. This leads immediately to a contradiction. For there is only
one real number z which is & cube root of 2, the other cube roots of 2
being imaginary (see p. 98); y = p — gv/w is obviously real, since
P, ¢, and /% were real.

Thus our basic assumption has led to an absurdity, and hence is
proved to be wrong; & solution of (1) cannot lie in a field Fi, so that
doubling the cube by ruler and compass is impossible.

2. A Theorem on Cubic Equations

Our concluding algebraic argument was especially adapted to the par-
tieular problem at hand. 1f we want to dispose of the two other Greek
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problems, it is desirable to proceed on a more general basis. Al three
problems depend algebraically on cubic equations. It is a fundamental
fact concerning the cubic equation

@ ftal +betec=0

that, if 1, 22, z, are the three roots of this equation, then

&) s+ 2+ a4 = ~at

Let us consider any cubic ion (4) where the coeffici a, b, ¢ are

rational numbers, It may be that one of the roots of the equation is
rational; for example, the equation z* — 1 = 0 has the rational root 1,
while the two other roots, given by the quadratic equation 2® + z + 1 =
0, are necessarily imaginary. But we can easily prove the general theo-
rem: If a cubic equation with rational coefficients has no rational root, then
none of its roots is constructible starting from the rational field Fo .
Again we give the proof by an indirect method. Suppose T were a
constructible root of (4). Then z would lie in the last field F of some
chain of extension fields, Fy, Fy, -+ -, Fi, as above. We may assume
that k is the smallest integer such that a root of the cubic equation (4)
lies in an extension field Fi. Certainly k must be greater than zero,
since in the staterent of the theore' . it is assumed that no root z les
in the rational field Fo. Hence x can be written in the form
z=p+ eV,
where p, ¢, w are in the preceding field, Fy_; , but /% isnot. It follows,
exactly as for the special equation, 2* — 2 = 0, of the preceding article,
that another number of Fy,
y=p- eV,
will also be a root of the equation (4) As before, we see that g » 0
and hence z # y.
From (5) we know that the third root u of the equation (4) is given
byu = —a —z — y. Butsince z + y = 2p, this means that
u = —a— 2p,
1 The polynomial 22 + az® 4 bz + ¢ may be factored into the product

(z — z1)(z — Z2){z — =4), where T, , Ty, T:, aTe the three roots of the equation
@ (eee p. 101). Hence

Btat+bzdemd — (204 23+ 22t 4 (D% 2 + Tata)z ~ DZaky,
80 that, since the coefficient of each power of z must be the same on both sides,

=0 m o+ 2 F T, b= nm b Bt BT, O =TT
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where /% has disappeared, so that u is & number in the field Fy.s.
This contradicts the hypothesis that k is the smallest number such that
some Fy contains 2 root of (4). Hence the hypothesis is absurd, and
no root of (4) can lie in such a field Fx. The general theorem is proved.
On the basis of this theorem, a construction by ruler and compass alone
is proved to be impossible if the algebraic equivalent of the problem is
the solution of a cubic equation withno rationalroots. This equivalence
was at once obvious for the problem of doubling the cube, and will now
be established for the other two Greek problems.

3. Trisecting the Angle

We shall now prove that the trisection of the angle by ruler and
compass alone is in general impossible. Of course, there are angles, such
a8 90° and 180°, for which the trisection can be performed. What we
have to show is that the trisection cannot be effected by a procedure
valid for every angle. For the proof, it is quite sufficient to exhibit
only one angle that cannot be trisected, since a valid general method
would have to cover every single example. Hence the non-existence of
a general method will be proved if we can demonstrate, for example,
that the angle 60° cannot be trisected by ruler and compass alone,

We can obtain an algebraic equivalent of this problem in different
ways; the simplest is to consider an angle 8 asgiven by its cosine: cos 8 = g.
Then the problem is equivalent to that of finding the quantity z =
cos (6/3). By a simple trigonometrical formula (see p. 97), the cosine
of 8/3 is connected with that of by the equation

cos @ = g = 4 cos’ (6/3) — 3 cos (6/3).

In other words, the problem of trisecting the angle 8 with cos § = ¢
amounts to constructing a solution of the cubic equation

®) 42— 3~ g=0.

To show that this cannot in general he done, we take 8 = 60° so
that ¢ = cos 60° = }.  Equation (6) then becomes

@) 2~ 6z = ]

By virtue of the theorem proved in the preceding articls, we need
only show that this equation has no rational root. Letd = 22. Then
the equation becomes

(8) o~ 30 =1,
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If there were a rational number » = r/s satisfying this equation, where r
and s areintegers withouta common factor > 1, weshould haver® — 3s%
8. From this it follows that s = r(* ~ 3¢ is divisible by 7, whi
means that r and s have a common factor unless r = +1, Likewise,
s*is a factor of 7* = s*(s + 3»), which means that r and s have a common
factor unless s = 1. Since we assumed that r and s had no common
factor, we have shown that the only rational numbers which could
possibly satisfy equation (8) are +1 or —1. By substituting +1 and
~—1 for v in equation (8) we see that neither value satisfics it. Henee
(8), and consequently (7), has no rational root, and the impossibility of
trisecting the angle is proved.

The theorem that the general angle cannot be trisected with ruler and compass
alone ie true only when the ruler is regarded ns an instrument for drawing a
straight line through any two given points and nothing else. In our general

A 0
Fig. 38, Archimades’ trisaction of an sugla.

charscterization of constructible numbers the use of the ruler was always limited
to this operation only. By permitting other uses of the ruler the totality of
possible constructions may be greatly extended. The following method for tri-
secting the angle, found in the works of Archimedes, is a good example.

Let an arbitrary angle x be given, as in Fig. 36. Extend the base of the
angle to the left, and gwing a semicircle with O as center and arbitrary radius r.
Mark two points A end B on the edge of the ruler such that AB = r. Keeping
the point B on the semicircle, slide the ruler into the position where 4 lies on
the extended base of the angle x, while the edge of the ruler passes through the
intersection of the terminal side of the angle £ with the somicirele about 0. With
the ruler in this position draw - straight line, making an angle y with the ex-
tended base of the original angle .

Ezercise: Show that this construction actually yields y = /3.

4. The Regular Heptagon

We shall now consider the problem of finding the side x of a regular
heptagon inscribed in the unit circle. The simplest way to dispose of
this problem is by means of complex numbers (see Ch. II, §5). We
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know that the vertices of the heptagon are given by the roots of the
equation

O] 7 —1=0,

the cosrdinates 2, y of the vertices being considered as the real and
imuginary parts of complex numbers z = z + yi. One root of this
equation is z = I, and the others are the roots of the equation

(10) -1

Af~z +E+ A+t +1=0,
obtamed from (9) by factoring out z ~ 1 (see p. 99). Dividing (10)
by 2', we obtain the equation

(11) S 1Pt e =

By a simple algebraic transformation this may be written in the form
(12) e+ 1/2°~8@z+1/)+ @+ 1/~ 2+ e+ 1/2)+1=0.
Denoting the quantity z 4+ 1/z by y, we find from (12) that

(13) Y+ -2y -1=0
We know that z, the seventh root of unity, is given by
(14) z = cos¢ -+ {sin ¢,

where ¢ = 360°/7 is the angle subtended at the center of the circle by
the edge of the regular heptagon; likewise we know from Exercise 2,
page 97, that 1/2 = cos ¢ — isin¢, sothat y = z + 1/z = 2 cos ¢.
If we can construct y, we can <lso construct cos ¢, and conversely.
Hence, if we can prove that y is not constructible, we shall at the same
time show that z, and therefore the heptagon, is not constructible.
Thus, considering the theorem of Article 2, it remains merely to show
that the equation (13) has no rational roots. This, too, is proved
indirectly. Assume that (13) has a rational root /s, where r and s are
integers having no common factor. Then we have

(15) Pt =2~ = 0

whence it is seen as above that 7* has the factor s, and s the factor 7.
Since r and s have no commeon factor, each must be =1; therefore
y ean have ouly the possible values +1 and —1, if it is to be rational.
On substituting these numbers in the equation, we see that neither of
them satisfies it. Hence y, and therefore the edge of the regular hepta-
gon, is not constructible.
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5. Remarks on the Problem of Squaring the Circle

We have been able to dispose of the problems of doubling the cube,
trisecting the angle, and constructing the regular heptagon, by com-
paratively elementary methods. The problem of squaring the circle is
much more difficult and requires the technique of advanced mathe-
matical analysis. Since a circle with radius r has the area xr, the
problem of constructing a square with area equal to that of a given circle
whose radius is the unit length 1 amounts to the construction of a
segment of length +/7 as the edge of the required square. This seg-
ment will be constructible if and only if the number = is constructible.
In the light of our general characterization of constructible numbers,
we could show the impossibility of squaring the circle by showing that
the number 7 cannot be contained in any field Fi that can be reached
by the successive adjunction of square roots to the rational field Fo.
Since all the members of any such field are algebraic numbers, ie.
numbers that satisfy algebraic equations with integer coefficients, it
will be sufficient if the number = can be shown to be not algebraic, i.e.
to be transcendental (see p. 104).

The technique necessary for proving that = is a transcendental number
was created by Charles Hermite (1822-1905), who proved the number
eto be tr d 1. By a slight extension of Hermite’s method
¥. Lindemann succeeded (1882) in proving the transcendence of =, and
thus definitely settled the age-old question of squaring the circle. The
proof is within the reach of the student of advanced analysis, but is
beyond the scope of this book.

PART II
VARIOUS METHODS FOR PERFORMING CONSTRUCTIONS

§4. GEOMETRICAL TRANSFORMATIONS. INVERSION

1. General Remarks

In the second part of this chapter we shall disc stematic
way some general principles that may be applied to ruetion prob-
lems. Many of these problems ean be more clearly viewed from the
general standpoint of “geometrical transformations”; instead of study-
ing an individual construction, we shall consider simultaneously a whole
class of problems connected by certain processes of transformation.
The clarifying power of the concept of a class of geometrical transforma-
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tions is by no means restricted to construction problems, but affects
almost everything in geometry. In Chapters IV and V we shall deal
with this general aspect of geometrical transformations, Here we shall
study a particular type of transformation, the inversion of the plane
in a ecircle, which is & generalization of ordinary reflection in a straight
line.

By & transformation, or mapping, of the plane onto itself we mean 8
rule which assigns to every point P of the plane another point P/, called
the image of P under the transformai ; the point P is called the
antecedent of P'. A simple example of sucn a transformation is given
by the reflection of the plane in a given straight line L as in a mirror:
& point P on one side of L has as its image the point P’, on the other side
of L, and such that I, is the perpendicular bisector of the segment PP’
A transformation may leave certain points of the plane fixed; in the
case of a reflection this is true of the points on L.

Fig. 37. Roflection of a point in & lise, Fig. 38. Inversior ' poirt

Other examples of transformations are the rofations of the plan. w.ouv
a fixed point O, the parallel translations, which move every point a dis-
tance d in a given direction (such a transformation has no fixed points),
and, more generally, the rigid motions of the plane, which may be thought
of as compounded of rotations and paralle]l translations.

The particular class of transformations of interest to us now are the
inversions with respect to circles. (These are sometimes known as cir-
cular reflections, because to a certain approximation they represent the
relation between original and image in reflection by a circular mirror.)
In a fixed plane let € be a given circle with center O (called the center
of inversion) and radius 7. The image of a point P is defined to be the
point P’ lying on the line OP on the same side of O as P and such that

(1) OP-OP" = 7%

The points P and P’ are said to be inverse poinés with respect to C.
From this definition it follows that, if P’ is the inverse point of P,
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then P is the inverse of P’. An inversion interchanges the inside and
outside of the cixcle C, since for OP < r we ha ¢ OP’ > r, and for
OP > r, we have OP’ < r, The only points of the plane that remain
fixed under the inversion are the points on the circle C itself.

Rule (1) does not define an image for the center 0. It is clear that
if a moving point P approaches O, the image P’ will recede farther and
farther out in the plane. For this reason we sometimes say that O itself

ds to the point at infinity under the inversion. The Iness of
this terminology lies in the fact that it enables us to state that an inver-
sion sets up a correspondence between the points of the plane and their
images which is biunique without exception: each point of the plane has
one and only one image and is itself the image of one and only one
point. This property is shared by ali the transformations previously
considered.

Zal

L
¥ig. 80, Tnversion of & lins  in @ ciscle,

2. Properties of Inversion

The most important property of an inversion is that it transforms
straight lines and circles into straight lines and cireles. More pre-
cisely, we shall show that after an inversion

(a) a line through O becomes a line through O,

(b) a line not through O becomes a circle through 0,

(c) a circle through O becomes a line not through O,
) a circle not through O becomes a circle not through O.

Statement (a) is obvious, since from the definition of inversion any
point on the straight line has as image another point on the same line,
so that although the points on the line are interchanged, the line as a
whole is transformed into itself.

To prove (b), drep a per r from O to the straight
line L (Fig.39). Let A be the point where this perpendicular meets I,

Jieul
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and let A’ be the inverse point to A, Mark any point P on L, and let P’
be its inverse point. Since 0A'-O4 = OP'.0OP = 7%, it follows that
04’ _OP
OF ~ 04"

Hence the triangles OP'A’ and OAP are similar and angle OP'A’ ’s a
right angle. From elementary geometry it follows that P’ lies on the
circle K with diameter OA’, so that the inverse of L is this circle. This
proves (b). Statement (c) now follows from the fact that since the in-

verse of L is K, the inverse of K is L.

It remains to prove statement (d). Let K be any circle not passing
through O, with center M and radius k. To obtain its image, we draw
& line through O intersecting K at A and B,and then determine how the

Fig. 40. Taversion of a clrcle.

images A’, B' vary when the line through O intersects K in all possible
ways. Denote the distances O4, OB, O4’, OB, OM by a, b, o, ¥, m,
and let ¢ be the length of a tangent to K from 0. We have ag’ =
bb’ = 1%, by definition of inversion, and ab = £, by an elementary geo-
metrical property of the circle. If we divide the first relations by
the second, we get
/b =b/a ==,
where ¢’ is 2 constant that depends only upon r and ¢, and is the same
for all positions of 4 and B. Through 4’ we draw a lineparallel to BM
meeting OM Q. Let OQ = gand 4'Q = p. Then ¢/m = a'/b =
#/k, or
g =ma'/b= me’, po=ka'/b= k'

‘This means that for all positions of A and B, Q will always be the same
point on OM, and the distance 4’Q will always have the same value.



144 GEOMETRICAL CONSTRUCTIONS firg

Likewise B'Q = p, since a’/b = ¥’/a. Thus the images of all points
4, B on K are points whose distance from @ is always p, i.e. the image
of K is a circle. This proves (d).

3. Geometrical Construction of Inverse Points
The following theorem will be useful in Article 4 of this section: The
point P inverse to a given point P with respect to a circle C may be con-
structed geometrically by the use of the compass alone. We consider first
the case where the given point P is exterior to ¢. With OP as radius
and P as center we describe an arc interseeting C at the points B and S.
With these two points as centers we describe arcs with radius r which

R

s
Fig. 41. Taversion of an outaide point ln & circle.

intersect at O and at a point P’ on the line OP. In the isosceles triangles
ORP and ORP’,
%O0RP = X POR = %0P'R,
80 that these triangles are similar, and therefore
gg - gg, ie.OP.OP' = 1*
Henee P’ is the required inverse of P, which was to be constructed.

If the given point P lies inside C the same construetion and proof
bold, provided that the circle of radius OP about P interseets € in two
points. If not, we can reduce the construction of the inverse point P’
to the previous case by the following simple artifice.

First we observe that with the compass alone we can find a point ¢
on the line joining two given points 4, O and such that A0 = OC,
To do this, we draw a circle about O with radius 7 = 40, and mark off
on this circle, starting from A, the points P, Q, C such that AP =
PQ = QC = r. Then C is the desired point, as is seen from the fact
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that the triangles 40P, OPQ, OQC are equilateral, so that O4 and OC
form an angle of 180°, and OC = 0Q = AQ. By repeating this pro-
cedure, we can easily extend AQ any desired number of times. Inci-
dentally, since the length of the segment AQ is #/3, as the reader can
easily verify, we have at the same time constructed 4/3 from the unit
without using the straightedge.

Now we can find the inverse of any point P inside the circle . First
we find a point B on the line OP whose distance from O is an integral
multiple of OF and which lies outside C,

OR = n.0P.
We can do this by successively measuring off the distance OP with the
compass until we land outside C. Now we find the point R’ inverse
to R by the construction previously given. Then
7 = OR'-OR = OR'-(n-OP) = (r.OR').OP.
Therefore the point P’ for which OP’ = n.OR’ is the desired inverse.

o
Fig. 3. Doubling of & segment. Tig. 43. Tnversion of an inside. point 1n & cirele.

4. How to Bisect a Segment and Find the Center of a Circle with the
Compass Alone

Now that we have learned how to find the inverse of & given point by
using the compass alone, we can perform some interesting constructions.
For example, we consider the problem of finding the point midway
between two given points 4 and B by using the compass alone (no
straight lines may be drawn!). Here is the solution: Draw the cirele
with radius AB about B as center, and mark off three arcs with radius
AB, starting from 4. The f [ point C will be on the line 4B, with
AB = BC. Now draw the cir.le with radius AB and center 4, and
let € be the point inverse to € with respect to this circle. Then

AC".AC = AB®
AC'.24B = AB
24C" = 4B

Hence C’ is the desired midpoint
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Another compass construction using inverse points is that of finding
the center of a cirele whose circumference only is given, the center being
unknown. We choose any point P on the circumference and about it
draw & circle intersecting the given circle in the points R and 8. With
these as centers we draw arcs with the radii RP = SP, intersecting
at the point Q. A comparison with Figure 41 shows that the unknown
center, ', is inverse to @ with respect to the circle about P, so that @'
2an be constructed by compass alone.

gon

¥ig. 4. Finding the midpoiat of 2 segment. Kig. 45. Finding the center of & circle.

§5. CONSTRUCTIONS WITH OTHER TOOLS. MASCHERON!
CONSTRUCTIONS WITH COMPASS ALONE

*1. A Ciassical Construction for Doubling the Cube

Until now we have cousidered only problems of geometrical construe-
tion that use the straightedge and compass alone. When other instru-
ments are allowed the variety of possible construetions naturally be-
comes more extensive. For example, the Greeks solved the problem of
doubling the cube in the following way. Consider (as in Fig. 46) a rigid
right angle MZN and a movable right-angled cross B, VW, PQ. Two
additional edges RS and T'U are allowed to slide perpendicularly to the
arms of the right angle. On the cross let two fixed points £ and G be
chosen such that GB = « and BE = f have prescribed lengths. By
placing the cross so that the points E and & lie on NZ and MZ respec-
tively, and sliding the edges TU and RS, we can bring the entire appa-
ratus into a position where we have a rectangle ADEZ through whose
vertices 4, D, F pass the arms BW, BQ, BV of the cross. Such an
arrangement is always possible if f > a. We see at once that a:z =
x:y = y:f, whence, if f is set equal to Za in the apparatus, z* = 2d’.
Hence z will be the edge of a cube whose volume is double that of the
cube with edge a. This is what is required for doubling the cube.
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2. Restriction to the Use of the Compass Alone

‘While it is only natural that by permitting a greater variety of instru-
ments we can solve a large collection of construetion problems, one
might expect that more restrietions on the tools allowed would narrow
the class of possible constructions. Hence it was a very surprising dis-
covery, made by the Italian Mascheroni (1750-1800), that oll geometrical
constructions possible by i Ige and compass can bemade by th P
alone. Of course,one cannnt draw the straight line joining two points with-

v N
3 h
UAN
zZ
P
Fig. 46. An instromen for doubling the cubs.
out a straightedge, so that this fund tal construction is not really cov-

ered by the Mascheroni theory. Instead, one must think of a straight
iine as given by any two points on it, By using the compass alone, one
can find the point of intersection of two fines given in this way, and
likewise the intersections of & given circle with a straight line.

Perhaps the simplest example of a Mascheroni construction is the
doubling of a given segment AB. The solution was given on page 144,
On page 145 we bisected a straight segment. Now we shall solve the
problem of bisecting a given arc AB of a circle with given center 0. The
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construction is as follows: from 4 and B as centers, swing two arcs with
radius AO. From O lay off ares OP and 0Q equal to AB. Then swing
two arcs with PB and Q4 as radii and with P and @ as centers, inter-
secting at B. Finally, with OR as radius, deseribe an arc with either
P or Q ag center until it intersects AB; this point of intersection is the
required midpoint of the arc AB. The proof is left as an exercise for
the reader.

1t would be impossible to prove Mascheroni’s general theorem by
actually giving a construction by compass alone for every eonstruction
possible with ruler and compass, since the number of possible construc-
tions is not finite. But we may arrive at the same goal by proving

2
=
. /;\x
Pw

Fig. 4. Bisecting an arc with the compass.

that each of the following four fundamental constructions is possible
with compass alone:

1. To draw a circle with given eenter and radius.

2. To find the points of intersection of two circles.

3. To find the points of intersection of a straight line and a circle.

4. To find the points of intersection of two straight lines.

Any geometrical construction in the usual sense, ruler and compass per-
mitted, consists of a finite succession of these elementary constructions.
The first two of these are clearly possible with the compass alone, The
solutions of the more difficult problems 3 and 4 depend on the properties
of inversion developed in the preceding section.

Let us solve problem 3, that of finding the points of intersection of a
circle ' and a straight line given by the two points 4 and B. With
centers A and B and radii A0 and BO, respectively, draw two arcs,
intersecting again at . Now determine the point @ inverse to P with
respect to €, by the construction with compass alone given on p. 144,
Draw the cirele with center @ and radius QO (this circle must inter-
sect C'); the points of interseetion X and X7 of this circle with the given
circle € are the required points. To prove this we need only show that
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X and X’ are equidistant from O and P, since A and B are so by con-
struction. This follows from the fact that the inverse of @ is a point
whose distance from X and X’ is equal to the radius of C (p. 144).
Note that the circle through X, X’, and O is the inverse of the line 4B,
since this circle and the line AB intersect C at the same points.  (Points
on the circumference of & circle are their own inverses.)

The construction is invalid only if the line A B goes through the center
of C. But then the points of intersection can be found, by the con~
struction given on page 148, as the midpoints of arcs on C obtained
by swinging around B an arbitrary circle which intersects €' in By
and B; .

[

Fig. 48. Tnterseotion of circlo and lina not  Fig. 40. Intersection of cirele and line through center.
through center.

The method of determining the circle inverse to the line joining two
given points permits an immediate solution of problem 4.  Let the lines
be given by AB and A’B' (Fig. 50). Draw any cirele € in the plane,
and by the preceding method find the cireles inverse to AB and 4'B’.
These cireles intersect at O and at a point Y. The point X inverse
to Y is the required point of intersection, and can be constructed by
the process already used. That X is the required point is evident from
the fact that ¥ is the only point that is inverse to a point of both AB
and A’B’; hence the point X inverse to ¥ must lie on both ABand A'B".

With these two constructions we have completed the proof of the
equivalence between Mascheroni constructions using only the compass
and the conventional geometrical constructions with ruler and comp:
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We have taken no pains to provide elegant solutions for individual
problems, since our aim was rather to give some insight into the general
scope of the Mascheroni constructions. We shall, however, give as an
example the construction of the regular pentagon. More precisely, we
shall find five points on a circle which will be the vertices of a regular
inseribed pentagon,

Fig. $0. Intarsection of two lines.

Let A be any point on the given circle K. The side of a regular in-
scribed hexagon is equal to the radius of K. Hence we can find points
B, C, D on K such that AB = BC = €D = 60° (Fig. 51). With A

-

=

K

Fig. * Corutruction.of the regular pentagon.
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and D as centers and AC as radius we draw ares meeting at X. Then if O
is the center of K, an arc about 4 of radius OX will meet K at the
midpoint F of BU (see p. 148). Now with the radius of K we draw
arcs about F meeting K at G and H. Let ¥ be a point whose distance
from G and H is OX, and which is separated from X by 0. Then AY
will be equal to a side of the required pentagon, The proof is left as
an exercise for the reader. Note that only three different radii were
used in the construction.

In 1928 the Danish mathematician Hjelmslev found in a Copenhagen
bookstere a copy of a book, Euclides Danicus, published in 1672 by an
obscure author (G, Mohr. From the title one might infer that this
work was simply a version of, or & commentary on Euclid’s Elements.
But when Hjelmslev examined the book, he found to his surprise that
it contained essentially the Mascheroni problem and its complete solu-
tion, found long before Mascheroni.

Ezercises: The following is a d- eription of Mohr's constructions. Check
their validity, Why do they solve tne Mascheroni problem?

1) On a segment AB of length p erect a perpendicular segment BC, {(Hint:
Extend ‘¥ by a point D such that AB = BD. Draw arbitrary circles around
A ane o hus determine C')

2) Two. nents of length p and g with p > g are given somewhere in the
plane. Find a segment of the leng*h z = +/p% — ¢t by making use of 1).

3) From a given segment @ construct, the segment ay/3. (Hint: Observe that
(an/Z* = (a4/3)? ~ a%)

4) With given segr - ts pand ¢ findasegmentz = «/p7 % Hint: Usethe
relation z? = 2p* — (z ~ ¢».) Find other similar constructio. ..

5) Using the previous results, find segments of length p + ¢ and p — g if
segments of length p and ¢ are given somewhere in the plane.

6) Check and prove the following construction for the midpoint M of a given
segment AB of length a. On the extension of AB find €' and D such that
CA = AB = BD. Construct the isosceles triangle ECD with EC = ED = 2q, and
find M s the intersection of tae circles with diamcters EC and ED.

7) Find the orthogonal projection of a point A on a line BC.

8) Find z such that z1¢ = pig, if o, p, and ¢ are given segments.

9) Find z = ab, if @ and b are given segments.

Inspired by Mascheroni, Jacob Steiner (1796-1863) tried to single
out as a tool the straightedge instead of the compass. Of course, the
straightedge alone does not lead out of a given number field, and hence
cannot suffice for all geometrical constructions in the classical sense.
It is all the more remarkable that Steiner was able to restrict the use
of the compass to a single application. He proved that all constructions
in the plane which are possible with straightedge and compass are
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possible with the straightedge alone, provided that a single fixed circle
and its center aregiven. These construetions require projective meth-
ods and will be indicated later (see page 197).

* This circle and its center cannot be dispensed with. For example, if a circle,
but not its center, is given, it is impossible to construct the latter by the use of
the straightedge alone. To prove this we shall make use of a fact that will be
discussed later (p. 220): There exists a transformation of the plane juto itself
which has the following properties: (a) the given circle is fixed under the trans-
formation, (b) Any straight line is carried into a straight line. (¢) The center
of the circle ig carried into some other point. The mere existence of such a trans-
formation shows the i of g with the i alone the
centev of the given circle. For, whatever the construction might be, it would
consist in drawing a certain number of straight lines and finding their intersec-
tions with one another and with the given circle. Now if the whole figure, con-
sisting of the given circle together with all points and lines of the construction,
is subjected to the transformation whose existence we have assumed, the trans-
formed figure will satisly all the requirements of the construction, but will yield
as result a point other than the center of the given circle, Hence such a con-
struction is impossible.

3. Drawing with Mechanical Instruments.
Mechanical Curves. Cycloids

By devising mechanisms to draw curves other than the circle and the
straight line we may greatly enlarge the domain of constructible figures.
For example, if we have an instrument for drawing the hyperbolas
zy = k, and another for drawing parabolas y = az’ + bz + ¢, then
any problem leading to a cubic equation,

165 az' + bz + ez =k,

may be solved by construction, using only these instruments. ¥or if
we set

(2) =k y=a+bxte

then solving equation (1) amounts to solving the simultaneous equa-
tions (2) by eliminating y; i.e. the roots of (1) are the z-coérdinates of
the points of intersection of the hyperbola and parabola in (2). Thus
the solutions of (1) can be constructed if we have instruments with
which to draw the hyperbola and parabola of equations (2).

Since antiquity mathematicians have known that many interesting
curves can be defined and drawn by simple mechanical instruments.
Of these “mechanical curves” the cycloids are among the most remark-
able. Ptolemy (circa 200 A.I).) used them in a very ingenious way to
describe the movements of the vlanets in the heavens.
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¥

y= axt+brdo

Fig. 52. Graghical wotution of a cubié equation.

The simplest cycloid is the curve deseribed by a fixed point on the
circumference of a circle which rolls without slipping along a straight
line. TFigure 53 shows four positions of the point P on the rolling circle.
The general appearance of the cycloid is that of & series of arches resting
on the line.

Py -
-7 ~
[ = -
\/
{
3
Fig. 83, The cyeloid,

Variations of this curve may be obtained by choosing the point P
either inside the circle (as on a spoke of a wheel) or on an extension of
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its radius (as on the flange of a train wheel). Figure 54 illustrates these
two curves.

Fig. 84. Gonoral cycloids.

A further variation of the cycloid is obtained by allowing a circle to
roll, not along a straizht line, but on another circle. If the rolling
circle ¢ of radius » remains internally tangent to the larger circle ¢ of
radius E, the locus generated by a point fixed on the circumference of ¢
is called a hypocycloid,

Fig. 5. Threo-cusped hypocyclaid.

If the circle ¢ describes the whole circumference of C just once, the
point P will return to its original position only if the radius of € is an
integral multiple of that of c. Figure 55 shows the case where R = 3r.
More generally, if the radius of C is m/n times that of ¢, the hypocycloid
will close up after 7 circuits around €, and will consist of m arches.
An interesting special case occurs if R = 2r. Any point P of the inner
circle will then describe a diameter of the larger circle (Fig. 56). We
propose the proof of this fact as a problem for the reader.
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Still another type of cycloid car e generated by means of a rolling
circle remaining externally tangent to a fixed circle. Such a curve is
called an epicycloid.

Fig. 56. Straight motion by poinw o & tirels rolling in = circle of double radius.

*4, Linkages. Peaucellier's and Hart’s Inversors

We leave for the present the subject of cycloids (they will appear
again in an unexpected place) to consider other methods of generating
curves, The simplest mechanical instruments for traeing curves are the
linkages. A linkage consists of a set of rigid rods, connected in some
manner at movable joints, in such a way that the whole system has
just enough freedom to allow a point on it to describe a certain curve.
The compass is really a simple linkage, consisting in principle of a single
rod which is fastened at one point,

Linkages have long been used in machine construction. One of the
historically famous examples, the “Watt parallelogram,” was invented
by James Watt to solve the problem of linking the piston of his steam
engine to a point on the fiywheel in such a way that the rotation of the
flywheel would move the piston along a straight line. Watt's solution
was only approximate, and despite the efforts of many distinguished
mathematicians, the problem of constructing a linkage to move a point
precisely on a straight line remained unsolved. At one time, when
proofs for the impossibility of solutions to certain problems were attract-
ing wide attention, the conjecture was made that the construction of
such a linkage was impossible. It was a great surprise when, in 1864, a
French naval officer. Peaucellier, invented a simple linkage that solved
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the problem. With the introduction of efficient lubricants the technical
problem for steam engines had by then lost its significance,

Fig. 7. Reutilinear motion transformed into rotation,

The purpose of Peaucellier’s linkage is to convert circular into recti-
linear motion, It is based on the theory of inversion discussed in §4.
As shown in Figure 58, the linkage consists of seven rigid rods; two of
leng .« ¢, four of length s, and a seventh of arbitrary length. O and R
are two fixed points, placed so that OR = PR. The entire apparatus is
free to move, subject to the given conditions. We shall prove that,

Fig. 58. Pesucellior's transformation of rotation into true rectilinesr motion.

as P describes an arc about R with radius PR, Q describes a segment of a
straight line. Denoting the foot of the perpendicular from S to 0Q
by T', we observe that
OP.0Q = (0T — PT){OT + PT) = 01* — PT*
= (OT* + ST — (PT* + ST%)
= iz had 8’-




LINKAGES 157

The quantity £ — s is a constant which we call 7. Since OP.0Q = 1%,
P and @ are inverse points with respect to a cirele with radius r and
center 0. As P describes its circular path (which passes through 0),
@ describes the curve inverse to the circle. This curve must be a
straight line, for we have proved that the inverse of a circle passing
through O is a straight line. Thus the path of @ is a straight line,
drawn without using a straightedge.

Another linkage that solves the same problem is Hart's inversor.
This consists of five rods connected as in Figure 59. Here 4B = CD,

oo |

Fig. 60. Hart's inversor.

BC = AD. 0, P and @ are points fixed on the rods 48, 4D, CB,
respectively, such that AO/OB = AP/PD = CQ/QB = m/n. Points
O and 8 are fixed in the plane so that 08 = PS, while the rest of the
linkage is free to move. Evidently, AC is always parallel to BD.
Hence, 0, P and Q are collinear, and OF is parallel to AC. Draw 4F
and CF perpendicular to BD, We have

AC-BD = EF.BD = (ED + EB)(ED ~ EB) = ED" — BB,
But ED* + AE' = AD*, and EB* + AF® = AB'. Hence ED* — EB' =
AD' — AB’. Now
OP/BD = AO/AB=m/(m+n) and OQ/AC=O0B/AB=n/{m+n).
Thus

OP.0Q = [mn/im + n)'|BD-AC = [mn/(m + n)*{(AD* — ABY.
This quantity is the same for all possible positions of the linkage.
Therefore P and @ are inverse points with respect to some circle about O.

When the linkage is moved, P describes a circle about S which passes
through O, while its inverse @ describes a straight line.
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Other finkages can be constructed (at least in principie) which will
draw ellipses, hyperbolas, and indeed any curve given by an algebraic
equation f(z, ¥) = 0 of any degree.

§6. MORE ABOUT INVERSION AND ITS APPLICATIONS
1. Invariance of Angles. Families of Circles

Although inversion in a circle greatly changes the appearance of geo-
metrical figures, it is a remarkable fact that the new fizures continue
to possess many of the properties of the old. These are the properties
which are unchanged, “invariant,” under the transformation. As
we already know, inversion transforms cireles and straight lines into
circles and straight lines. We now add another important property:
The angle between two lines or curves is invariant under tnversion. By
this we mean that any two intersecting curves are transformed by an
inversion into two other curves which still intersect at the same angle.
By the angle between two curves we mean, of course, the angle between
their tangents.

The proof may be understood from Figure 60, which illustrates the
special case of a curve € intersecting a straight line OL at a point P.
The inverse ' of C meets OL in the inverse point P’, which, since OL

Fig. 60. Tavariance of sugles under inversion.
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is its own inverse, lies on OL. We shall show that the angle z, between
OL and the tangent to C at P is equal in magnitude to the corresponding
angle yo. To do this we choose a point 4 on the curve C near P, and
draw the secant 4P. The inverse of 4 is a point A’ which, being on
both the line 04 and the curve €/, must be at their intersection. We
draw the secant 4’P'. By the definition of inversion,
¥ = OP.OP' = 0A.04',
or

oP _ 04’

04 ~ OP"
i.e. the triangles OAP and OA’P’ are similar. Hence angle = is equal
to angle OA’P’, which we call y. Our final step consists in letting the
point A move along C and approach the point P. This causes the
secant line AP to revolve into the position of the tangent line to C at P,
while the angle z tends to ;. At the same time A’ will approach P/,
and A’P’ will revolve into the tangent at P'. The angle y approaches y, .
Since z is equal to y at every position of 4, we must have in the limit,

=Y.

Our proof is only partially completed, however, since we have con-
sidered only the case of & curve intersecting a line through O. The
general case of two curves C, C* forming an angle z at P is now easily
disposed of. For it is evident that the line OPP’ divides 2 into two
angles, each of which we know to be preserved by the inversion,

It should be noted that although inversion preserves the magnitude of angles,
it roverses their senae; i.¢. if a ray through P swoeeps out the angle zein & counter-
clockwise direction, its image will sweep out angle ys in a olockwise direction.

A particular consequence of the invariance of angle under inversion is
that two circles or lines that are orthogonal, i.e. that intersect at right
angles, remain orthogonal after an inversion, while two circles which
are tangent, i.e. intersect at the angle zero, remain tangent.

Let us consider the family of all circles that pass through the center
of inversion O and through another fixed point 4 of the plane. From §4,
Article 2, we know that this family of circles is transformed into a family
of straight lines that radiate from A4’, the image of A. The family of
circles orthogonal to the original family goes over into circles orthogonal
to the lines through A’, as shown in Figure 61. (The orthogonal cir-
cles are shown by broken lines.) The simple picture of the radiating
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straight lines appears to be quite different from that of the circles, yet
we see that they are closely related —indeed from the standpoint of
the theory of inversion they are entirely equivalent.

'
H
i
1
'

Fig. 81. Two systoma of orthogons! ciroles related by inversion.

Another example of the effect of inversion is given by a family of
circles tangent to each other at the center of inversion. After the trans-
formation they become a system of parallel Jines. For the images of
the circles are straight lines, and no two of these lines intersect, since the
original circles meet only at O,

<

B

‘ ‘
[

Fig. 2. Taogent circles transformed into paralle! linse,
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2. Application to the Probiem of Apollonius

A good illustration of the usefulness of the theory of inversion is the
following simple geometrical solution of the problem of Apollonius. By
jnversion with respect to any center, the Apollonius problem for three
given circles can be transformed into the corresponding problem for
three other circles (why is this?). Hence, if we can solve the problem
for any one triple of circles, then it is solved for any other triple of
circles obtained from the first by inversion. We shall exploit this fact
by selecting among all these equivalent triples of circles one for which
the problem is almost trivially simple.

We start with three circles having centers 4, B, €, and we shall
suppose the required circle U with center O and radius p to be exter-
nally tangent to the three given circles. If we increase the radii of
the three given circles by the same quantity d, then the circle with the
same center O and the radius p — d will obviously solve the new problem.

Fig. 63. Pralimioary to Apollonius’ construction.

By way of preparation we make use of this fact in order to replace the
three given circles by threc others such that two of them are tangent
to each other at a point K (Fig. 63). Next we invert the whole figure
in some eircle with center X. The circles around B and € become
paralle! lines b and ¢, while the third circle becomes another circle a
(Fig. 64). We know that a, b, ¢ can all be constructed by ruler and
compass. The unknown circle is transformed into a circle u which
touches a, b, ¢. Its radius 7 is evidently half the distance betw
and ¢, Its center O’ is one of the two intersections of the line midway
between b and ¢ with the circle sbout A’ (the center of a) having the
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radius 7 + s (s being the radius of a). Finally, by constructing the
circle inverse to u we find the center of the desired Apollonius circle U,
(Its center, O, will be the inverse in the circle of inversion of the point
inverse to K in u.)

———1—— — -

Fig. 64. Solution of Apollonius’ problem.

*3. Repeated Reflections
Everyone is familiar with the strange reflection phenomena that oceur
when more than one mirror is used. If the four walls of a rectangular
room were covered with ideal non-absorbing mirrors, & lighted point
would have infinitely many images, one corresponding to each conguent
room obtained by reflection (Fig. 65). A less regular constellation of

* * * *
* * * *
* * * *
: .-
* 1 ¥ * *
Fig. 65. Repeated rofection in rectangular walls.

mirrors, e.g. three mirrors, gives a much more complicated series of
images. The resulting configuration can be described easily only when
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the reflected trinngles form & non-overlapping covering of the plane,
This occurs only for the case of the rectangular isosceles triangle, the
equilateral triangle, and the rectangular half of the latter; see Figure

606.

!
4

<

RO SR, St % S,

:
{ / A\
Tempee [ R
H Ay
: .

Fig. 66. Regular constellatior.s of triangular mirrors,
3

The situation becomes much more i ing if we consider
inversion in a pair of circles. Standing between two concentrie eircular
mirrors one would see an infinite number of other cireles concentric with
them. One sequence of these circles tends to infinity, while the other
concentrates around the center. The case of two external circles is &

Fig. 5.~ suatad refluction in eystems of L#o ciroles.




164 GEOMETRICAL CONSTRUCTIONS [RicH)

Fig. 03. Raflection in & system of threo circles.

little more complicated. Here the circles and their images reflect suc-
cessively into one another, growing smaller with each reflection, until
they narrow down to two points, one in each circle. (These points have
the property of being mutually inverse with respect to both ecircles.)
The situation is shown in Figure 67. The use of three circles leads to
the beautiful pattern shown in Figure 68.



CHAPTER IV

PROJECTIVE GEOMETRY. AXIOMATICS. NON
GEOMETRIES

§1. INTRODUCTION

1. Classification of G ical Properties. Invariance under
Transtormations

Geometry deals with the properties of figures in the plane or in space.
These properties are so numerous and so varied that some principle of
elassification is necessary to bring order into this wealth of knowledge.
One might, for example, introduce a classification based on the method
used in deriving the theorems. From this point of view a distinction
is usually made between the “synthetic” and the “analytic” procedures.
The first of these is the classical axiomatic method of Euclid, in which
the subject is built upon purely geometrical foundations independent of
algebrn and the concept of the number continuum, and in which the
theorems are deduced by logical ressoning from an initial body of
statements called axioms or postulstes, The second method is based
on the introduction of numerical cobrdinates, and uses the technique
of algebra. This method has brought about a profound change in
mathematical science, resulting in s unification of geometry, analysis
and algebra into one organic system.

In this chapter a classification aceording to method will be less im
portant than a classification according to confent, based on the char
acter of the theorems themsclves, irvespective of the methods used to
prove them. In elementary plane geometry one distinguishes between
theorems dealing with the congruence of figures, using the concepts of
length and angle, and theorems dealing with the similarity of figures,
using the concept of angle only. This particular distinetion is not very
important, since length and nngle are so closely connected that it is
rather artificial to separate them. (It is the study of this connection
which makes up most of the subject of trigonometry.) Instead, we may
suy that the theorems of elementary geometry concern magnitudes—
lengths, measures of angles, and areas. Two figures are equivalent from

165
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this point of view if they are congruent, that is, if one can be obtained
from the other by a rigid motion, in which merely position but no mag-
nitude is changed. The question now arises whether the concept of
magnitude and the related concepts of congruence and similarity are
essential to geometry, or whether geometrical figures may have even
deeper properties that are not destroyed by transformations more
drastic than the rigid motions, We shall see that this is indeed the case.

Suppose we draw a circle and & pair of its perpendicular diameters on
a rectangular block of soft wood, as in Figure 69. If we place this

Fig. 89, Compression of & cirele.

block between the jaws of & powerful vise and compress it to half its
original width, the circle will become an ellipse and the angles between
the diameters of the ellipse will no longer be right angles. The circle
has the property that its points are equidistant from the center, while
this does not hold true of the ellipse. Thus it might seem that all the
geometrical properties of the original configuration are destroyed by
the compression. But this is far from being the case; for example, the
statement that the center bisects each diameter is true of both the
circle and the ellipse. Here we have a property which persists even
after a rather drastic change in the magnitudes of the original figure.
This observation suggests the possibility of classifying theorems about &
geometrical figure according to whether they remain true or become false
when the figure is subj d to a uniform compression. More generally,
given any definite class of transformations of a figure (such as the class
of all rigid motions, compressions, inversion in circles, ete.), we may ask
what properties of the figure will be unchanged under this class of
transformations. The body of theorems dealing with these properties
will be the geomelry associated with this class of transformations. The
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idea of classifying the different branches of geometry according to the
classes of transformations considered was proposed by Felix Klein
(1849-1925) in a famous address (the “Erlanger program”) given in
1872. Since that time it has greatly influenced geometrical thinking,

In Chapter V we shall discover the very surprising fact that certain
properties of geometrical figures are so deeply inherent that they persist
even after the figures are subjected to quite arbitrary deformations;
fic ures drawn on a piece of rubber which is stretched or compressed in
any manner still preserve some of their original characteristics. In this
chapter, however, we shall be concerned with those properties which
remain unchanged, or “invariant,” under a special class of transforma-
tions which lies between the very restricted class of rigid motions on the
one hand, and the most general class of arbitrary deformations on the
other. This is the class of “projective transformations.”

2. Projective Transformations

The study of these geometrical properties was forced upon mathema-
ticians long ago by the problems of perspective, which were studied by
artists such as Leonardo da Vinci and Albrecht Diirer. The image made
by a painter can be regarded as a projection of the original onto the
canvas, with the center of projection at the eye of the painter. Inthis
process lengths and argles are necessarily distorted, in a way that
depends on the relative positions of the various objects depicted. Still,
the geometrical structure of the original can usually be recognized on
the canvas. How is this possible? It must be because there exist
geometrical properties “invariant under projection”—properties which
appear unchanged in the image and make the identification possible.
To find and analyze these properties is the object of projective geometry.

It is clear that the theorems in this branch of geometry cannot be
statements about lengths and angles or about congruence. Some iso-
lated facts of a projective nature have been known since the seventeenth
and even, as in the case of the “theorem of Menelaus,” since
antiquity. But a systematic study of projective geometry was first
made at the end of the eighteenth century, when the Ecole Poly
technique in Paris initiated a new period in mathematical progress,
particularly in  smetry. This sehool, a product of the French Revolu-
tion, produced wany officers for the military services of the Republic.
One of its graduates was J. V. Poncelet (1788-1867), who wrote his fam-
ous Traité des propriélés projectives des figures in 1813, while a prisoner
of war in Russia. In the nineteenth century, under the influence of
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Steiner, von Staudt, Chasles, and others, projective geometry became
one of the chief subjects of mathematical research. Its popularity was
due partly to its great aesthetic charm and partly to its clarlfvmg eﬂ‘ch
on . eometry as a whole and its i with Ex
geometry and algebra.

§2. FUNDAMENTAL CONCEPTS
1. The Group of Projective Transformations

We first define the class, or “group,”t of projective transformations.
Suppose we have two planes = and #' in space, not necessarily parallel
to each other. We may then perform a central projection of = onto =/
from a given center O not lying in 7 or »” by defining the image of each
point P of « to be that point P’ of #', such that P and P’ lie on the same
straight line through 0. We may also perform a parallel projection,
where the projecting lines are all parallel. In the same way, we can
define the projection of a line I in a plane 7 onto another line I’ inx
from a point O in = or by a parallel projection,

0

Fig. 70. Projestion from  oint.

1 The term “group,” when applicd to a class of transformations, imnlics that
the successive application of two transformations of ¢
transformation of the same class, and that the “i»
the class again belongs to the class. Group proper
Bave played and are playing & very great rble inmany ! sme
perhaps, the importance of the group concept has | o o .ggerated.
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Any mapping of one figure onto another by a central or parallel pro-
jection, or by a finite succession of such projections, is called a projec-
tive transformation.t The projective geometry of the plane or of the line
consists of the body of those geometrical propositions which are un-
affected by arbitrary projective transformations of the figures to which
they refer. In contrast, we shall call metric geometry the body of those
propositions dealing with the magnitudes of figures, invariant only under
the class of rigid motions.

Fig. 71. Parallel projection.

Some projective properties ean be recognized immediately. A point,
of course, projects into & point. Moreover, a straight line is projected
into a straight line; for, if the line 1 in = is projected onto the plane «,
the intersection of ' with the plane through O and ! will be the straight
linel"} Ifapoint A and a straight line { sre incident, it then after any
projection the corresponding point A4’ and line I’ will again be incident.

1 Two figures related by a single projection are commonly said to be in perspec-
tive. Thus & figure ¥ is related by a projective transformation to a figure F” if
F oand F' are in perspective, or if we can find  succession of figures,
F By, Py, oo, Fu, B, such that each figure is in perspective with the following
one.

1 There are exceptions if the line OP {or if the plane through O and{) is parailel
$0 the plane »". These exceptios will be removed in §1

11 A point and a line are ealled éncident if the line goes tough the point, or
the point is on the line. ‘The neutral word leaves it open whether the line or the
point is considered more important
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Thus the incidence of a point and a line is invariant under the projective
group. From this fact many simple but important consequences follow.
If three or more points are collinear, i.e. incident with some straight line,
then their images will also be collinear. Likewise, if in the plane »
three or more straight lines are concurrent, i.e. incident with some point,
then their images will also be concurrent straight lines. While these
simple properties—incidence, collinearity, and concurrence-—are projec-
tive properties (i.e. properties invariant under projections), measures of
length and angle, and ratios of such magnitudes, are generally altered
by jecti Isosceles or ilateral triangles may project into
triangles all of whose sides have different lengths. Hence, although
“triangle” is a concept of projective geometry, “equilateral triangle”
is not, and belongs to metric geometry only.

2. Desargues’s Theorem

One of the earliest discoveries of projective geometry was the famous
triangle theorem of Desargues (1593-1662): If in a plane two triangles
ABC and A'B'C’ are situated so that the straight lines joining correspond-
ing vertices are concurrenl in a point O, then the corresponding sides, if
extended, will intersect tn three collinear points. Figure 72 illustrates

Q R P

Fig. 72. Desarguests configuration in the plane.

the theorem, and the reader should draw other figures to test it by
experiment. The proof is not trivial, in spite of the simplicity of the
f.nare, which involves only straight lines. The theorem clearly be-
longs to projective geometry, for if we project the whole figure onto
another plane, it will retain all the properties involved in the theorem.
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‘We shall return to this theorem on page 187. At the moment we wish
ta call attention to the remarkable fact that Desargues’s theorem is also
true if the two triangles lie in two different (non-parallel) planes, and
. that this Desargues’s theorem of three-dimensional geometry is very
- easily proved. Supposc that the lines 44/, BB', and CC intersect at
O (Fig. 73), according to hypothesis, Then AB lies in the same plane

Fig. 73. Desarguea’s configuration in space.

as A’B’, so that these two lines intersect at some point Q; likewise AC
and A’C’ intersect in B, and BC and B'(” intersect in P. Since P, @,
and R are on extensions of the sides of ABC and A’B'C, they lie in the
same plane with each of these two triangles, and must consequently
lie on the line of intersection of these two planes. Therefore P, @,
and R are collinear, as was to be proved.

mple proof suggests that we might prove the theorem for two
dimensions by, so to speak, a passage to the limit, letting the whole
figure Hatten out so that the two planes coincide in the limit and the
point 0, together with all the others, falls into this plane. There is,
however, a certain difficulty in carrying out such a limiting process,
because the line of intersection PQR is not uniquely determined when
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the planes coincide, However, the configuration of Figure 72 may be
regarded as a perspective drawing of the space configuration of Figure
73, and this fact can be used to prove the theorem in the plane case.

There is actually s fund; 1 di between D ’a theorem in the
plane and in space. Our proof in three dimensions used geometrical reasoning
based solely on the concepte of incidence and intersection of points, lines, and
planes. It can be shown tha. the proof of the two-dimensional theorem, provided
it 18 to proceed entirely in the plane, necessarily requires the use of the concept of
similarity of figures, which is based upon the metric concept of length and is no
longer a projective notion.

The converse of Desargues's theorem states that if ABC and 4'B'C” are two
triangles situated so that the points where corresponding sides intersect are col-
linear, then the lines joining ing vertices are Its proof
for the case where the two triangles are in two non-parsliel planes is left to the
reader as an exercise,

§3. CROSS-RATIO
1. Definition and Proof of Invariance

Just as the length of a line segment is the key to metric geometry, so
there is one fundamental concept of projective geometry in terms of
which all distinctively projective properties of figures can be expressed.

If three points 4, B, C lie on a straight line, & projection will in
general change not only the distances AB and BC but also the ratio
AB/BC. In fact, any three points A4, B, C on a straight line I can
always be codrdinated with any three points 4’, B, €’ on another line
1" by two successive projections. To do this, we may rotate the line I
about the point C’ until it assumes a position I paraliel to I (sce Fig.
74). We then project I onto I’ by a projection parallel to the line
joining € and C’, defining three points, A”, B”, and C” (= C’). The
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lines joining A’, A" and B’, B” will intersect in a point O, which we
choose as the center of a second projection. These two projections
accomplish the desired result.t

As we have just seen, no quantity that involves only three points on
a line can be invariant under projcction. But--and this is the decisive
discovery of projective geometry—if we have four points 4, B, C, D
on a straight line, and project these into 4', B’, ¢, D’ on another line,
then there is a certain quantity, called the cross-ratio of the four pomts,
that retains its value under the projecti Here is a
property of a set of four points on a line that is not destroyed by projec-
tion and that can be recognized in any image of the line. The cross-
ratio is neither a length, nor the ratio of two lengths, but the ratio of
two suck ratios: if we consider the ratios CA/CB and DA/DB, then
their ratio,

A B ¢ D

_CA /DA

: - DB’

" is by definition the cross-ratio of the four points 4, B, C, D, taken in
that order.

We now show that the cross-ratio of four poinis is invarient under
projection, ie. that if A, B, C, D and 4', B’, C’, D’ are corresponding
points on two lines related by a projection, then

CA /DA C’A D’A'
CB
The proof follows by elementary means. We recall that the area of a
triangle is equal to }(base X altitude) and is also given by half the
product of any two sides by the sine of the included angle. We then
have, in Figure 75,
ares 0CA = 3h.CA = 304.0C sin £ COA
area OCB = 3h-CB = 10B.0C sin Z COB
area ODA = 3h.DA = J0A.0D sin < DOA

area ODB = 3h-DB = J0B.0D sin £ DOB.

+ What if the lines joining A’, 4” avd B', B’ are parallel?
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It follows that
CA /DA _ CA DB _ 0OA.OC.sin £ COA OB.OD-sin £ DOB
CB/ DB (B DA OB.0OC-sin £ COB 0A.OD-sin £ DOA
__sin £ COA sin £ DOB
" sin Z COB "ein £ DOA

A B ¢ D

Fig. 76. Invaciance of cros-ratio under central projection.

Hence the cross-ratio of 4, B, C, D depends only on the angles sub-
tended at O by the segments joining A4, B, C, D. Since these angles
are the same for any four points 4°, B, ¢, D’ into which 4, B, C, D
may be projected from O, it follows that the cross-ratio remains un-
changed by projection.

That the cross-ratio of four points remains unchanged by a parallel projection
follows from elementary propertics of similar triangles. The proof is left to the
reader 2s en exercize.

D

Fig. 76, Tnvariance of cros-tatio under “urallel projection,
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So far we have understood the cross-ratio of four points 4, B, C, D
on a line I to be a ratio involving positive lengths. It is more con-
venient to modify this definition as follows. We choose one directionon
as positive, and agree that lengths measured in this direction shall be
positive, while lengths measured in the opposite direction shall be nega-
tive. We then define the cross-ratio of 4, B, €, D in that order as the
quantity
DA
® (BeD) = &2/ %
where the numbers C4, CB, D4, DB are understood to be taken with
the proper sign. Since a reversal of the chosen positive direction on I
will merely change the sign of every term of this ratio, the value of
(ABCD) will not depend on the direction chosen. It is easily seen that
(ABCD) will be negative or positive according as the pair of points
A, B is or is not separated (i.e. interlocked) by the pair C, D. Since
this separation property is invariant under projection, the signed cross-
ratio (4BCD) is invariant also. If we select a fixed point O on I as

(ABCD)>0

A B C D
B -

(ABCD)<O
A c B D

Fig. 77. Sign of cross-ratlo

origin and choose as the coérdinate z of each point on [ its directed dis-
tance from O, so that the codrdinates of A, B, C, D are 2, 2, 3, %4,
respectively, Lhen

DAz~
{4BCD) = b e
When (ABCD) = —1, so that CA/Css = —DA/DB, then € and D
Q A B C D .
o
&g
2

Fig. 78, Crome-ratio in tarms of codrdiuntes.
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divide the segment AB internally and externslly in the same ratio.
In this case, C and D are said to divide the segment AB harmonically,
and each of the points C, D is called the harmonic conjugate of the other
with respect to the pair 4, B. If (4BCD) = I, then the points C and D
(or A and B) coincide.

It should be kept in mind that the order in which A, B, C, D are
taken is an essential part of the definition of the cross-ratio (4BCD).
For example, if (ABCD) = A, then the cross-ratio (BACD) is 1/A, while
(ACBD) = 1 — A, as the reader may easily verify, Four points 4, B,
C, D can be ordered in 4-3-2-1 = 24 different ways, each of which gives
a certain value to their cross-ratio. Some of these permutations will
yield the same value for the cross-ratio as the original arrangement
4, B, C, D;eg (ABCD) = (BADC). 1t is left as an exercise for the
reader to show that there are only six di values of the ti
for these 24 different permutations of the points, namely

N 1= 1, AT 1 A

X =3 =7
These six quantities are in general distinet, but two of them may coin-
cide—as in the case of harmonic division; when A = —1.

We may also define the cross-ratio of four coplanar (i.e. lying in a
common plane) and concurrent siraight lines 1, 2, 3, 4 as the cross-ratio
of the four points of intersection of these lines with another straight
line lying in the same plane. The position of this fifth line is imma-
terial because of the invariance of the cross-ratio under projection.
Equivalent to this is the definition
sin (1,3) /sin (1, 4)
sin (2, 3)/ sin (2,4)’
taken with a plus or minus sign according as one pair of lines does not
or does separate the other. (In this formula, (1, 3), for example, means
the angle between the lines 1 and 3.) Finally, we may define the cross-
ratio of four coaxial planes (four planes in space intersecting in & line /,
their axis). Ii a straight line intersects the planes in four points, these
points will always have the same cross-ratio, whatever the positicn of
the line may be. (The proof of this fact is left as an exercise.) Hence
we may assign this value as the cross-ratio of the four planes. Equiva-
lently, we may define the cross-ratio of four coaxial planes as the cross-
ratio of the four lines in which they are intersected by any fifth plane
(see Fig. 79).

(1234) =
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The concept of the cross-ratio of four planes leads naturally to the
question of whether a projective transformation of three-dimensional
space into itself can be defined. The definition by central projection

VAN

—

V/

Fig. 79, Croms-tatio of conxial plaaes,

cannot immediately be generalized from two to three dimensions. But
it can be proved that every continuous transformation of a plane into
itself that correlates in a biunique manner points with points and lines
with lines is a projective transformation. This theorem suggests the

llowing definition for three di i A projective transformation
of space is a continuous biunique transformation that preserves
straight lines. It can be shown that these transformations leave the
cross-ratio invariant.

The di b may be ! d by & few remarks.
Suppose we have three distinet points, 4, B, C, on a line, with coérdi-
nates 7;, 22, z;. Required, to find a fourth point D so that the cross-
ratio (ABCD) = \, where X is prescribed. (The special case A = ~1,
for which the problem amounts to the construetion of the fourth har-
monic point, will be taken up in more detail in the next article.) In
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general, the problem has one and only one sclution; for, if z is the codrdi-~

nate of the desired point D, then the equation

(@ o e Yt
Ty =0 T—n

= A

has exactly one solution z. If zy, 72, 71 are given, and if we abbreviate
equation (2) by setting (¥ — 21)/(zs — %2) = k, we find on solving this
equation that z = (kz, — Azy))/(k ~ )). For example, if the three
points 4, B, C are equidistant, with codrdinates 2, = 0, 2, = d, 23 = 2d
respectively; then k = (2d — 0)/(2d — d) = 2, and z = 2d/(2 — \).

If we project the same line ! onto two different lines 7, I from two
different centers O and 0", we obtain a correspondence P «» P’ between
the points of I and I/, and a correspondence P «» P/ between those of
landl”. Thissets up a correspondence P’ «» P’ between the points of I

pO”

Fig. 80. Projective correspondence between the pointa on two lines.

and those of I’ which has the property that every set of four points 4/, B/,
C’, D' on U has the same cross-ratio as the corresponding set 4", B,
C", D" onl”. Any biunique correspondence between the points on two
lines which has this property is called a projective correspondence, irre-
spective of how the correspondence is defined.
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Exercises: 1) Prove that, given two lines together with a projective cor-
respondence between their points, one can shift one line by a parallel displace-
ment into such a position that the given correspondence is obtained by a simple
projection. (Hint: Bring a pair of corresponding points of the two lines into
coincidence.)

2) On the basis of the preceding result, show that if the points of two lines
I and I’ are cobrdinated by any finite succession of projections onto various inter-
mediate lines, using arbitrary centers of projection, the ssme result can be ob-
tained by only fwo projections.

2. Application to the Complete Quadrilaterat

As an interesting application of the invariance of the cross-ratio we
shall establish a simple but important theorem of projective geometry.
It concerns the complete quadrilateral, a figure consisting of any four
straight lines, no three of which are concurrent, and of the six points
where they intersect. In Figure 81 the four lines are AE, BE, BI, AF.
"The lines through A B, EG, and IF are the diagonals of the quadrilateral.
Take any diagonal, say 4B, and mark on it the points C and D where
it meets the other two diazonals. We then have the theorem:
(ABCD) = —1; in words, the points of intersection of one diagonal with
the other two separate the vertices on that diagonal harmonically. To prove
this we simply observe that

Fig. 61, Complate quadrilateral,
z = (ABCD) = (IFHD) by projection from £,
(IFHD) = (BACD) by projection {rom G.
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But we know that (BACD) = 1/(ABCDj); so that z = 1/z, 2* = i,
= 1. Since C, D separate 4, B, the cross-ratio z is negative and
must therefore be — 1, which was to be proved.

This remsrkable property of the complete quadnlateral enables us to
find with the ige alone the b with respect
to A, B of any third collinear point €. We need only choose a point £
off the line, draw EA, EB, EC, mark a point G on EC, draw AG and
BG intersecting BB and EA at F and T respectively, and draw IF, which
intersects the line of 4, B, C in the required fourth harmonic point D,

Problem: Given a segment 48 in the plane and & region R, as shown in Figure
82. It is desired to continue the Jine A to the right of . How may this be
done with straightedge slone so that the straightedge never crosses R during the
construction? (Hint: Choose two arbitrary points C, C' on the segment AB,
then locate their harmonic conjugstes D, D’ respectively by means of four quad-
rilaterals having 4, B as vertices.)

Fig. 82. Produciog &
§4. PARALLELISM AND INFINITY

1. Points at Infinity as “Ideal Points™
An examination of the previous section will disclose that some of
our arguments fail if certain lines in the constructions, supposed to be
produced until they intersect, are in fact parallel. For example, in the
construetion above the fourth harmomc point D fails to exist if the line

@ beyoL.. an obstacle.

IF is parallel to AB. G 1 ing seems to be hampered at
every step by the fact that two parallel lines do not intersect, so that in
any di ion involving the intersection of lines the exceptional case of

parallel lines has to be considered, and formulated separately. Likewise,
projection from a center O has to be distinguished from parallel pro-
jection, which requires separate trestment. If we really had to go
into a detailed discussion of every such exceptional case, projective
geometry would become very complicated. We are therefore led to
try an alt i namely, o find ions of our basic concepts that
will eliminate the exceptions.

Here geometrical intuition points the way: if a straight line that inter-
sects another is rotated slowly towards a parallel position, then the point
of intersection of the two lines will recede to infinity. We might naively
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say that the two lines intersect at & “point at infinity.” The essential
thing is then to give this vague statement a precise meaning, so that
points at infinity, or, as they are sometimes called, ideal points, can be
dealt with exactly as though they were ordinary points in the plane or
in space. In other words, we want all rules coneerning the behavior of
points, lines, planes, ete. to persist, even when these geometric elements
are ideal. To achieve this goal we can proceed either intuitively or
formally, just as we did in extending the number system, where one
approach was from the intuitive idea of measuring, and another from
the formal rules of arithmetical operations.

First, let us realize that in synthetic geometry even the basic concepts of
“ordinary” point and line are not mathematically defined. The so-called
definitions of these ts which are fi 1y found in textbooks on
elementary geometry are only suggestive descriptions. In the case of
ordinary geometrical elements our infuition makes us feel at ease
as far as their “existence” is concerned. But all we really need in
geometry, considered as a mathematical system, is the validity of certain
rules by means of which we can operate with these concepts, as in
joining points, finding the intersection of lines, ete. Logically con-
sidered, a “‘point” is not & “thing in itself,” but is completely described
by the totality of statements by which it is related to other objects.
The mathematical existence of “points at infinity” will be assured as soon
as we have stated in a clear and i manner the matt
properties of these new entities, i.e. their relations to “ordinary” points
and to each other. The ordinary axioms of geometry (e.g. Euclid's)
are abstractions from the physical world of pencil and chalk marks,
stretched strings, li, -t rays, rigid rods, ete. The properties which these
axioms attribute to mathematical points and lines are highly simplified
and idealized descriptions of the behavior of their physical counterparts.
Through any two actual pencil dots not one but many pencil lines can
be drawn. If the dots become smaller and smaller in diameter then all
these tines will have appr ly the same This is what
we have in mind when we state as an axiom of geometry that “through
any two points one and only one straight line may be drawn”; we are
referring not to physieal points and lines but to the abstract and con-
ceptual points and lines of geometry. Geometrical points and lines
have essentially simpler properties than do any physical objects, and
this simplification provides the essential condition for the development
of geometry as a deductive science.

As we have noticed, the ordinary geometry of points and lines is
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Zreatly complicated by the fact that a pair of parallel lines do not inter-
sect in a point. We are therefore led to make a further simplification
in the structure of geometry by enlarging the concept of geometrical
point in order to remove this exception, just as we enlarged the concept
of number in order to remove the restrictions on subtraction and divi-
sion. Here also we shall be guided throughout by the desire to preserve
in the extended demain the laws which governed the original domain.

We shall therefore agree to add to the ordinary points on each line a
single “ideal” point. This point shall be considered to belong to all the
lines parallel to the given line and o no other lines. As a consequence of
this convention every pair of lines in the plane will now intersect in a
single point; if the lines are not parallel they will intersect in an ordinary
point, while if the lines are parallel they will intersect in the ideal point
common to the two lines. For intuitive reasons the ideal point on a
line is called the point at infinity on the line.

The intuitive concept of & point on a line receding to infinity might suggest
that we add two ideal points to each line, one for each direction along the line.
The reason for adding only one, as we have done, is that we wish to preserve the
law that through any two points one and only one line may be drawn. If a line
contained two points at infinity in common with every parallel line then through
these two “points" infinitely many parallel lines would pass.

We shall also agree to add o the ordinary lines in a plane a single “ideal”
line (also called the line at infinity in the plane), contasning all the ideal
points in the plane and no other poinis. Precisely this convention is
forced upon us if we wish to preserve the original law that through
every two points one line may be drawn, and the newly gained law that
every two lines infersect in a point. T see this, let us choose any two
ideal points. Then the unigue line which is required to pass through
these points cannot be an ordinary line, since by our agreement any
ordinary line contains but one ideal point. Moreover, this line cannot
contain any ordinary points, since an ordinary point and one ideal point
determine an ordinary line. Finally, this line must contain all the
ideal points, since we wish it to have a point in common with every
ordinary line. Hence this line must have precisely the properties which
we have assigned to the ideal line in the plane.

According to our conventions, a point at infinity is determined or is
represented by any family of parallel lines, just as an irrational number is
determined by a sequence of nested rational intervals, The statement
that the intersection of two parallel lines is a point at infinity has no
mysterious connotation, but is only a conwnncrlt way of stating that the
lines are parallel. This way of exp el in the I
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originally reserved for intuitively different obi-~‘s, has the sole purpose
of making the enumeration of exceptional cases superfluous; they are
now automatically covered by the same kind of linguistic expressions or
other symbols that are used for the “ordinary” cases.

To sum up: our conventions regarding points at infinity have been so
chosen that the laws governing the incidence relation between ordinary
points and lines continue to hold in the extended domain of points,
while the operation of finding the point of intersection of two lines,
previously possible only if the lines are not parallel, may now be per-
formed without restriction. The considerations which Jed {o this formal
simplification in the properties of the incidence relation may seem some-
what abstract. But they are amply justified by the result, as the reader
will see in the following pages.

2. Ideal Elements and Projection

The introduction of the points at infinity and the line at infinity in a
plane enables us to treat the projection of one plane onto anotherin a
much more satisfactory way. Let us consider the projection of a plane
# onto a plane #' from a center O (Fig. 83). This projection estab-

/

Fig. 3. Projction into elements at infinity.

lishes a correspondence between the points and lines of = and those of ",
I‘o every point A of = eorresponds a unique point A’ of ', with the
if the projecting ray through O is parellel to the

g 2}
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planc 7/, then it intersects = in & point A to which no ordinary point
of #' corresponds These exceptional points of x lie on a line I to whmh
no ordinary line of »* ds. But these ptions are elimi

if we make the that to 4 cor ds the point at infinity
in ' in the direction of the line OA4, and that to I corresponds the line
at infinity in «. In the same way, we assizn a point at infinity in =
to any point B’ on the line m’ in #’ through which pass all the rays
from O parallel to the plane =. To m' itself will correspond the line
at infinity in «. Thus, by the introduction of the points and line at
infinity in a plane, a projection of one plane onto another establishes a
correspondence belween the points and lines of the two planes which is
biunigue without exception. (This disposes of the exceptions mentioned
in the footnote on p. 169.) Moreover, it is easily seen to be a conse-
quence of our s reement that a point lies on a line if and only if the
projection of the point lies on the projection of the line. Hence all state-
ments sbout collinear points, concurrent lines, ete. that involve only
points, lines, and the incidence relation, are seen to be invariant under
projection in the extended sense. This enables us to operate with the
points at infinity in a plane = simply by operating with the corresponding
ordinary points in a plane #’ coordinated with = by a projection.

* The interpretation of the points at infinity of a plane = by means of
projection from an external point O onto ordinary points in another
plane =" may be used to give a concrete Euclidean “model” of the ex-
tended plane. To this end we merely disregard the plane n” and fix our
attention on = and the lines through 0. To each ordinary point of =
corresponds & line through O not parallel to »; to each point at infinity
of = corresponds a line through O parallel to ». Hence to the totality of
all points, ordinary and idesl, of = corresponds the totality of all lines
through the point O, and this correspondence is biunique without
exception. The points on a line of 7 will correspond to the hines in &
plane through 0. A point and a line of = will be incident if and only if
the corresponding line and plane through O are incident. Hence the
geometry of incidence of points and lines in the extended plane is
entirely equivalent to the geometry of incidence of the ordinary lines and
plapes through a fixed point ¢ ze.

*In three dimensions the . .ation is similar, although we can no
longer make matters intuitively clear by projection, Again we intro-
duce a point at infinity associated with every family of parallel lines.
In each plane we have a line at infinity, Next we have to introduce s
new element, the plane at infinity, consisting of all points at infinity of
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the space and containing all lines at infinity. Each ordinary plane inter-
sects the plane at infinity in its line at infinity.

3. Cross-Ratio with Elements at Infinity

A remark must be made about cross-ratios involving elements at
infinity. Let us denote the point at infinity on a straight line I by the
symbol «. If 4, B, C are three ordinary points on /, then we may
assign & value to the symbol (4BC») in the following way: choose a
point P on I; then (4 BC =) should be the limit approached by (A BCP)
as P recedes to infinity along L. But

Fig. 84, Cross-ratio vith a point at iufinity.

P4

PB'

and as P recedes to infinity, PA/PB appronches 1. Hence we define
(ABC=) = CA/CB.

In particular, if (4BCw) = —1, then C is the midpoint of the segment

AB: the midpoint and the point at infinily in the direction of a segment

divide the segment harmonically.

(ABCP) =

Exzercises: What is the cross-ratio of four lines Iy, Iy, h , L4 if they are parailel?
What is the cross-ratio if L is the line at infinity?

§5. APPLICATIONS

1. Preliminary Remarks

With the introduction of elements at infinity it is no longer necessary
to state explicitly the exceptional cases that arise in constructions and
theorems when two or more lines are parallel. We need merely re-
member that when a point is at infinity all the lines through that point
are parallel. The distinction between central and parallel projection
need no longer be made, since the latter simply means projection from
a point at infinity. Tn Figure 72 the point O or the line PQR may be
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at infinity (Fig. 85 shows the former case); it is left as an exercise for
the reader to formulate in “finite’” language the corresponding state-
ments of Desargues’s theorem.

B

P

Fig. 85, Desargues’s configuration with center at infinity.

Not only the stalement but even the proof of a projective theorem is
often made simpler by the use of elements at infinity. The gencral
iple is the following. By the “projective class” of a geometrical
figure F we mean the class of all figures into which I may be carried
by ive transformations. The projective properties of ¥ will be
1denuml with those of any member of its projective class, since pro-
jective properties arc by definition invariant under projection. Thus,
any projective theorem (one involving only projective properties) that
is true of ¥ will be true of any member of the projective class of F,
and conversely. Hence, in order to prove any such theorem for F, it
suffices to prove it for any other member of the projective class of F.
We may often takc advantage of this by finding a special member of
the projective class of F for which the theorem is simpler to prove than
for ¥ itself. For example, any two points 4, B of & plane x can be
projected to infinity by projecting from a center O onto a plane
parallel to the plane of O, 4, B; the straight lines through 4 and those
through B will be transformed into two families of parallel lines. In
the projective theorems to be proved in this section we shall make such
a preliminary transformation,
The following elementary fact about parallel lines will be useful. Let
two straight lines, intersecting at a point 0, be cut by a pair of lines
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and b at points A, B, C, D, as shown in Figure 86. If !, and & are
parallel then

Fig. 85,
04 _ 0B,
oc ~ 0D’
and conversely, if g% = gg then I, and I are parallel. The proof

follows from elementary properties of similar triangles, and will be left
to the reader.

2. Proof of Desargues’s Theorem in the Plane

We now give the proof that for two triangles ABC and A’B’C' in a
plane situated as shown in Figure 72, where the lines through corre-
sponding vertices meet in a point, the intersections P, @, R of the corre-
sponding sides lie on a straight line. To do this we first project the
figure so that @ and R go to infinity. After the projection, 4B will be
parallel to A’B’, AC to A’C’, and the figure will appear as shown in
Figure 87. As we have pointed out in Article 1 of this section, to

Fig. 87, Proof of Desargues’s theorem.

prove Desargues’s theorem in general it suffices to prove it for this special
type of figure For this purpose we need only show that the inter-
section of BC and B'C’ also goes to infinity, so that BC is parallel to
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B'C’; then P, Q, R will indeed be collinear (since they will lie on the line
at infinity). Now

’

AB||A'B' implies 5,

.

and
AC|| A’C’ implies T =T,
y 8

Therefore g = ‘j; this implies BC || B'C’, which was to be proved.

Note that this proof of Desargues’s theorem makes use of the metric
notion of the length of a segment. Thus we have proved a projective
theorem by metric means. Moreover, if projective transformations are
defined “intrinsically” as plane transformations that preserve cross-
ratio (sec p. 177), then this proof remains entirely in the plane.

Brorcise: Prove, in a similar manner, the converse of Desargues’s thoorem: I
triangles ABC and A''C have the property thut P, @, & are collincar, then the
lines A4’ BB, CC’, are concurrent.

3. Pascal’s Theorem}

This theorem states: If the vertices of ¢ hexagon Lie allernately on a
pair of intersecting lines, then the three intersections P, Q, R of the opposite
sides of the hexagon are collincar (Fig. 88). (The hexagon may interseet
itself. The “opposite” sides can be tecognized from the schematic
diagram of Fig. 89.)

Ry performing a preliminary projection we may assume that P and @
are at infinity. Then we need only show that B also is at infinity.
The situation is illustrated in Fiy ae 90, where 23 || 56 and 12} 45.
We must show that 16| 34. We have

a b+y b at+zx

atz bFy+s b4y etz
Therefore
e _etrtr
R E
50 that 16 || 34, as was to be proved.
t On p. 200 we shall discuss a more general theorem of the satie type. The

present special case is alse known by the name of its discovercr, Pappus of Alex-
andria (third century A.D.).
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Fig. 89, Paseal's configuration:

Yy 5 8 3

¥ig. 90. Proot of Pascal’s theorem:

189
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4. Brianchon’s Theorem

This theorem states: If the sides of a hezagon pass alternately through
two fized points P and Q, then the three diagonals joining opposile pairs
of vertices of the hezagon are concurrent (see Fig. 91). By a projection

Qq

Fig. 01. Brianchon's configuration,

we may send to infinity the point P and the point where two of the
diagonals, say 14 and 36, intersect. The situation will then appear
ag in Figure 92. Since 14 [{ 36 we have o/b = u/v. But z/y = a/b
and w/v = r/s. Therefore z/y = r/s and 36 || 25, so that all three of
the diagonals are parallel and therefore concurrent. This suffices to
prove the theorem in the general case.

Q

¥ig. §3. Proof of Brlanshon's theorem,
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5. Remark on Duality

‘The reader may have noticed the remarkable similarity between the
theorems of Pascal (1623-1662) and Brianchon (1785-1864). This simi-
larity becomes particularly striking if we write the theorems side by side:

Pascal’s Theorem Brianchon’s Theorem

If the vertices of a hexagon lie If the sides of a hexagon pass
alternately on two straight lines, the | allernately through two points, the
poinis where opposite sides meet ave | lines joining opposite vertices are
collinear. concurrent.

Not only the th of Pascal and Brianchon, but all the th

of projective geometry occur in pairs, each similar to the other, and, so
to speak, identical in structure. This relationship is called duality. In
phane geometry point and line are called dual elements. Drawing a line
through s point, and marking a point on a line are dual operations. Two
figures are dual if one may be obtained from the other by replacing each
element and operation by its dual element or operztion. Two theorems
are dual if one becomes the other when all elements and operations are
replaced by their duals. For example, Pascal’s and Brianchon’s theo-
rems are dual, and the dual of Desargues’s theorem is precisely its con-
verse. ‘This phenomenon of duality gives projective geometry a char-
acter quite distinet from that of elementary (metric) geometry, in which
no such duality exists. (For example, it would be meaningless to speak
of the dual of an angle of 37° or of a segment of length 2.) In many
textbooks on projective geometry the principle of duality, which states
that the dual of any true theorem of projective geometry is likewise a true
theorem of projective geometry, is exhibited by placing the dual theorems
together with their dual proofs in parallel columns on the page, as we
have done above. The basic reason for this duality will be considered
in the following section (see also p. 217).

§6. ANALYTIC REPRESENTATION
1. Introduciory Remarks

In the early development of proiective geometry there was a strong
tendency to build everything on a synthetic and “purely geometric”
basis, avoiding the use of numbers and of algebraic methods. This
program met with great difficulties, since there always remained places
where some algebraic formulation seemed unavoidable. Complete suc-~
cess in building up a purely synthetic projective geometry was only
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attained toward the end of the nineteenth century, at a rather high
cost in complication. In this respect the methods of analytic geometry
have been much more successful. The general tendency in modern
mathematics is to base everything on the number concept, and in
geometry this tendency, which started with Fermat and Descartes, hag
had decisive triumphs. Analytic geometry has developed from the
status of & mere tool in geometrical reasoning to a subject where the
intuitive ] interps ion of the operati and results is no
longer the ultimate and exctusive goal, but has rather the function of a
guiding principle that aids in suggesting and understanding the ana-
lytical results. This change in the meaning of geometry is the product
of a gradual historical growth that has greatly enlarged the scope of the
classical geometry, and at the same time has brought about an almost
organic union of geometry and analysis.

In analytic geometry the “cobrdinates” of a geometrical object are

any set of numbers which characterize that object uniquely. Thus a
point is defined by giving its rectangular codrdinates z, y or its polar
codrdinates p, §, while a triangle can be defined by giving the cobrdinates
of its three vertices, which requires six cotrdinates in all. We know
that a straight line in the z, y-plane is the geometrical Jocus of all points
P (x, y) (see p. 75 for this notation) whose cobrdinates satisfy some
linear equation
{1y ar+ by +¢=0.
We may therefore call the three numbers @, b, ¢ the “codrdinates” of
this line. For example, @ = 0, b = 1, ¢ = 0 define the line y = 0,
which is the z-axis; @ = 1,6 = —1, ¢ = 0 define the line z = y, which
bisects the angle between the positive z-axis and the positive y-axis.
In the same way, quadratic equations define “‘conic sections”:

by =1 a circle, eenter at origin, radius r,
(z— a4+ (y = b} =1 a circle, center at (a, b), radius r,
2 2
% + % =1 an ellipse,

ete.

The naive approach to analytic geometry is to start with purely
“geometric” concepts—point, line, ete.—and then to translate these
into the language of numbers. The modern viewpoint is the reverse.
We start with the set of all pairs of numbers z, y and call each such pair
a point, since we can, if we choose, inferpret or visualize such a pair of
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numbers by the familiar notion of a geometrical point. Similatly, a
linear equation between z and y is said to define a line. Such a shift of

emphasis from the intuitive to the analytical aspect of geometry opens
the way for a simple, yet ngorous, treatment of the points at mﬁmty
in projective geometry, and is indi ble for a deeper und
of the whole subject. For those readers who possess & certain amount
of preliminary training we shall give an account of this approach.

*2. Homog Coordi The Algebraic Basis of Duality

In ordinary analytic geometry, the rectangular coordinates of a point
in the plane are the signed distances of the point from a pair of per~
pendicular axes. This system breaks down for the points at infinity in
the extended plane of projective geometry. Hence if we wish to apply
analytic methods to projective geometry it is necessary to find & codrdi~
nate system which shall embrace the ideal as well as the ordinary points.
The introduction of such a codrdinate system is best described by
supposing the given X, ¥-plane = imbedded in three-dimensional space,
where rectangular codrdinates z, y, z (the signed distances of & point
from the three codrdinate planes determined by the z, ¥, and z axes)
have been introduced. We place 7 parallel to the z, y codrdinate plane
and at a distance 1 above it, so that any point P of = will have the
three-dimensional codrdinates (X, ¥, 1). Taking the origin O of the
cotirdinate system as the center of projection, we note that each point P
determines o unique line through O and conversely. (See p. 184. The
lines through O and parallel to = correspond to the points at infinity of r.)

We shall now describe a system of “homogeneous codrdinates” for
the points of =. To find the homogeneous codrdinates of any ordinary
peint P of x, we take the line through O and P and choose any point Q
other than O on this line (see Fig. 93). Then the ordinary three-
dimensional codrdinates z, y, z of Q are said to be homogeneous codrdinates
of P. In particular, the codrdinates (X, ¥, 1} of P itself are a set of
homaogeneous cobrdinates for P. Morcover, any other set of numbers
(£X, LY, £) with { ¢ 0 will also be a set of homogeneous codrdinates for P,
since the cobrdinates of all points on the line OP other than O will be
of this form. (We have excluded the point (0, 0, 0) since it lies on all
lines through O and does not serve to distinguish one from another.)

This method of introducing coérdinates in the plane requires three
numbers instead of two to specify the position of a point, and has the
further disadvantage that the codrdinates of a point are not determined
uniquely but only up to an arbitrary factor t. But it has the great ad-
vantage that the points at infinity in » are now included in the codrdi~
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nate representation. A point P at infinity in « is determined by & line
through O parallel to w. Any point @ on this line will have cotdrdinates
of the form (x, y, 0). Hence the he ogencous codrdinates of & point at
snfinity in = are of the form (x, y, 0).

z

Fig. 93. Homogeneous codrdintes.

The equation in homogeneous cobrdinates of a straight line in x is
readily found by observing that the lines joining O to the points of this
line lie in & plane through O. It is proved in analytic geometry that
the equation of such & plane is of the form

ez + by 4+ cz = 0.
Hence this is the ion in h ordi: of a straight
line in .

Now that the geometrical model of the points of = as lines through 0
has served its purpose, we may lay it aside and give the following
purely analytic definition of the extended plane:

A point is an ordered triple of real numbers (z, y, 2), not all of which
are zero.  Two such triples, (21, y1, 21) and (22, ¥z, 27), define the same
point if for some ¢ # 0,

Ty = {1y,
Y=ty
n=in
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In other words, the coiirdinates of any peint may be multiplied by any
non-zero factor without changing the point. (It is for this reason that
they are called homogeneous codrdinates.) A point (z, y, 2) is an
ordinary point if z ¢ 0; if z = 0, it is & point at infinity.

A straight line in = consists of all points (x, v, 2) which satisfy a linear
equation of the form

1" az + by + ¢z = 0,
where a, b, ¢ are any three constants, not all zero. In particular, the
points at infinity in 7 all satisfy the linear equation

2 z=0.

This is by definition a line, and is called the line at infinity in =. Since
& line is defined by an equation of the form (1’), we call the triple of
numbers (g, b, ¢) the homogencous codrdinates of the line (1°). It follows
that (a, th, ic), for any 1 # O, are also coérdinates of the line (1), since
the equation

3) (tayr + (th)y + (te)z = O
is satisfied by the same cobrdinate-triples (x, y, 2) as (1').

In these definitions we observe the perfect symmetry between point
and line: each is specified by three } cobrdi (u, v, w).
The condition that the point (z, ¥, 2) lie on the line (q, b, ¢) is that

az + by 4 ¢z = 0,

and this is likewise the condition that the point whose coordinates are
{a, b, ¢) lic on the line whose cobrdinates are (z, y, z). For example,
the arithmetical identity

23+14-52=0

may be interpreted equally well as meaning that the point (3, 4, 2)
lies on the line (2, 1, —5) or that the point (2, 1, —35) lies on the line
(3,4,2). This symmetry is the basis of the duality in projective geome-
try between point and line, for any relationship between points and
Jines becomes a relationship between lines and points when the codrdi-
nates are properly re-interpreted. In the new interpretation the pre-
vious codrdinates of points and lines are now thought of as representing
lines and points respectively. All the algebraic operations and results
remain the same, but their interpretation gives the dual counterpart of
the original theorem. It is to be noted that this duality does not hoi
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in the ordinary plane of two codrdinates X, Y, since the equation of a
straight line in ordinary codrdinates

aX +bY +ec=0

is not symmetrical in X, Y and a, b, ¢. Only by including the
points and the line at infinity is the principle of duality perfectly
established.

To pass from the homogeneous vodrdinates 2, y, # of aa ordinary point P in
the plane.r to ordinary rectangular cosrdinates, we simply set X = z/z, ¥ = y/z.
Then X, Y represent the distances from the point P to two perpendicular axes in
x, parsllel to the z- and y-axes, as shown in Figure 93. We know that an equation
of the form

aX +b8Y +¢=0
will represent a straight linein ». On substituting X = /2, ¥ = /2 and multi-
plying through by z we find that the equation of the same line in homogeneous co-
ordinates is, as stated on page 195,

oz + by + ¢z = 0.
Fhus the equation of th- line 2z — 3y -+ 2 = 0 in ordinary rectangular codedinates
X, Yis2X — 3Y + 1 — 0. Of course, the latter equation fails for the point at
infinity on thia line, unie set uf whose homogeneous eosrdinates is (3, 2, 0).

One thing remains to bo said. We have succeeded in giving & purely analytic
deinition of point and line, but what of the equally important concept of projec-
tive transformation? Tt may be proved that a projeetive iransformation of one
plane onto another as defined on page 169 is given analytically by a set of linear
equations,

2= oz + by + o,
@ y' = 0z + bay + o,
2’ m gz + by + 033,
the di ', y', 2" of the pointa in the plane »'
with the homogeneous cobrdinates x, y, z of the points in the plane x. Jrom
our present point of view we may now def> « a projective transfornation as ono
given by any sct of lincar equations of the form (4). The theorems of projoctivo
geometry then become theorems on the behavior of number triples (z, , 7) under
such transformations. For example, the proof that the cross-ratio of four points
on a linc is unchanged by such transformations becomes simply an exercise in
the algebra of linear transformations. We cannot go further into the details of
this analytic procedure. Instead we shall return to the more intuitive aspects
of projective geometry.

§7. PROBLEMS ON CONSTRUCTIONS WITH THE 8TRAIGHT-
EDGE ALONE

In the constructions helow it is understood that only the straightedge is
admitted as toal.
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Problems 1 to 18 are contained in & paper by J. Steiner in which he proves
that the compass can be dispensed with a8 a tool for geometsical constructions
if # fixed circle with its center is given (see Chapt. 111, p. 161). The reader is
advised to solve these problems in the order givea.

A set of four lines @, b, ¢, d through & point P is called harmonic, if the cross-

* ratio (abed) equals ~1. @ and b are said to be conjugale with respect to ¢ and d,
and vice versa.

1) Prove: If, in a set of four harmonic lines a, b, ¢, d, the ray o bisects the angle
between ¢ and d, then b is perpendicular to a.

2) Construct the fourth harmonic line to three given lines through a point.
(Hint: Use the theorem on the complete quadrilateral.}

3) Construct the fourth harmonic point to three points on a line.

4) If a given right angle and a given arbitrary angle have their vertex and one
side in common, double the given arbitrary angle.

5) Given an angle and its bisector 5. Construct a perpendicular to b through
the vertex P of the given angle.

8) Prove: Ifthe linesls, la, s, -+, In through a point P intersect the straight
line @ in the points 4, Az, -+, An and intersect the line b in the points
By, By, -, B,, then all the intersections of the pairy of lines A:B: and Axbi
G#kii k=12 - ,n)lie on a straight line.

7) Prove: If a parallel to the side BC of the triangle ABC intersecta 4B in B’
nnd AC in €, then the line joining 4 with the intersection D of B'C and C'B
bisects BC.

78) Formulate and prove the converse of 7.

8) On & straight line [ three point P, Q,Rare given, such that Q is the midpoint
of the segment PR, Construct a parallel to § through a given point 5.

9) Given two parallel lines [, and [, ; bisect a given segment A8 on I, .

10) Draw a parallel through & given point P to two given parallel lines I; and
I,. (Hint: Reduce 9 to 7 using 8.)

11) Steiner gives the following solution to the problem of doubling o given
line segment AB when o paratlel I to ABis given: Through a point € not on { nor
on the line 4B draw CA i inglat 4,,CBi ing ! at B;. Then
(see 10) draw & parallel to! through C, which meets BA, at D. 1f DB, meeta 4B
At E, then AE = 2.4

Prove the last statement.

12) Divide o segment A into n equal parts if a parallel [ to AB is given.
(Hint: Construct first the n-fold of an arbitrary segment on {, using 11,)

13) Given & parallelogram ABCD, draw a parallel through a point & to a
straight line I, (Hint: Apply 10 to the center of the paralielogram and use 8.)

14) Given a parsllelogram, muitiply a given sc;ment by ». (Hint: Use 13
and 11)

15) Given a parallelogram, divide a given segment into n parts.

16} If a fixed circle and its center are given, draw a parsllel to & given straight
line through a given point. (Hint: Use 13.)

17) If s fixed circle and its center are, .en, multiply and divide & given seg-
ment by n. (Hint: Use 13.)

18) Given a fixed circle and its center, draw & perpendicular to a given line
through & given point. (Hint: Using & rectangle inseribed in the fixed circle
and havin: two sides parallel to the given line, reduce to previous exercised.)
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19) Using the results of problems 1-18, which basic construction problems sun
you solve if your tool is a ruler with two parallel edges?

20) Two given straight lines I; and Iy intersect ab & point P outside the given
shect of paper, Construct the line joining a given point Q with P, (Hint:
Complete the given elements to the figure of Desargues’s theoren for the plane
in such & way that P and Q become intersections of corresponding sides of the
two tricngles in Desargues's Theorem.)

21) Construct the line joining two given points whose distance is greater thun
the length of the straighted, used. (Hint: Use 20.)

22) Two points P and Q outside the given sheet of paper are detenmined by
two puiss of straight lines Iy , Iz and ms , ms through P and @, respectively. Con-
struct that part of the line PQ) that lies on the given sheet of paper. (Hint: To
obtain apoint of PQ complete the given elements toa figure of Desargues's theoren
in sueh o wauy that one triangle has two sides on [; and m; and the other one
corresponding sides on L and ms )

23) Solve 20 by means of Pascal’s theorem (p.188), (Hint: Complete the given
elements to o figure of Pascal's theorem, using Iy, L a8 1 pair of opposite sides of
the hexagon and ¢ as point of intersection of another pair of opposite sides.)

*24) Two straight lines entirely outside the given sheot of paper are ench given
by two pairs of straight lines intorseeting at points of the lines outside the paper.
Determine their point of intersection by a pair of lines through it

§8. CONICS AND QUADRIC SURFACES
1. Elementary Metric Geometry of Conics

Tntil now we have been eoncerned only with points, lines, planes, and
figures formed by a number of these. H projective geometry were
nothing but the study of such “linear” figures, it would be of relatively
little interest. 1t s a fact of fundamental importance that projective
geometry is nof confined to the study of linear figures, but includes also
the whole field of conic sections and their generalizations in higher
dimensions. Apollonius’ metric treatment of the conic sections~
ellipses, hyperbolas, and parabolas—-was one of the great mathematical
achievements of antiquity. The importance of conic sections for pure
and applied mathematics (for example, the orbits of the planets and of
the electrons in the hydrogen atom are conic sections) can hardly be
overestimated. Tt is little wonder that the classical Greek theory of
conic sactions is still an indispensable part of mathematical instruction.
But Greek geometry was by no means final.  Two thousand years later
the important projective properties of the conics were discovered. In
spite of the simplicity and beauty of these properties, academic inertia
has so far prevented their introduction into the high school curriculum

We shall begin by recalling the metric definitions of the conie sections.
There ure various such definitions whose equivalence is shown in ele-
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mentary geometry. The usual ones refer to the foci. An ellipse is de-
fined as the geometrical locus of all points P in the plane the sum of
whose distances, 11, 73, from two fixed peints Fi, F, the foci, has a
constant value. (If the two foci coincide the figure is a circle.) The
© hyperbola is defined as the locus of all points P in the plane for which the
absolute value of the difference 7y — r, is equal to a fixed constant.
The parabole is defined as the geometrical locus of all points P for
which the distance r to a fixed point F is equal to the distance to a given
line L
In terms of analytic geometry these curves can all he expressed by
equations of the second degree in the cotrdinates z, y. It is not hard
to prove, conversely, that any curve defined analytically by an equation
of the second degree:

ar’ + by + oyt dz ey 4 f=0,

is either one of the three conics, a straight line, a pair of straight lines,
a point, or imaginary. This is usually proved by introducing a new and
suitable codrdinate system, as is done in any course in analytic geometry.

These definitions of the conic sections are essentially metric, since
they make use of the concept of distance. But there is another defi-
nition that establishes the place of the conic sections in projective
geometry: The condc sections are simply the projections of a circle on a plane.
If we project a circle C from a point O, then the projecting lines will
form an infinite double cone, and the intersection of this cone with a
plane = will be the projection of C. This intersection will be an ellipse
or a hyperbola according as the plane cuts one or both portions of the
cone. The intermediate case of the parabola occurs if « is parallel to
one of the lines through O (see Fig. 94).

The projecting cone need not be a right circular cone with its vertex O
perpendicularly above the center of the circle C'; it may also be oblique.
In all cases, as we shall here accept without proof, the intersection of
the eone with a plane will be a curve whose equation is of second degree;
and conversely, every curve of second degree can be obtained from a
circle by such a projection. It is for this reason that the curves of
second degree are called conic sections.

When the plane intersects only one portion of a right circular cone
we have stated that the curve of intersection E is an ellipse. We may
prove that F satisfies the usual focal definition of the ellipse, as given
above, by a simple but beautiful argument given in 1822 by the Belgian
mathematician G, P. Dandelin.  The proof is based on the introduction
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of the two spheres S; and S: (Fig. 95}, which are tangent to = at the
points F; and Fi, respectively, and which touch the cone along the
parailel circles K; and K, respectively, We join an arbitrary point

Fig. 4, Conic  ctions.

P of E with F, and F: and draw the line joining P to the vertex O of the
cone. This line lies entirely on the surface of the cone, and intersccts
the circles K, and K, in the points Q, and Q. respectively. Now FF;
and PQ, are two tangents from P to Sy, so that

PFy = PQy.
Similarly,

PFy = PQy.
Adding these two equations we obtain

PF; + PFy = PQ + PQs.
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But PQ; + PQr = QiQ: is just the distance along the surface of the
cone between the parallel circles X and Kyand is therefore independent
of the particular choice of the point P on E. The resulting equation,

PFy + PFy = constant

[¢]

Fig. 96. Dandolin's apheres,
for all points P of B, is precisely the facal definition of an ellipse. E is
therefore an ellipse and F, , F; are its foci.

Ezercise: When & plane cuts both partions of the cone, the curve of intersec-
tion is a hyperbola.  Prove this fact, using one sphere in each portion of the cone.
2. Projective Properties of Conics

On the basis of the facts stated in the preceding section we shall
adopt the tentative definition: a conic is the projection of a circle on a
plane. This definition is more in keeping with the spirit of projective
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geometry than is the usual focal definition, since the latter is entirely
based on the metric notion of distance. Even our present definition is
not free from this defect, since “circle’” is also a concept of metric geome-
try. We shall in a moment artive at a purely projective definition
of the conics.

Since we have agreed that a conic is merely the projection of a circle
(i.e., that the word “conic” is to mean any curve in the projective
class of the circle; see p. 186), it follows that any property of the
circle that is invariant under projection will also be possessed by any
conic. Now a circle has the well-known (metric) property that a given
are subtends the same angle at every point O on the eircle.  In Figure 96,
the angle AOB subtended by the arc 4B is independent of the position
of 0. This fact can be brought into relation with the projective concept
of cross-ratio by considering not two points 4, B but four points 4, B,
€', D on the circle. The four lines @, b, ¢, d joining them to a fifth
point O on the circle will have a cross-ratio (¢ b ¢ d) which depends
only on the angles subtended by the arcs CA, CB, DA, DB. If we

Fig. 96. Cross-rati  on a circle.

join A, B, C, D to another point O’ on the circle, we obtain four rays
o/, b, ¢, d'. From the property of the eircle just mentioned, the two
quadruples of rays will be “congruent.”t Hence they will have the

same cross-ratio: (@’ ¥ ¢/ @) = (a b ¢ d). If we now project the
1 A set of four concurrent lines @, b, ¢, d is said songruent to another
set @, b, ¢, @ if the angles hetseen every pair of li, he first set are oqual

and kave the same sense as the angles between corresponding lines of the second
set
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circle into any conic K, we shall obtain on K four points, again ecalled
4, B, C, D, two other points O, ¢, and the two quadruples of lines
a, b, ¢, dand a, ¥, ¢/, d. These quadruples will not be congruent,
since equality of angles is in general destroyed by projection. But since
eross-ratio is invariant under projection, the equality (a b ¢ d) =
(@’ b ¢ d') will still hold. This leads to a fundamental theorem:
If any four given points A, B, C, I of a conic K are joined to a fifth point
O of K by lines a, b, ¢, d, then the value of the cross-ratio (a b ¢ d) ds
independent of the position of O on K (Fig. 97).

Fig. 97. Cross-ratios on an ellipse.

This is indeed a remarkable result. We already knew that any four
ziven points on a straight line appear under the same cross-ratio from
any fifth point O. This theorem on cross-ratios is the basic fact of
projective geometry. Now we learn that the same is true of four points
on a conic, with one important restriction: the fifth point is no longer
absolutely free in the plane, but is still free to move on the given conic.

It is not difficult to prove a converse of this result in the following
form: if there are two points O, O’ on a curve K such that every quad-
ruple of four points 4, B, C, D on K appears under the same cross-
ratio from both O and 0’, then K is a conic, (and therefore 4, B, C, D
appear under the same cross-ratio from any third point 0” of K). The
proof is omitted here.

These projective properties of the conies suggest a general method for
constructing such curves. By a pencil of lines we shall mean the
set of all ight lines in a plane which pass through a given point O.
Now consider the peneils through two points O and 0" which are chosen
to lie on a conic K. Between the lines of pencil U and those of pencil 0
we may establish a biunique correspondence by coupling a line a of
with a line @’ of 0" whenever ¢ and @’ meet in 2 point 4 of the conic K.
Then any four lines @, b, ¢, d of the pencil O will have the same cross-ratio
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as the four corresponding lines ¢/, b/, ¢/, d’ of O'. Any biunique cor-
respondence between two pencils of lines which has this property is
called a projective correspond: (This definition is obviously the
dual of the definition given on p. 178 of a projective correspondence
between the points on two lines.) Pencils between which there is
defined a projective correspondence are said to be projectively related.
With this definition we can now state: The conic K is the locus of the
intersections of corresponding lines of two projectively related peneils.
This theorem provides the basis for a purely projective definition of the
conies: A conic is the locus of the interscctions of corresponding lines tn two
projectively related pencils.t It is tempting to follow the path into the
theory of conics opened by this definition, but we shall confine ourselves
to a few remarks.

Pairs of projectively related pencils can be obtained as follows,
Project all the points P on ¢ straight line ! from two different centers O
and 0”; in the projecting pencils let lines a and a'* which intersect on I

Tig. 98, Preliminary to copstruction of projectively related pencils.

correspond to each other. Then the two pencils will be projectively
related. Now take the pencil O” and transport it rigidly into any
position (/. The resulting pencil 0’ will be projectively related to 0.
Moreover, any projective correspondence between two pencils can be so
obtained. (This fact is the dual of 1onp. 179.) [If the pencils O
and O are congruert, we obtain a circle. If angles are equal but with
opposite sense, the conie is an equilateral hyperbola (see Fig. 99).

Note that this definition of conic may yicld a locus which is a straight
line, as in Figure 98. In this case the line O 0" corresponds to itself,

# This locus may, under certain circumstances, degenerate into & straight line;
see Fig. 98.
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and all its points are counted as belonging to the locus. Hence the
conic degenerates into a pair of lines, which agrees with the fact there
are soctions of a cone (those obtained by planes through the vertex)
‘which consist of two lines.

Fig. 99. Circle and equilateral hyperbol tod by projecti i

Ezercises: 1) Draw ellipses, hyperbolas, and parabolas by means of projective
pencils. (The reader is strongly urged to experiment with such constructions.
"They will contribute greatly to his understanding.)

2) Given five points, O, 0/, A, B, C, of an uunknown conic K. It is re-
quired to construct the point D where a given line d through O intersects K.
(Hint: Consider through O the rays a, b, ¢ given by 04, OB, OC, and similarly
thro.o- O the rays &', b’, ¢’. Draw through O the ray d and construct through
O’ the ray d’ such that (a, b, ¢, d) = (o', ¥, ¢/, d’). Then the intersection of d
and d’ is necessarily & point of K.}

3. Conics as Line Curves

The concept, of tangent to a eonic belongs to projective geometry, for
a tangent to a conic is a straight line that touches the conic in only
one point, and this property is unchanged by projection. The pro-
jective properties of tangents to conics are based on the following funda-
mental theorem: The cross-ratio of the points of intersection of any four
fized tangents to a conic with a fifth langent is the same for every position
of the fifth tangent.

The proof of this theorem is very simple.  Since a conic is a projection
of a circle, and since the theorem concerns only properties which are
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invariant under projection, a proof for the case of the circle will suffice
to establish the theorem in general.

Batetaty
7N
N/
S

Fig. 10. A circle sa & eat of tangenta.

For the circle, the theorem is a matuer of elementary geometry. Let
P, Q, R, S be any four points on & circle K with the tangents g, b, ¢, d;
T another point with the tangent o, intersected by a, b, ¢, din 4, B, C, D.
If M is the center of the circle, then obviously X. TMA = § X TMP,

A o \B___|[c /D
d

Fig. 101. The tangont property of the cirole.

and 3 X TMP is equal to the angle subtended by the are TP at a point
of K. Similarly, X TMB is the angle subtended by the arc 7Q at a

point of K. Therefore X AMB = %I;b, where %E”b is the angle sub-
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tended by the arc PQ at a point of XK. Hence the points 4, B, C, D
are projected from M by four rays whose angles are given by the fixed
positions of P, Q, B, S. It follows that the cross-ratio (4 B C D)
depends only on the four tangents e, b, ¢, d and not on the particular
position of the fifth tangent o. This is exactly the theorem that we
had to prove.

In the preceding section we have seen that a conic may be constructed
by marking the points of intersection of corresponding lines in two pro~
jectively related pencils. The theorem just proved enables us to dualize
this construction. Let us take two tangents a and @’ of & conic K. A
third tangent ¢ will intersect a and &’ in two points 4 and A” respectively.
If we allow ¢ to move along the conic, this will set up a correspondence

Aer A

between the points of @ and those of ¢/, This correspondence between
the points of a and those of a' will be projective, for by our theorem
any four points of a will have the same cross-ratio as the corresponding
four points of a’. Hence it appeats that a conic K, regarded as the set
of its tangents, consists of the lines which join corresponding points of the
two projectively related rangest of points on a and &',

2

o
S
]
%,

Fig. 102, Projective point .anges on two tangeats of an ellipss.

4 The set of points on » treight line is called & range of poiris. This is the
dusl of & pencil of lines.
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This fact may be used to give a projective definition of 2 conic as a
“line curve.” Let us compare it with the projective definition of a
conic given in the preceding section:

I I

A conic as a set of poinis con- | A conic as a set of knes consists
of the lLines joining corresponding
poinis in two projectively related
ranges of points,

sists of the poinis of inersection of
corresponding lines in two pro-
jectively related pencils of lines.

Fig. 104. A parabols dofined by similar puint ranges.

If we regard the tangent to a conic at a point as the dual element to
the point itself, and if we consider a “line curve” (the set of all its
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tangents) as the dual of a “point curve” (the sct of all its points), then
the complete duality between these two statements is apparent. In the
translation from one statement to the other, replacing each concept by
its dual, the word “conic” remains the same: in one case it is a “‘point
conic,” defined by its points; in the other a “line conic,” defined by its
tangents.  (Sec Fig. 100, p. 206.)

An important consequence of this fact is that the principle of duality
in plane projective geometry, originally stated for points and lines only,
may now be extended to cover conics. If, in the statement of any theorem
concerning points, lines, and conics, each element i3 replaced by its dual
(keepiug in mind that the dual of a point on a conic is a tangent to the
conic), the result will also be a true theorem. An example of the working
of this principle will be found in Article 4 of this section.

The construetion of conies s line curves is shown in Figures 103-104.
1§, on the two projectively related point ranges, the two points at
infinity correspond to each other (as must be the case with congruent or
similarf ranges), the conic will be a parabola; the converse is also true.

Exercisc: Prove the converse theorem: On any two fixed tangents of a parabola
a moving tangent cuts out two similar point renges.

4. Pascal’s and Brianchon’s General Theorems for Conics

One of the best illustrations of the duality principle for conies is the
relation between the gencral theorems of Pascal and of Brianchon. The
first was discovered in 1640, the second only in 1806. Yet one is an
immediate consequence of the other, since any theorem involving only
conics, straight lines, and points must remain true if replaced by its
dual statement.

The theorems stated in §5 under the same name are degenerate
cases of the following more general theorems:

Pascal’s theorem: The opposite edges of a hexagon inscribed in a conie
meet in three collinear points.

Brianchon’s theorem: The three diagonals joining opposite vertices of a
hexagon cireumseribed about a conie are concurrent,

Both theorems are clearly of a projective character. Their dual
nature becomes obvious if they are formulated as follows:

Puascal's theorem: Given six points, 1, 2, 3, 4, 5, 6, on a conie.  Join
successive points by the lines (1, 2), (2, 3), (3, 4), (4, 5), (5, 6, (6, 1).

§ It is obvious what is meant by a “congruent” or & “similar” correspondence
between two ranges of points.
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Mark the points of intersection of (1, 2) with (4, 5), (2, 3) with (5, 6),
and (3, 4) with (6, 1). Then these three points of intersection lie on &
straight line.

Brianchon's theorem: Given six tangents, 1, 2, 3, 4, 5, 6, to & conic.
Successive tangents intersect in the points, (1, 2), (2, 3), 8, 4), 4, 5),
(6, 6), (6, 1). Draw the lines joining (1, 2) with (4, 5), (2, 3) with
(5, 6), and (3, 4) with (6, 1). Then these lines go through a point.

Fig 105 Puscal's ¢ smeral configuration. Two casen wre filustrated: one for the betagon 1, 2, 3, 4,8, 8,
and oue for the hexaton 1, 8, 5, 2, 6, 4.

The proofs can be given by a specialization similar to that used in
the degenerate cases. To prove Pascal’s theorem, let A, B;C,D,E, F
be the vertices of a hexagon inscribed in a conic K. By projection we
can make 4B parallel to D and FA parallel to €D, so that we obtain
the configuration of Figure 107. (For convenience in representation
the hexagon is taken as self-intersecting, although this is not necessary.)
Pascal’s theorem now reduces to the simple statement that CB is
varallel to FE; in other words, the line on which the opposite edges of
the hexagon meet is the kine at infinity, To prove this, let us consider
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.l
\ 1/
A4
\'4

Fig. 100, Brisnchon's goneral configuration; Again two cases are illustrated,

D E

Fig, 107, Proof of Pascal’s theorsm.
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the points F, 4, B, D, which, as we know, are projected by rays having
a constant cross-ratio & from any other point of K, e.g., from C or E.
Project these points from C; then the projecting rays intersect AF in
four points, ¥, 4, Y, «, which have the cross-ratiok. Hence YF:VA =
k. (See p. 185,) If the same points are now projected from & onto
BA, we obtain

{XABx) = BX:BA.
Hence we have
BX:BA = YF:YA,

which establishes the parallelism of YB and FX. This completes the
proof of Pascal’s theorem.

Brianchon’s theorem follows either by the duslity principle or by
direct reasoning dual to the above. The reader will find it & good
exercise to carry out the details of the argument.

5. The Hyperboloid

In three dimensions the figures that correspond to the conics in the
plane are the “quadric surfaces”; of these the sphere and the ellipsoid
are special cases. These surfaces offer more variety and considerably
more difficulty than do the conics. Here we shall discuss briefly and
without giving proofs one of the more interesting quadrics, the “one-
sheeted hyperboloid.”

This surface may be defined in the following manner. Choose any
three lines, L, b, Is, in general position in space. By this we mean
that no two of the lines are to lie in the same plane nor are they all to
be parallel to any one planc. 1t is a rather surprising fact that there
will be infinitely many lines in space each of which intersects all three
of the given lines. To see this, let us take any plane x through 4 .
Then = will intersect &, and I in two points, and the line m joining
these two points will intersect L, I, and I; . As the plane » rotates
about L, the line m will move, always intersecting Iy, L, &, and will
generate a surface of infinite extent. This surface is the one-sheeted
hyperboloid; it contains an infinite family of straight lines of the type m.
Any three of these lines, my, ma, m;, will also be in general position,
and all the lines in space that intersect these three lines will also lie
in the surface of the hyperboloid. This is the fundamental fact con-
cerning the hyperboloid: it is made up of two different families of
straight lines; every three lines of the same family are in general posi-
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tion, while each line of one family intersects all the lines of the other
family.
An important projective property of the hyperboloid is that the cross-

\

Fig. 108. Construction of lines intersecting three fixed Hoes in gencral pusition.
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ratio of the four points where any four given lnes of one family intersect
a given line of the other family is independent of the position of the
latter line. This follows directly from the method of construction of
the hyperboloid by a rotating plane, as the reader may show as an
exercise,

One of the most remarkable properties of the hyperboloid is that
although it contains two families of intersecting straight lines, these
lines do not make the surface rigid. If a model of the surface is con-
structed from wire rods, free to rotate at each intersection, then the
whole figure may be continuously deformed into a variety of shapes.

§9. AXIOMATICS AND NON-EUCLIDEAN GEOMETRY
1. The Axiomatic Method

The axi ic method in h ics goes back at least as far as
Euclid. By no means is it true that Greek mathematics was developed
or presented exclusively in the rigid postulational form of the Elements.
But so great was the impression made by this work on subséquent genera-
tions that it became a model for all rigorous demonstration in mathe-
matics. Sometimes even philosophers, e.g. Spinoza in his Ethica, more
geometrico demonstrata, tried to present arguments in the form of theo-
rems deduced from definitions and axjoms. In modern mathematics,
after a departure from the Euclid lition during the th
and eighteenth centuries, there has been an increasing penetration of
the axiomatic method into every field. One of the most recent results
has been the creation of 2 new discipline, mathematical logic.

In general terms the axiomatic point of view can be described as
follows: To prove a theorem in a deductive system is to show that the
theorem is a necessary logical consequence of some previously proved
iti these, in, turn, must themselves be proved; and so on.
of mathematical proof would therefore be the impossible
task of an infinite regression unless, in going back, one is permitted to
stop at some point. Hence there must be a number of statements,
called postulates or arioms, which are accepted as true, and for which
proof is not required. From these we may attempt to deduce all ather
theorems by purely logical argument. If the facts of a scientific field
are brought into such a logical order that all can be shown to follow
from a selected number of (preferably few, simple, and plausible) state-
ments, then the field is said to be presented in an axiomatic form. The
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choice of the propositions selected as axioms is to a large extent arbi-
trary. But little is gained by the axiomatic method unless the postu-
Jates are simple and not too great in number. Moreover, the postulates
must be consistent, in the sense that no two theorems deducible from
them can be mutually contradictory, and complete, so that every theorem
of the system is deducible from them. For reasons of economy it is

also desirable that the 1 be independent, in the sense that no
one oi them is a logical consequence of the others. The question of the
and of the of a set of axioms has been the

subject of much controversy. Different philosophical convietions con-
cerning the ultimate roots of human knowledge have led to apparently
irreconcilable views on the foundations of mathematics. If mathemati-
cal entities are considered as substantial objects in a realm of “pure in-
tuition”, independent of definitions and of individual acts of the human
mind, then of course there can be no contradictions, since mathematical
facts are objectively true statements deseribing existing realities. From
this “Kantian” point of view there is no problem of consisteney. Un-
fortunately, however, the actual body of mathematics cannot be fitted
into such a simple philosophieal framework. The modern mathematical
intuitionists do not rely on pure intuition in the broad Kantian sense.
They accept the denumerably infinite as the legitimate child of intnition,
and they admit only construetive properties; but thus basie concepts
such as the number continuum would be banished, important parts
of actual mathematics excluded, and the rest almost hopelessly com-
plicated.

Quite different is the view taken by the “formalists.” They do not
attribute an intuitive reality to mathematical objects, nor do they claim
that axioms express obvious truths concerning the realities of pure
intuition; their concern is only with the formal logical procedure of
reasoning on the basis of postulates. This attitude has a definite ad-
vantage over intuitionism, since it grants to mathematics all the freedom
necessary for theory and applications. But it imposes on the formalist
the necessity of proving that his axioms, now appearing as arbitrary
creations of the human mind, cannot possibly lead to a contradiction.
Great efforts have been made during the last twenty years to find such
consistency proofs, at least for the axioms of arithmetic and algebra
and for the concept of the number continuum. The results are highly
significant, but success is still far off. Indeed, recent results indicate
that such efforts cannot be completely successful, in the sense that
proofs for consistency and completeness are not possible within strictly
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closed systems of concepts. Remarkably enough, all these arguments
on foundations proceed by methods that in themselves are thoroughly
constructive and directed by intuitive patterns,

Accentuated by the paradoxes of set theory (see p. 87), the clash
between the intuitionists and the formalists has been much publicized
by passionate partisans of these schools. The mathematical world has
resounded with a ery about the “crisis in the foundations.” But the
alarm was not, and must not be, taken too seriously. With all credit
to the achievements produced in the struggle for clarification of the
foundations, it would be completely unjustified to infer that the living
body of mathematics is in the least threatened by such differences of
opinion or by the paradoxes inherent in an uncontrolled drift towards
boundless generality.

Quite apart from philosophical considerations and from interest in
foundations, the axiomatic approach to a mathematical subject is the
natural way to unravel the network of interconnections between the
various facts and to exhibit the essential logical skeleton of the structure.
1t sometimes happens that such a concentration on the formal structare
rather than on the intuitive meaning of the concepts makes it easier to
find generahmhons and applications that might have been overlooked
in a more intuiti h. But a i discovery or an illu-
minating insight is rare]y obtained by an exclusively axiomatic pro-
cedure. Constructive thinking, guided by the intuition, is the true
source of mathematical dynamics. Although the axiomatic form is an
ideal, it is a dangerous fallacy to believe that axiomatics constitutes the
essence of mathematics. The constructive intuition of the mathemati-
cian brings to mathematics a non-deductive and irrational element which
makes it comparable to music and art.

Since the days of Euclid, geometry has been the prototype of an
axiomatized discipline. For centuries Euclid’s set of axioms has been
the object of intensive study. But only recently has it become apparent
that his postulates must be modified and completed if alf of elemen-
tary geometry is to be deducible from them. Late in the nineteenth
century, for example, Pasch discovered that the ordering of points on a
line, the notion of “betweenness,” requires a special postulate. Pasch
formulated the following statement as an axiom: A straight line that
intersects one side of a triangle in any peint other than a vertex must
also intersect another side of the triangle. (Lack of regard for such
details leads to many apparent paradoxes in which absurd consequences
~—g.g. the well-known “proof” that every triangle is isosceles —seem to
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be deduced rigorously from Juclid’s axioms. This is wsually done on
the basis of an improperly drawn figure whose lines seem to intersect
inside or outside certain triangles or circles, whereas they really do not.)

In his famous book, Grundlagen der Geometrie (first edition published
in 1901), Hilbert gave a satisfactory set of axioms for geometry and at
the same time made an exhaustive study of their mutual independence,
consistency, and completeness.

Into any set of axioms there must enter certain undefined concepts,
such as “point” and “line” in geometry. Their “meaniz.;” or connec-
tion with objects of the physical world is mathematically unessential.
They can be regarded as purely abstract entities whose mathematical
properties in a deductive system are given entirely by the relations that
hold among them as stated by the axioms. For example, in projective
geometry we might begin with the undefined concepts of “point,”
“line,” and “incidence,” and with the two dual axioms: “Each two
distinet points are incident with a unique line” and “Each two distinct
lines are incident with a unique point.” From the point of view of
axiomatics, the dual form of such axioms is the very source of the
principle of duality in projective geometry. Any theorem which con-
tains in its statement and proof only elements connected by dual axioms
must admit of dualization. For the proof of the original theorem con-
sists in the successive application of certain axioms, and the application
of the dual axioms in the same order will provide a proof for the dual
theorem.

The totality of axioms of geometry provides the implicit definition of
all “undefined” geometrical terms such as “line,” *“point,” “incident,”
ete. For applications it is important that the concepts and axioms of
geometry correspond well with physically verifiable statements about
“real,” tangible objects. The physical reality behind the concept of
“point” is that of a very small object, such as a pencil dot, while a
“straight line” is an abstraction from a stretched thread or a ray of
light. The properties of th hysical points and straight lines are
found by experience to agre e or less with the formal axioms of
geometry. Quite coneeivabl, .ore precise experiments might necessi-
tate modification of these axioms if they are adequately to describe
physical phenomena. But if the formal axioms did not agree more or
less with the properties of physical objects, then geometry would be of
little interest. Thus, even for the formalist, there is an authority other
than the human mind, that decides the direction of mathematical
thought.
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2. Hyperholic Non-Euclidean Geometry

There is one axiom of Euclidean geometry whose “truth,” that is,
whose correspondence with empirical data about stretched threads or
light rays, is by no means obvious. This is the famous postulate of the
unique parallel, which states that through any point not on a given line
one and only one line can be drawn parallel to the given line. The
remarkable feature of this axiom is that it makes an asser‘uon about the
whole extent of & straight line, i ined as ding i itely in
either direction; for to say that two lines are parallel is to say that they
never intersect, no matter how far they may be produced. It goes
without saying that there are many lines through a point which do not
intersect a given line within any fized finite distance, however large.
Since the maximum possible length of an actual ruler, thread, or even a
light ray visible to a telescope is certainly finite, and since within any
finite circle there are infinitely many straight lines through a given
point and not intersecting a given line inside the cirele, it follows that
this axiom can never be verified by experiment. All the other axioms
of Euclidean geometry have a finite character in that they deal with
finite portions of lines and with plane figures of finite extent. The fact
that the parallel axiom is not experimentally verifiable raises the ques-
tion of whether or not it is independent of the other axioms. If it were a
necessary logical consequence of the others, then it would be possible to
strike it out as an axiom and to give a proof of it in terms of the other
Euclidean axioms. For centuries mathematicians tried to find such a
proof, because of the widespread feeling among students of geometry
that the parallel late is of & tially different from
the others, Jacking the sort of compelling plausibility which an axiom
of geometry should possess. One of the first attempts of this nature
was made by Proclus (fourth century A.D.), a commentator on Euclid,
who tried to dispense with the need for a special parallel postulate by
defining the parallel to a given line to be the locus of all points at &
given fixed distance from the line. In this he failed to observe that the
difficulty was only shifted to another place, for it would then be necessary
to prove that the locus of such points is in fact a straight line. Since
Proclus could not prove this, he would have to accept it instead of the
parallel axiom as a postulate, and nothing would be gained, for the two
are easily seen to be equivalent. The Jesuit Saccheri (1667-1733),
and later Lambert (1728-1777), tried to prove the parallel postulate by
the indirect method of assuming the contrary and drawing absurd
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consequences. Far from being absurd, their conclusions really
amounted to theorems of the non-Euclidean geometry developed later.
Had they regarded them not as absurdities, but rather as self-consistent
statements, they would have been the discoverers of non-KEuclidean
geometry.

At that time, any geometrical system not absolutely in accordance
with Euclid’s would have been considered as obvious nonsense.  Kant,
the most influential philosopher of the period, formulated this attitude
in the statement that Euclid’s axioms are inherent in the human mind,
and therefore have an objective validity for “real” space. This belief
in the axioms of Euclidean geometry as unalterable truths, existing in
the realm of pure intuition, was one of the basic tenets of Kant’s phi-
losopby. But in the long run, neither old habits of thinking nor philo-
sophical authority could suppress the conviction that the unending
record of failure in the search for a proof of the parallel postulate was
due not to any lack of ingenuity, but rather to the fact that the parallel
postulate is really independent of the others. (In much the same way,
the lack of suceess in proving that the gencral equation of the fifth degree
could be solved by radicals led to the suspicion, later verified, that such
a solution is impossible.) The Hungarian Bolyai (1802-1860) and the
Russian Lobachevsky (1793-1856), settled the question by constructing
in all detail a geometry in which the parallel axiom does not hold.  When
the enthusiastie young genius Bolyai submitted his paper to Gauss, the
“prince of mathematicians,” for the r ition he so eagerly 1
he was informed that his work had been anticipated by Gauss himself,
but that the latter had not cared to publish his results because he
dreaded noisy publicity.

‘What does the independence of the parallel postulate mean? Simply
that it is possible to construct a consistent system of “geometrical”
statements dealing with points, lines, ete., by deduction from a set of
axioms in which the parallel postulate is replaced by a contrary postulate.
Such a system is called a non-Euclidean geometry. It required the in-
tellectual courage of Gauss, Bolyai, and Lobachevsky to realize that such
a geometry, based on a non-Euclidean system of axioms, can be per-
fectly con: nt.

To show the consistency of the new geometry, it is not enough to de-
duce a large body of non-Euclidean theorems, as Bolyai and Lobachev-
sky did. Insf , we have learned to build “models” of such a geom-
etry which satisfy all the axioms of Euclid except for the parallel
postulate. The simplest such model was given by Felix Klein, whose
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work in the field was stimulated by the ideas of the English geometer
Cayley (1821-1895). In this model, infinitely many “straight lines”
can be drawn “parallel” to a given line through an external point. Such
a geometry is ealled Bolyai-Lobachevskian or “hyperbolic” geometry.
(The reason for the latter name will be found on p. 226.)

Klein’s model is constructed by first considering objects of ordinary
Euclidean geometry and then renaming certain of these objects and the
relations between them in such a way that a non-Euclidean geometry
arises. This must, eo #pse, be just as consistent as the original Euclidean
geometry, because it is presented to us, seen from another point of vie
and described with other words, as a body of facts of ordinary Euclidean
geometry. This model can be easily understood by means of some con-
cepts of projective geometry.

If we subject the plane to a projective transformation onto another
plane, or rather onto itself (by afterwards making the image plane
coincide with the original plane), then, in general, a circle and its interior
will be transformed into a coni tion. But one can easily show (the
proof is omitted here) that the infinitely many projective trans-
formations of the plane onto itself such that a given circle plus if
terior is transformed into itself. By such transformations points of the
interior or of the boundary are in general shifted to other positions, but
remain inside or on the boundary of the circle.  (As a matter of fact,
one can move the center of the circle into auy other interior point.) Let
us consider the totality of such transformations. Certainly they will
not leave the shapes of figures invariant, and are therefore not rigid
displacements in the usual sense. But now we take the decisive step
of calling them “non-Euclidean displacements” in the geometry to be
construeted. By means of these “displacements” we are able to define
congruence--two figures being ealled congruent if there exists a non-
FEuelidean displacement transforming one into the other.

The Kiein model of hyperbolic geometry is then the following: The
“plane” consists only of the points interior to the circle; points outside
are disregarded. Fach point inside the circle is called a non-Euclidean
“point”’; each chord of the cirele is called a non-Fuclidean “straight line”:
“digplacement” and “‘congruence’ are defined as above; joining “points”
and finding the intersection of “straight lines” in the non-Fuclidean
sense remain the same as in Euclidean geometry. It is an easy matter
to show that the new system satisfies all the postulates of Fuelidean
geometry, with the one exception of the parallel postulate. That the
parallel postulate does not bold in the new system is shown by the fact
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that through any “point” not on a “straight line” infinitely many
“straight lines” can be drawn having no “point” in common with the
given “line.” The first “straight line” is a Euclidean chord of the
circle, while the second “straight line” may be any one of the chords
which pass through the given “point” and do not intersect the first
“line” inside the circle. This simple model is quite sufficient to scitle
the fundamental question which gave rise to non-Euclidean geometry;
it proves that the parailel postulate cannot be deduced from the other
axioms of Euclidean geometry. For if it could be so deduced, it would
be a true theorem in the geometry of Klein’s model, and we have seen
that it is not.

Strietly speaking, this argument is based on the assumption that the geometry
of Klein’s model is conaistent, 8o that & theorem together with its contrary cannot

Fig. 110. Kleio's son-Euclidean model. Fig. 1t1. Non-Euclidean distance.

be proved. But the geometry of Klein's model ig certainly 28 consistent as or-
dinary Fuclidean geometry, since statements concerning “points,” "4
in Kicin's model are merely different ways of phrasing certain theorems of Fuctid-
ean geometry. A -y proof of the eoosi of the axioms of Fuclid
geometry has never been given, except by referring back to the cancepts of
znalytic geometry and hence to the number i whose con-
sistency is again an open question.

ines,” e

* One detail which goes beyond the immediate objective should be men-
tioned here, namely, how to define non-Euclidean “distance” in Klein's
model. This “distance” is required to be invariant under any non-
Euelids “displ t”; for displ t should leave di in-
variant. We know that cross-ratios are invariant under projection. A
cross-ratio involving two arbitrary points 2 and Q inside the circle pre-
sents itself immediately if the segment PQ is extended to meet the
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circle in O and S. The cross-ratio (O8QP) of these four points is a

(positive) number, which one might hope to take as the definition of the

“distance” PQ between P and Q. But this definition must be modified

slightly to make it workabie. For if the three points P, @, R are on a

line, it should be true that PQ + QR PR. Nowin general
(O8QP) + (OSRQ) #= (OSRP).

Instead, we have the relation

[¢Y) (0SQP)(OSRQ) = (OSRP),

as is seen from the equations

Q0/Q8 RO/RS _ RO/RS _
(0SQP)(OSRQ) = FO/PS " G070S = PO/PS = (OSRP).
In consequence of the equation (1) we can give a satisfactory additive
definition by measuring “distance,” not by the cross-ratio itself, but by
the logarithm of the cross-ratio:
P@ = non-Euclidean distance from P to @ = log (OSQP).

This distance will be a positive number, since (OSQP) > 1if P # Q.
Using the fundamental property of the logarithm (see p. 444), it follows
from (1) that P@ + @ PR. The base chosen for the logarithm ix
of no importance, since change of base merely changes the uanit of
measurernent. Incidentally, if one of the points, e.g. @, approaches the
circle, then the non-Euclidean distance PQ will increase to infinity.
This shows that the straight line of our non-Euclidean geometry is of
infinite non-Euclidean length, although in the ordinary Euclidean sense
it is only a finite segment of a straight line.

3. Geometry and Reality

The Klein model shows that hyperbolic geometry, viewed as a formal
deductive system, is as consistent as the classical Euclidean geometry.
The question then arises, which of the two is to be preferred as a descrip-
tion of the geometry of the physical world? As we have already seen,
experiment can never decide whether there is tut one or whether there
are infinitely many straight lines through a point and parallel to a given
line. In Euclidean geometry, however, the sum of the angles of any
triangle is 180°, while it can be shown that in hyperbolic geometry the
sum is less than 180°. Gauss accordmgly performed an experiment to
settle the question. He d the angles in a triangle
formed hy three fairly distant mountain peaks, and found the angle-sum
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to be 180°, within the limits of experimental error. Had the result been
noticeably less than 180°, the consequence would have been that hyper-
bolic geometry is preferable to describe physical reality, But, as it
turned out, nothing was settled by this experiment, since for small tri-
angles whose sides are only a few miles in length the deviation from
180° in the hyperbolic geometry might be so small as to have been un-
detectable by Gauss's insti ts. Thus, although the 1 was
inconclusive, it showed that the Euclidean and hyperbolic geometries,
which differ widely in the large, coincide so closely for relatively small
figures that they are experimentally equivalent. Therefore, as long
as purely local properties of space are under consideration, the choice
between the two geometries is to be made solely on the basis of simplicity
and convenience. Since the Euclidean system is rather simpler to
deal with, we are justified in using it exclusively, as lor~ as fairly small
distances (of a few million miles!) are under consideration. But we
should not necessarily expeet it to be suitable for describing the universe
as a whole, in its largest aspects. The situation here is precisely
analogous to that which exists in physics, where the systems of Newton
and Einstein give the same results for small distances and velocities,
but diverge when very large magnitudes are involved.

The revolutionary importance of the discovery of non-Euclidean
geometry lay in the fact that it demolished the notion of the axioms
of Euclid as the immutable mathematical framework into which our
experimental knowledge of physical reality must be fitted.

4. Poincaré’s Model

The mathematician is free to consider a “geometry” as defined by any
set of consistent axioms about “points,” “‘straight lines,” etc.; his in-
vestigations will be useful to the physicist only if these axioms corre-
spond to the physical behavior of objects in the real world. From this
point of view we wish to examine the meaning of the statement “light
travels in a straight line.” If this is regarded as the physical definition
of “straight line,” then the axioms of geometry must be so chosen as to
correspond with the behavior of light rays. Let us imagine, with Poin-
caré, a world composed of the interior of a circle C, and such that the
velocity of light at any point inside the circle is equal to the distance of
that point from the circamference. It can be proved that rays of light
will then take the form of circular arcs perpendicular at their extremities
o the cireumference €. In such & world, the geometrical properties of
“straight lines” (defined as light rays) will differ from the Euclidean
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properties of straight lines. In partieular, the parallel axiora will not
hold, since there will be infinitely many “straight lines” through any
point which do not interseet a given “straight line.” As a matter of
fact, the “points” and “straight lines” in this world will have exactly
the geometrical properties of the “points” and “lines” of the Klein
model. In other words, we shall have a different model of a hyper-
bolic geometry. But Euclidean geometry will also apply in this world;
instead of being non-Euelidean “straight lines,” the light rays would
Le Euclidean circles perpendicular to C. Thus we see that different
systems of geometry can describe the same physical situation, provided

Fir, 112, Poincaré's non-Euclidean model.
that the physical objects (in this case, light rays) are correlated with
different coneepts of the two systems:

light ray — “straight line”—hyperbolic geometry

light ray — “circle”—Euclidean geometry.
Since the concept of a straight line in Euclidean geometry corresponds
to the behavior of a light ray in a homogeneous medium, we would
say that the geometry of the region inside C is hyperbolic, meaning only
that the physical properties of light rays in this world correspond to the
properties of the “straight lines” of hyperbolic geometry.

5. Elliptic or Riemannian Geometry

In Euclidean geometry, as well as in the hyperbolic or Bolyai-
Lobachevskian geometry, the tacit assumption is made that the line is
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infinite (the infinite extent of the line is essentially tied up with the
concept and the axioms of “betweenness”). But after hyperbolic
geometry had opened the way for freedom in constructing geometries,
it was only natural to ask whether different non-Euclidean geometries
could be constructed in which a straight line is not infinite but finite
and closed. Of course, in such geometries not only the parallel pos-
tulate, but also the axioms of “betweenness” will have to be abandoned.
Modern developments have brought out the physical importance of
these geometries. They were first considered in the inaugural address
delivered in 1851 by Riemann upon his admission as an unpaid in-
structor (“Privat-Docent”) at the University of Goettit.zen, Geome-
tries with closed finite lines ean be constructed in a completely consistent

Fig. 113. “"Struight lines” in & Riemannien geometry.

way. Let us imagine & two-dimensional world consisting of the surface
8 of a sphere, in which we define “straight line” to mean great circle of
the sphere. This would be the natural way to describe the world of a
navigator, since the arcs of great cireles are the curves of shortest length
between two points on a sphere and this is a characteristic property of
straight lines in the plane. In such a world, every two “straight lines”
interseet, so that from an external point #o line ean be drawn parallel
to {iLe. not intersecting) a given “straight line.” The geometry of
“straight lines” in this world is called an elliptic geometry. In this
geometry, the distance between two points is measured simply by the
distance along the shorter arc of the great circle connecting the points.
Angles are measured as in Fuclidean geometry.  We generally consider
as typical of an elliptic geometry the fact that no parallel exists to a line.
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Following Riemann, we can generslize this geometry as follows. Let
us consider a world consisting of .a curved surface in space, not neces-
sarily a sphere, and let us define the “straight line” joining any two
points to be the curve of shortest length or “geodesic” joining these
points. The points of the surface can be divided into two classes:—1.
Points in the neighborhood of which the surface is like a sphere in that
it lies wholly on one side of the tangent plane at the point. 2. Points
in the neighborhood of which the surface is saddle-shaped, and lies on
both sides of the tangent plane at the point. Points of the first kind

Fig. 114, Elliptic point.

are called elliptic points of the surface, since, if the tangent plane is
shifted slightly parallel to itself, it intersects the surface in an elliptical
curve; while points of the second kind are called hyperbolic, since,
if the tangent plane is shifted slightly parallel to itself, it intersects the
surface in £ curve resembling a hyperbola. The geometry of the geo-
desic “straight lines” in the neighborhood of a point of the surfaceis
elliptic or hyperbolic according as the peint is an elliptic or hyperbolic
point. In such & model of non-Euclidean geometry, angles are meas-
ured by their ordinary Euclidean value.

This idea was developed by Riemann, who considered a geometry of
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space analogous to this geometry of a surface, in which the “curvature”
of space may change the character of the geometry from point to point.
The “straight lines” in a Riemannian geometry are the geodesics. In
Einstein’s general theory of relativity the geometry of space is a Rie-
mannian geometry, light travels along geodesics, and the curvature of
space is determined by the nature of the matter that fills it.

From its origin in the study of axiomatics, non-Euclidean geometry
has developed into an exceedingly uscful instrument for application to
the physical world. In the theory of relativity, in optics, and in the
general theory of wave proragation, a non-Euclidean deseription of
phenomena is sometimes far more adequate than a Euelidean ore.

Fig. 118, Hyperholic point.

APPENDIX
*GEOMETRY IN MORE THAN THREE DIMENSIONS
1. Introduction

The “real space” that is the medium of our physical experience has
three dimensions, the plane has two dimensions, and the line one, Our
spatial intuition in its ordinary sense is definitely limited to three
dimensions. 8till, on many occasions it is quite convenient to speak
of “spaces” having four or more dimensions. What is the meaning of
an n-dimensional space when 7 is greater than three, and what purposes
can it serve? An answer can be given from the analytic as well as from
the purely geometric point of view, The terminology of n-dimensional
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ded f

space may be merely 8s a suggestive geometric for
mathematical ideas that are no longer within reach of ordinary geometric
intuition, We shall give a brief indication of the simple considerations
that motivate and justify this language.

2. Analytic Approach

We have already remarked on the inversion of meaning which came
about in the course of devel of analytic geometry. Points, lines,
curves, etc. were originally considered to be purely “geometrical”
entities, and the task of analytic geometry was merely to assign to them
systems of numbers or equations, and to interpret or to develop geometri-
cal theory by algebraic or analytic methods. In the course of time the
opposite point of view began increasingly to assert itself. A number x,
or a pair of numbers z, ¥, or a triple of numbers z, y, z were considered
s the fundamental objects, and these analytic entities were then “visual-
ized” as points on a line, in a plane, or in space. From this point of
view zeometrical language serves only to state relations hetween
numbers. We may discard the primary or even the independent char-
acter of geometrical objects by saying that a number pair z, y ¢s a point,
in the plane, the set of all number pairs z, y that satisfy the lincar
equation L(z, y) = ez + by + ¢ = 0 with fixed numbers a, b, ¢ is &
line, ete. Similar definitions may be made in space of three dimensions.

Even if we are primarily interested in an algebraic problem, it may
be that the language of geometry lends itself to an adequate brief de-
scnptlon of it, and that geometrical intuition suggests the appropriate

For le, if we wish to solve three simul-
taneous hnear equations for three unknown quantities z, y, 2

Liz,y,2) =ax +by +cz +d =90

Lzx,y,2) =a'z + ¥y +cz +d =0

L2, y,2) = @'z + b7y + ¢ + 4" = 0,
we may visualize the problem as that of finding the point of intersection
in three dimensional space Ry of the three planes defined by the equa-
tions L = 0, L' = 0, L” = 0. Again, if we are considering only the
number pairs z, y for which > 0, we may visualize them as the half-

plane to the right of the z-axis. More generally, the totality of number
pairs z, y for which

Ly =a+by+d>0
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may be visualized as a half-plane on one side of the line L = 0, and the
totality of number triples z, y, z for which

Lz, y,2) =ax+by+ecz+d>0
may be visualized as the “half-space” on one side of the plane
Lz, y,2) = 0.
The i ducti

"

of a “f 1 space” or even an “n-dimen-
sional space” is now quite natural. Let us consider a quadruple of
numbers x, ¥, z, t. Such a quadruple is said to be represented by, or
simply, to be a point in four-dimensional space R,. More generally,
& point of n-dimensional space R, is by definition simply an ordered set
of n real numbers z, , #3, +++ , Z,. It does not matter that we cannot
visualize such a point. The geometrical language remains just as

ggestive for algebraic properties involving four or n variables. The
reason for this is that many of the algebraic properties of linear equa-
tions, etc. are essentially independent of the number of variables in-
volved, or, as we may say, of the dimension of the space of the
varisbles. For example, we call “hyperplane” the totality of all points
%y, %2, -, T, in the n-dimensional space R, which satisfy a linear
equation

Lizy, 22, -2y = et aazs + -+ + @t + b= 0.

Then the fundamental algebraje problem of solving a system of n linear
equations in n unknowns,

Lifxy, 22, -+ ,2.) = 0

Loz, 22, -+

La{zy, Ty, -+

is stated in geometrical language as that of finding the point of inter
section of the n hyperplanes Ly = 0, Ly = 0, --+ , L, = 0.

The advantage of this geometrical mode of ezpression is only that it
emphasizes certain algebrae features which are independent of n and which
are capable of visualization for n < 3. In many applications the use of
such a terminology has the advantage of abbreviating, facilitating, and
directing the intrinsically analytic considerations. The theory of rela-
tivity may be mentioned as an example where important progress was
attained by uniting the space codrdinates z, ¥, #z and the time codrdinate
tof an “event” into a four-di ional “‘space-time” ifold of number
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quadruples z, y, 2, . By the introduction of a non-Euclidean hyper-
bolic geemetry into this analytic framew ork, it became poss:ble to de-
seribe many otherwise complex si with

Similar advantages have accrued in mechanics and statistical physi sxcs,
as well as in purely mathematical fields.

Here are some examples from mathematics. The totality of all circles
in the plane forms & three-dimensional manifold, because a circle with
center z, ¥ and radius ¢ can be represented by a point with the co-
ordinates z, y, t. Since the radius of a circle is a positive number, the
totality of points representing circles fills out a half-spsce. In the
same way, the totality of all spheres in ordinary three-dimensional space
forms a four-dimensional manifold, since each sphere with center
2, ¥, z and radius ¢ can be represented by a point with coérdinates
z, ¥, z, &. A cube in three-dimensional space with edge of length 2,
sides parallel to the cobrdinate planes, and center at the origin, consists
of the totality of all points 2y, 7., 2 for which |2 < I, |2s] < 1,
|2z} < 1. In the same way a “cube” in n-dimensional space R, with
edge 2, sides parallel to the codrdinate planes, and center at the origin,
is defined as the totality of points 21, 22, + -+ , 2, for which simultane-
ously

lmi<t, [ESE- S TR E -5 N
The “surface” of this cube consists of all points for which at least one
equality sign holds. The surface elements of dimension n — 2 consist
of those points where at least fwo equality signs hold, ete.

Ezercise: Describe the surface of such a cube in the three-, four-, and n-dimen-
sional cases.

*3. Geometrical or Combinatorial Approact

‘While the analytical approach to n-dimensional geometry is simple and
well adapted to most applications, there is another method of procedure
which is purely geometrical in character. Itisbased on areduction from
n-to (n — 1)-dimensional data that enables us to define geometry in
higher dimensions by a process of mathematical induction.

Let us start with the boundary of a triengle ABC in two dimensions.
By cutting the closed polygon at the point C and then rotating AC and
BC into the line AB we obtain the simple straight figure of Figure 116
in which the point C appears twice. This one-dimensional figure gives
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& complete representation of the boundary of the two dimensional
triangle. By bending the segments AC and BC together in a plane, we
can make the two points C coincide again. But, and this is the im-
portant point, we need not do this bending. We need only agree to
“identify,” i.e. not to distinguish between, the two points C in Figure
116, even though they do not actually coincide as geometrical entities
in the naive sense. We may even go a step farther by taking the three
segments apart at the points 4 and B, obtaining & set of three segments
CA, AB, BC which can be put together again to form a “‘real” triangle
by making the identified pairs of points coincide, This idea of identi-
fying different points in & set of segments to form a polygon (in this
case & triangle) is sometimes very practical. If we wish to ship a

HN n

¢

[,

c A
Fig. 118, Triangle defined by segmenta with codrdinated ends.

complicated framework of steel bars, such as the framework of & bridge,
we ship it in single bars and mark by the same symbol those endpoints
which are to be connected when the framework is put together in space
'The system of bars with marked endpoints is a of
the spatial framework. This remark suggests the way to reducc a two-
dimensional polyhedron in three-dimensional space to figures of lower
dimensions. Let us take, for example, the surface of a cube (Fig. 117).
It can be immediately reduced to a system of six plane squares whose
boundary segments are appropriately identified, and in another step to
agystem of 12 straight with their endpoints properly identified

In general, any polyhedron in three-dimensional space P. can be re-
duced in this way either to a system of plane polygons, or to a system
of straight segments.
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Exercise; Carry out this reduction for all the regular polybedra (see p. 237).

It is now quite clear that we can invert our reasoning, defining a
polygon in the plane by a system of straight segments, and a polyhedron
in Ra by a system of polygons in R; or again, with & further reduction,
by a system of straight segments, Hence it is natural to define a
“polyhedron” in four-dimensional space R by a system of polyhedra
in B; with proper identification of their two-di ional faces; polyhedra
in Ry by systems of polyhedra in Ry, and so on. Ultimately we can
reduce every polyhedron in R, to a system of straight segments.

8 7
il
8 4 3 7 8
B i il )'4
s 1 2 3 5
v
4 3 8 4 |3 7 5 s
I 4 o Jormre0 5 300 7
1 2 5 3 l2 5, 200§ 40 §
7 BRG GRE 7 1 4
30— 04§07
4 v v
o0 2 7 Omng §
6 s] 2f s 3 . R

Fig. 137, Cube defined by codrdination of vertices and edgon.

Tt is not possible here to develop this subject much further. Only a
few remarks without proof may be added. A cube in Ry is bounded
by 8 three-di ional cubes, each identified with a “neighbor” along
8 two-dimensional face. The cube in Ry has 16 vertices, in each of
which four of the 32 straicht edges meet. In R, there are six regular
polyhedra. Besides the “cube” there is one bounded by 5 regular
tetrahedra, one bounded by 16 tetrahedra, one bounded by 24 octahedra,
one bounded by 120 dodecahedra, and one bounded by 600 tetrahedra.
For n > 4 dimensions it has been proved that only 3 regular polyhedra
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are possible: one with n + 1 vertices bounded by » + 1 polyhedra in
R._1 with n sides of (n — 2) dimensions; one with 2" vertices bounded
by 2n polyhedra in R,_, with 2n — 2 sides; and one with 2n vertices and
2" polyhedra of n sides in R,., as boundaries.

* Ezercise: Compare the definition of the cube in R, given in Artiele 2 with the
definition given in this article, and show that the “ana]ymsl” deﬁmmn o( t.he
- surface of the cube of Article 2 is eq to the
of this article,

From the structural, or “combinatorial,” point of view, the simplest
geometrical figures of dimension 0, 1, 2, 3 are the point, the segment,
the triangle, and the tetrahedron, respectively. In the interests of a
uniform notation let us denote these figures by the symbols 7y, Ty,

Fig. 118, The simpleet elemer®, in 1, 2, 3, 4 dimenaions.

Ta, Ty, respectively. (The subscripts denote the dimension.) The
structure of each of these figures is described by the statement that
each 7', contains n + 1 vertices and that each subset of ¢ + 1 vertices
of aPn(f=0,1,..., n) determines a T;. For example, the three-
dimensional tetrahedron Ty contains 4 vertices, 6 segments, and 4
triangles.

It is clear how to proceed. We define a four-dimensional “tetrahe-
dron” Ty as & set of five vertices such that each subset of four vertices
determines a 7's, each subset of three vertices determines a T, ete.
The schematic diagram of 7' is shown in Figure 118. We see that 7
contains 5 vertices, 10 segments, lO trmngles, and 5 tetrahedra.

The lization to » di is From the theory

of combinations it is known that there are exactly C%
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(v

different subsets of 7 objects each-that can be formed from a given set

of r objects. Hence an n-dimensional “tetrahedron” contains

M =n+1 vertices
art _ (4 1!

;7 = W = 1)1 segments

ot = 5%.1._1—2%1 triangles

ot =

(fwi»l)!l s,

Cciii=1 T's.

(Td's),
(T7s),

(Ty's),

Ezercise: Draw & diagram of T end determine the number of different 74's it

contains, for i w0, 1, <+, 5.




CHAPTER V
TOPOLOGY

INTRODUCTION

In the middle of the nineteenth century there began a completely new
development in geometry that was soon to become one of the great
forces in modern mathematics. The new subject, ealled analysis situs
or topology, has as its object the study of the properties of geometrical
figures that persist even when the figures are subjected to deformations
80 drastic that all their metric and projective properties are lost.

One of the great geometers of the time was A. F. Moebius (1790-1868),
& man whose lack of self-assertion destined him to the earcer of an
insignificant astronomer in a second-rate German observatory. At the
age of sixty-cight he submitted to the Paris Academy a memoir on
“‘one-sided” surfaces that contained some of the most surprising facts of
this new kind of geometry. Like other important contributions before
it, his paper lay buried for years in the files of the Academy until it was
eventually made public by the author. Independently of Moebius, the
astronomer J. B. Listing (1808-1882) in Goettingen had made similar
discoveries, and at the suggestion of Gauss had published in 1847 a little
book, Vorstudien zur Topologie. When Bernhard Riemann (1826-1866)
came to Goettingen as a student, he found the mathematical atmosphere
of that university town filled with keen interest in these strange new
geometrical ideas. Soon he realized that here was the key to the under-
standing of the deepest properties of analytic functions of & complex
variable. Nothing, perhaps, has given more impetus to the later de-
velopment of topology than the great structure of Riemann’s theory of
functions, in which topological concepts are absolutely fundamental.

At first, the novelty of the methods in the new ficld left mathemati-
cians no time to present their results in the traditional postulational
form of elementary geometry. Instead, the pioncers, such as Poincaré,
were forced to rely largely upon geometrical intuition. Xven today a
student of topology will find that by too much insistence on a rigoro....
form of presentation he may easily lose sight of the essential geometrical
content in a mass of formal detail. Still, it is a great merit of recent

238
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work to have brought topology within the framework of rigorous mathe-
maties, where Wtuition remains the source but not the final validation
of truth. During this proeess, started by L. E. J. Brouwer, the sig-
nificance of topology for almost the whole of mathematics has steadily
increased. American mathematicians, in particular O. Veblen, J. W.
Alexander, and 8. Lefschetz, have made important contributions to the
subject,

While topology is definitely a ercation of the last hundred years, there
were 8 few isolated carlier discoveries that later found their place in
the modern systematic development. By far the most important of
these is a formula, relating the numbers of vertices, edges, and faces
of a simple polyhedron, observed as early as 1640 by Descartes, and
rediscovered and used by Euler in 1752. The typical character of this
relation as a topological theorem became apparent much later, after
Poincaré had recognized “Fuler’s formuls” and its generalizations as
one of the central theorems of topology. So, for reasons both historical
and intrinsic, we shall begin our discussion of topology with Euler's
formula. Since the ideal of perfect rigor is neither necessary nor de-
sirable during one’s first steps in an unfamiliar field, we shall not hesitate
from time to time to appeal to the reader’s geometrical intuition.

§1. EULER'S FORMULA FOR POLYHEDRA
Although the study of polyhedra held a central place in Greek geome-
try, it remained for Descartes and Euler to discover the following fact:
In a simple polyhedron let V denote the number of vertices, E the
number of edges, and ¥ the number of faces; then always
(1) V—E+F=2

> consists of a number of

By & polyhedron is meant a solid whos
polygonal faces. In the case of the regular solids, all the polygons arc
congruent and all the angles at vertices are equal. A polyhedron iz
stmple if there are no “holes” in it, so that its surface can be deformed
continuously into the surface of u sphere.  Figure 120 shows a simple
polyhedron which is not regular, while Figure 121 shows a polyhedron
which is not simple.

The reader should eheck the fact that Buler's formuln holds for the
simple polyhedra of Figures 119 and 120, but daes not hold for the
polyhedron of Figure 121.

To prove Kuler's formula, let us imagine the given simple polyhedron
to be hollow, with a surf made of thin rubber. Then if we cut out
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one of the faces of the hollow polyhedron, we can deform the remaining
surface until it stretches out flat on a plane.  Of course, the areas of the

Fig. 119. Tho regutar polybedra.
faces and the angles between the edges of the polyhedron will have

changed in this process. But the network of vertices and edges in the
plane will contain the same number of vertices and edges as did the
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Fig. 120. 1 simple polyhedros, V ~ E+ F w0 - 184+ 1l =3

Fig. 21, A non-simnla polsbedron. V —~ B4 F = 16 ~ 32 4+ 18 = 0.

)
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original polyhedron, while the number of polygons will be one less than
in the original polyhedron, since one face was removed. We shall now
show that for the plane network, V — E + F = 1, so that, if theremoved
face is counted, the result is V — E 4 F = 2 for the original polyhedron.

First we “triangulate” the plane network in the following way: In
some polygon of the network which is not already a triangle we draw a
diagonal. The effect of this is to increase both E and F by 1, thus
preserving the value of V — E + F. We continue drawing diagonals
joining pairs of points (Fig. 122) until the figure consists entirely of
triangles, as it must eventually. In the triangulated network,
V —~ E + F has the value that it had before the division into tri-

4

Fig. 122. Proof of Kular's theorem.

angles, since the drawing of diagenals has not changed it. Some of the
triangles have edges on the boundary of the plane network. Of these
some, such as ABC, have only one edge on the boundary, while other
triangles may have two edges on the boundary. We take any boundary
triangle and remove that part of it which does not also belong to some
other triangle. Thus, from ABC we remove the edge AC and the face,
leaving the vertices 4, B, C and the two edges AB and BC'; while from
DEF we remove the face, the two edges DF and FE, and the vertex F.
The removal of a triangle of type ABC decreases ¥ and ¥ by 1, while V
is unaffected, so that V — E + F remains the same. The removal of a
triangle of type DEF decreases V by 1, E by 2, and F by 1, so that
V — E + F again remains the same. By a properly chosen sequence of
these operations we can remove triangles with edges on the boundary
(which changes with each removal), until finally only one triangle
remains, with its three eZges, three vertices, and one face. For this
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simple network, V. — E + F = 3 — 3 4+ 1 = 1. But we have seen
that by constantly erasing triangles V — E <+ F was not altered.
"Therefore in the original plane network V — E 4 F must equal 1 also,
and thus equals I for the polyhedron with one face missing. We
conclude that V — E + F = 2 for the complete polyhedron. This
completes the proof of Euler’s formula. (See (56), (57), pp. 496-7.)

On the basis of Euler’s formula it is easy to show that there are no more than
five regular polyhedra. For suppose that & regular polyhedron has # faces, each
of which is an n-sided regular pol _.m, and that r edges meet at each vertex.
Ccanting cdges by faces and vertices, we sec that

2) nF = 2E;

for each edge belongs o two faces, and hence is counted twice in the product nf;
moreover,

® 1V = 2E,
sinice each edge has two vertices. Hence from (1) we obtain the equation
mow
PR
or
1 1 1 3
@ RtiTitE

We knosw to begin with that n > 3 and r > 3, since 2 polygon must have at least
three sides, and at least three sides must meet at each polyhedral angle. But
# anid 7 cannot both be greater than three, for then the left hand side of equation
(1) could not exceed 4, which is impossible for any positive value of E. There-
fare, let us see what values 7 may have shen n = 3, and what values n may have
when r = 3. The totality of polyhedra given by these two cases gives the number
of possible regular polyhedra.
For n = 3, equation (4) becomes

11 1,

r 6 E
r can thus equal 3, 4, or 5, (6, or any greater number, is obviously excluded,
since 1/E is always positive.) For theso values of n and 7 we got E = 6, 12, or 30,

to the hedron, , and iz
Likewise, for r = 3 we obtain the equation
1 1 1
nT 6T F

from which it follows that » = 3, 4, or 5, and E = 6, 12, or 30, rcspcchvo]y Those
values correspond rcspuuvely to the cube, and d;
Bubstituting these values for n, r, and ¥ in equations (2) and (3), we obtain the
numbers of vertices and faces in the corresponding polyhedra,
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§2. TOPOLOGICAL PROPERTIES OF FIGURES
1. Topological Properties

We have proved that the Euler formula holds for any simple polyhe-
dron. But the range of validity of this formula goes far beyond the
polyhedra of elementary geometry, with their flat faces and straight
edges; the proof just given would apply equally well to a simple polyhe-
dron with curved faces and edges, or to any subdivision of the surface
of & sphere into regions bounded by curved arcs. Moreover, if we
jmagine the surface of the polyhedron or of the sphere to be made out
of a thin sheet of rubber, the Euler formula will still hold if the surface
is deformed by bending and stretching the rubber into any other shape,
g0~ =3 as the rubber is not torn in the process. For the formula is
concerned only with the numbers of the vertices, edges, and faces, and
not with lengths, areas, strmghmess, cross-ratios, or any of the usual

ts of tary or projective geometry.

\\e recall that elementary geometry deals with the magnitudes
(length, angle, and arca) that are unchanged by the rigid motions,
while projective geometry deals with the concepts (point, line, incidence,
and cross-ratio) which are unchanged by the still larger group of projec-
tive transformations. But the rigid motions and the projections are
pecial cases of what are called topological transformations:
I transformation of one geometrical figure 4 into another
figure A’ is given by any correspondence

Py
between the points p of 4 and the puints p’ of A’ which has the follow-
ing two properties:

1. The correspondence is hiunique This means that to each point
pof A corresponds just one point p’ of A’, and conversely.

2. The co is i in both directions. This means
that if we take any two points p, ¢ of 4 and move p so that the distance
between it and ¢ approaches zero, then the distance between the cor-
responding points p’, ¢’ of A" will also approach zero, and conversely.

Any property of a geometrical figure 4 that holds as well for every
figure into which 4 may be transformed by a topological transformation
is called a topalogical property of A, and topology is the branch of geometry
which deals only with the topological properties of figures. Imagine a
figure to be copied “free-hand” by a conscientious but inexpert drafts-
man who makes straight lines eurved and alters angles, distances and
areas; then, although the metric and projective propertics of the original
figure would be lost, its topological properties would remain the same.
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The most intuiti les of general tions
are the deformations. Imagine a figure such as a sphere or a triangle
to be made from or drawn upon a thin sheet of rubber, which is then
stretehed and twisted in any manner without tearing it and without
bringing distinet points into actual coincidence. (Bringing distinet,
points into coincidence would violate condition 1. Tearing the sheet
of rubber would violate condition 2, since two points of the original
figure which tend toward coincidence from opposite sides of a line along
which the sheet is torn would not tend towards coincidence in the torn
figure.) The final position of the figure will then be a topological image
of the original. A triangle can be deformed into any other triangle or

Fig. 123. Topologically equivalent sutfaces.

Fig. 124. Topologically non-equivalent surfaces.

into & circle or an ellipse, and hence these figures have exactly the same
topological properties. But one cannot deform a circle into a line seg-
ment, nor the surface of & sphere into the surface of an inner tube.

The general concept of topological transformation is wider than the
coneept of deformation. For example, if & figure is eut during & de-
formation and the edges of the cut sewn together after the deformation
in exactly the same way as before, the process still defines a topological
transformation of the original figure, although it is not a deformation.
Thus the two curves of Figure 134 (p. 256) are topologically equivalent
to each other or to a circle, since they may be cut, untwisted, and the
cut sewn up. But it is impossible to deform one curve into the other
or into a circle without first cutting the curve.

Topological properties of figures (such as are given by Euler’s theorem
and others to be discussed in this section) are of the greatest interest
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and importance in many mathematical investigations. They are in &
sense the deepest and most fundamental of all geometrical properties,
since they persist under the most drastic changes of shape.

2, Connectivity

As another example of two figures that are not topologically equiva~
lent we may consider the plane domains of Figure 125. The first of

a b
Fig. 125. Simple and double connectivity.

Fig. 126. Cutting a doubly connected domain Lo make it simply connected.

these consists of all points interior to a circle, while the second consists
of all points contained between two concentric circles. Any closed
curve lying in the domain a can be continuously deformed or “shrunk”
down to a single point within the domain. A domain with this property
is said to be simply connected. The domain b is not simply connected.
For example, a circle concentric with the two boundary circles and mid-
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way between them cannot be shrunk to a single point within the domain,
since during this process the curve would necessarily pass over the center
of the circles, which is not a point of the domain. A domain which is
rot simply connected is said to be multiply connected. If the multiply
connected domain b is cut along a radius, as in Figure 126, the resulting
domain is simply connected.

More generally, we can construct domains with two, three, or more
“holes,” such as the domain of Figure 127. In order to convert this
domain into a simply connected domain, two euts are necessary. If

Fig. 127. Reduction of » triply connecled domsin,

n — 1 non-intersecting cuts from houndary to boundary are needed to
convert a given multiply connected domain D into a simply connected
domain, the domain D is said to be n-tuply connected. The degree of
connectivity of a domain in the plane is an important topological
invariant of the domain,

§3. OTHER EXAMPLES OF TOPOLOGICAL THEOREMS
1. The Jordan Curve Theorem

A simple closed curve (one that does not intersect itself) is drawn
in the plane. What property of this figure persists even if the plane is
regarded as & sheet of rubber that can be deformed in any way? The
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length of the curve and the area that it encloses can be changed by a
deformation. But there is a topological property of the configuration
which is so simple that it may seem trivial: 4 simple closed curve C in
the plane divides the plane into ezactly two domains, an inside and an
ouiside. By this is meant that the points of the plane fall into two
classes—A, the outside of the curve, and B, the inside—such that any
pair of points of the same class can be joined by a curve which does not
cross C, while any curve joining a pair of points belonging to different
classes must cross C. This statement is obviously true for a circle or
an ellipse, but the seli-evidence fades a little if one contemplates a
complicated eurve like the twisted polygon in Figure 128,

Fig. 128, Which points of the plane are inside this potygon?

This theorem was first stated by Camille Jordan (1838-1922) in his
famous Cours &’ Analyse, from which a whole generation of mathema-
ticians learned the modern concept of rigor in analysis. Strangely
enough, the proof given by Jordan was neither short nov simple, and
the surprise was even greater when it turned out that Jordan's proof
was invalid and that considerable effort was necessary to fill the gaps in
his reasoning. The first rigorous proofs of the theorem were quite
complicated and hard to understand, even for many well-trained mathe-
maticians. Only recently have comparatively simple proofs been
found. One reason for the difficulty lies in the generality of the concept,
of “simple closed curve,” which is not restricted to the class of polygons
or “smooth” curves, but ineludes all curves which are topological
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images of & circle. On the other hand, many concepts auch as “inside,"”
“‘outside,” etc., which are so clear to the intuition, must be made precise
before a rigorous proof is possible. 1t is of the highest theoretical im-~
portance to analyze such concepts in their fullest generality, and much
of modern topology is devoted to this task. But one should never
forget that in the great majority of cases that arise from the study of
conercte geometrical phenomena it is quite beside the point to work
with coneepts whose extreme generality creates unnecessary difficulties,
As a matter of fact, the Jordan curve theorem is quite simple to prove
for the reasonably well-behaved curves, such as polygons or curves with
continuously turning tangents, which occur in most important problems.
‘We shall prove the theorem for polygons in the appendix to this chapter.

2. The Four Color Problem

From the example of the Jordan curve theorem one might suppose
that topology is concerned with providing rigorous proofs for the sort
of obvious assertions that no sane person would doubt. On the con-
trary, there are many topological questions, some of them quite simple
in form, to which the intuition gives no satisfactory answer. An example
of this kind is the renowned “four color problem.”

Fig. 129, Coloriog 8 may.

In coloring a geographical map it is customary to give different colors
0 any two countries that have a portion of their boundary in common.,
It has been found empirically that any map, no matter how many
countries it contains nor how they are situated, can be so colored by
using only four different colors. It is easy to see that no smaller number
of colors will suffice for all cases. Figure 129 shows an island in the sea
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that certainly cannot be properly colored with less than four colors,
since it contains four countries, each of which touches the other three.

The fact that no map has yet been found whose coloring requires
more than four colors suggests the following mathematical theorem:
For any subdivision of the plane into non-overlapping regions, it is always
possible to mark the regions with one of the numbers 1,2, 3, 4 in such a way
that no twoe adjacent regions receive the same number. By “‘adjacent”
regions we mean regions with a whole segment of boundary in common;
two regions which meet at a single point only or at a finite number of
points (such as the states of Colorado and Arizona) will not be ealled
ac_ _ent, since no confusion would arise if they were colored with the
same color.

The problem of proving this theorem seems to have been first pro-
posed by Moebius in 1840, later by DeMorgan in 1850, and again by
Cayley in 1878. A “proof” was published by Kempe in 1878, but in
1890 Heawood found an error in Kempe's reasoning. By a revision of
Kempe’s proof, Heawood was able to show that five colors are always
sufficient. (A proof of the five color theorem is given in the appendix
to this chapter.) Despite the efforts of many famous mathematicians,
the matter essentially rests with this more modest result: It has been
proved that five colors suffice for all maps and it is congectured that four
will Hikewise suffice. But, as in the case of the famous Fermat theorem
(see p. 42), neither a proof of this conjecture nor an example contra-
dieting it has been produced, and it remains one of the great unsolved
problems in mathematics. The four color thecrem has indeed been
proved for ali maps containing less than thirty-eight regions. In view
of this fact it appears that even if the general theorem is false it cannot
be disproved by any very simple example.

In the four color problem the maps may be drawn either in the plane
or on the surface of a sphere. The two cases are equivalent: any map
on the sphere may be represented on the plane by boring a small hole
through the interior of one of the regions 4 and deforming the resulting
surface until it is flat, as in the proof of Euler’s theorem. The resulting
map in the plane will be that of an “island” consisting of the remaining
regions, surrounded by a “sea’’ consisting of the region 4. Conversely,
by & reversal of this process, any map in the plane may be represented
on the sphere. We may therefore confine ourselves to maps on the
sphere. Furthermore, since deformations of the regions and their
boundary lines do not affect the problem, we may suppose that the
boundary of each region is a simple closed polygon composed of circular
arcs. Even thus “regularized,” the problem remains unsolved; the
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difficulties here, unlike those involved in the Jordan curve theorem, do
not reside in the generality of the concepts of region and curve.

A remarkable fact connected with the four color problem is that for
surfaces more complicated than the plane or the sphere the correspond-
ing theorems have actually been proved, so that, paradoxically enough,
the analysis of more complicated geometrical surfaces appears in this
respect to be easier than that of the simplest cases. For example, on
the surface of & torus (see Figure 123), whose shape is that of a doughnut
or an inflated inner tube, it has been shown that any map may be colored
by using seven colors, while maps may be constructed containing seven
regions, each of which touches the other six.

*3. The Concept of Dimension

The concept of dimension presents no great difficalty 8o tong as one deals only
with simple geometric figures such as points, lines, triangles, and polyhedra. A
single point or any finite st of points has dimension zero, a line segment is one-
dimensional, and the surface of a triangle or of a sphere two-dimensional. The
set of points in s solid cube is three-dimensionr'. But when one attempts to
extend this concept to more general point sets, the need for a precise definition
arises. What dimension should b~ <esirned to the point set R consisting of all
points on the z-axis whose cobrdina: vs are rational numbers? The set of rational
points is dense on the line and might therefore be considered to be ome-
dimensional, like the line itself. On the other hand, there are irrat’~nal gaps
between any pair of rational points, as between any two points of a finite point
set, 50 that the dimension of the set £ might also be considered to be zero,

An even more knotty problem arises if one tries to assign a dimension to the
following eurious point set, first considered by Cantor, From the unit segment
remove the middle third, consisting of all points z such that 1/3 < 2 < 2/3.
Call the remaining set of points C1. Now from € remove the middle third of
each of its two segments, leaving a set which we eall C2. Repeat this process by
removing the middie third of each of the four intervals of Cy, leaving a set (s,

Fig. 130. Cantor's point. net.
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and proceed in this manner to form sets Cu, Ca, Co, -+ . Denote by € the set
of points on the unit segment that are left after sli these intervals have been
removed, ie. C is the set of points common to the infinite scquenco of sets
€y, Cr, - . Since one interval, of length 1/3, was removed at the first step;
two intervals, each of length 1/3%, at the second step; ete.; the total length of the
segments removed it

1 1 1 1 2 2\
Lot 2g b ag - 5(x + (Q) +(5) + )

The infinite series in parentheses is 7 geometrical serics whose sum i
1/(1 — 2/3) = 3; hence the total length of the segments removed is 1. Still there
remain points in the set €. Such, for oxample, are the points 1/3, 2/3, 179, 2/,
7/9, 8/0. -+ , by which the successive segments are trisocted. As & matter of
fact, it is easy to show that C will consist precisely of all those points + whose
expansions in the form of infinite triadic fractions can be written in the form

a a
z= +3,+5 okl
where each ; is either 0 or 2, while the triadic expansion of every point removed
will have at least one of the numbers a; equel to 1.

What shall be the dimension of the set (7 The diagonal process used to prove
the non-denumerability of the set of alt real numhers can be so modified as to
yield the same result for the set €. ft would scem, therefore, that the set €
should be one-dimensional. Yet  oontains no complete interval, o matter how
small, 5o that € might also be thought of as zero-dimensional, like & finite set of
points. In the same spirit, we might ask whether the set of points of the plane,
abtained by crecting at each rational point or at each point of the Gantar set C
& sogment of unit lengéh, should be considered to be ane-dimensional or two-
dimensional.

Tt wes Poinoaré wha (in 1912) ficst called attontion to the need for & deeper
analysis and a precise definition of the concept of dimensionality. Poincaré
observed that the fine is one-dimensional hecause we may separate any bwo points
on it by eutting it at & single point (which is of dimension 0}, while the plane is
two-dimensional because in order to separate a pair of points in the planc we must
cut out & wholo closed curve (of dimension 1). This suggests the inductive
nature of lity: a space is 1if any two points may be
separated by removing an (n — 1)-dimensional subset, and if a lower-dimensional
subsct, will not always suffics. An inductive dofinition of dimensionality is also
contained implicitly in Buclid's Elements, where a one-dimensional figure is some-
thing whose boundary consists of points, a two-dimensional figure one whose
boundary consists of eurves, and a three-dimensional figure one whose boundary
consists of surfaces.

In recent years an extensive theory of dimension has been developed. One
dofinition of dimension begins by_making precise the concept “point set of di-
mensiot 0. Any finite set of points has the property that each point of the set
can be enclosed in & region of space which can be made as small ss we please, and
swhich contains o points of the set on its boundsry. This property is now taken
ss the definition of O-dimensionality, For convenience, we say that an empty
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sef, containing no points at all, has dimension —1. Then & point set S is of di-
mension 0 it is vot of dimension —1 (i.e. if § com' ins at least one point), and if
each paint of  can be eaclosed within an arbitrarily small region whose boundary
intersects S in a set of dimension —1 (i.e. whose bouadary contains 1o pofnts of ),
For example, the set of rational points on the line is of dimension , since each
rational point can be made the center of an arbitrarily small interval with irra-
tional endpoints. The Cantor set C is also seen to be of dimension , since, like
the set of rational points, it is formed by removing & dense set of points from
the line.

So far we have defined only the concepts of dimension —3 and dimension 0,
The definition of dimension | suggests itsclf at once; & set S of points is of di-
mension 1 if it is not of dimension — 1 or 0, and if each point of § can be enclosed
within an arbitrarily small region whose boundary intersects S in a set of dimen-
sion 0. A line segment has this property, since the boundary of any interval is
a pair of points, which is a set of dimension 0 according to the preceding definition.
M. eover, by proceeding in tae same manner, we can successively define the con-
cepts of dimension 2, 3, 4, 5, --- , each resting on the previous definitions. Thus
& set § will be of dimension nif it is not of any lower dimension, and if erch point
of § can be enclosed within an arbitr-rily small region whose boundary intersects
§in a set of dimension n — 1. For example, the planc is of dimension 2, since
each pint of the plane can be enclosed within an arbitrarily small circle, whose
circumference is of dimension 1,1 No point sot in ordinary space can have dimen-
sion higher than 3, since each point of space =~~~ made the center of an arbi-
trarily small sphere whose surface is of dimensio  But in modern mathematics
the word “‘space’ is used to denote any system . objects for which a notion of
““distance” or “neighborhood” is defined (see p. 316), and these abstraot “spaces’”
may have dimensions higher than 3. A simple example is Cariesian n-space,
whose “points” ara ordered arrays of  real numbers:

D= (21, 22, Ta, 0, Tl
LA IURTO8 TSRS 1Y
with the '‘distance” between the points £ and Q defined as
AP, Q = V- ut @
This space may be shown to have dimension 7. A space which does not have
dimension n for any integer n is said to be of dimension infinity. Many examples
of such spaces are known.

One of the most intere irg facts of dimension theory is the following c
acteristic property of two-, three- or, in general, n-dimensional figures. Consider
firet the two-dimensional case. If any simple two-dimensional figure ia suh-
divided into suficiently amall regions (each of which is regarded as including its

ar-

1 This does not purport to be a rigorous proof that the plane is of dimension 2
aceording to our definition, since it assumes that the circumfcrence of a circle is
known to be of dimension 1, and that the plane is known not to be of dimen.ion
Qor 1. Buta proof can be given for these facts and for their anslogs ir higher
dimensions. This proof showa that the dofinition of the dimension of a;  =ral
point set does not contradict ordinary ussge for simple sets.
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boundary), then there will necessarily be points where three or more of these
rezions meet, no matler what the shapes of the regions. In addition, there will eziat
subdivisions of the figure in which each point belonga to at most three regions of
the di . Thus, if the two-di figure is a9 in Figure 131,
then s point will belong to the three regions, 1, 2, and 3, while for this particular
subdivision no point belongs to more than three regions. Similarly, in the three-
dimensional case it mey be proved that, if a volume is covered by sufticiently
small volumes, there always exist points common to at least four of the latter,
while for a properly chosen subdivision no more than four will have a point in
common.

Fig, 131, The tiling theorsm.

These observations suggest the following theorem, due to Lebesgue and
Brouwer: If an n-dimensional figure is covered in any way by sufficiently small
subregions, then there will exist points which belong to at least » + 1 of these
subregions; moreover, it ia always possible to find a covering by arbitrarily smail
regions for which no point will belong to more than n + 1 regions. Because of
the method ul covenng cuns)dcred here, this is known as tho ‘“tiling” theorem.

3 of a i ure: those figures for which
the theorem holda are n-dlmens)ona} while all others are of some other dimen-
sion. For this renson it may be taken as the definition of dimensionality, as is
done by some authors.

The dimension of any set is a topological feature of the set; no two figures of
different dimensions can be topologically equivalent. This is the famous topolo-
gical theorem of “invariance of dimensionality,” which gains in significance by
comparison with the fact stated on page 85, that the set of points in a square has
the same cardinal pumber as the sot of points on a line segment. The correspond-
ence there defiued is not i because the i diti are
violated.

*4. A Fixed Point Theorem

In the applications of topology to other branches of mathematics,
“fixed point” theorems play an important réle. A typical es nple is
the following theorem of Brouwer. It is mueh less obvious to the in-
tuition than most topological facts.
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We consider a circular disk in the plane. By this we mean the region
congisting of the interior of seme circle, together with its circumierence.
Let us suppose that the points of this disk are subjected to any continu-
ous transformation (which need not even be biunique) in which each
point remains within the circle, although differently situated. For
example, a thin rubber disk might be shrunk, turned, folded, stretched,
or deformed in any way, so long as the final position of each point of
the disk lies within its original circumfercnce.  Again, if the liquid in a
glass is set into motion by stirring it in such a manner that particles on
the surface remain on the surface but move around on it to other posi-
tions, then at any given instant the position of the particles on the
surface defines a continuous transformation of the original distribution
of the particles. The theorem of Brouwer now states: Fach such trans-
formation leaves at least one point fixed; that is, there exists at least one
point whose position after the transformation is the same as its original
position. (In the example of the surface of the liquid, the fixed point
will in general change with the time, although for a simpie circular
rotation it is the center that is always fixed.) The proof of the existence
of a fixed point is typical of the reasoning used to establish many topo-
jogical theorems.

Consider the disk before and after the transformation, and assume,
contrary to the statement of the theorem, that no point remains fixed,
so that under the transformation each peint moves to another point

Fig. 132. Tranalormation vestors.

inside or on the circle. To each point P of the original disk attach a
little arrow or “vector’” pointing in the direction PP, where P’ is the
image of P under the transformation. At every point of the disk there
is such an arrow, for every point was assumed to move somewhere else.
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Now consider the points on the boundary of the circle, with their asso-
ciated vectors. All of these vectors point into the circle, since, by as-
sumption, no points are transformed into points outside the circle. Let
us begin at some point Py on the boundary and travel in the counter-
clockwise direction around the circle. As we do so, the direction of
the vector will change, for the points on the boundary have variously
pointed vectors associated with them. The directions of these vectors
may be shown by drawing parallel arrows that issue from a single point
in the plane. We notice that in traversing the circle once from Py

Fig. 133,

around to Py, the vector turns around and comes back to its original
position, Let us call the number of complete revolutions made by this
vector the “index” of the vectors on the circle; more precisely, we
define the index as the algebraic sum of the various changes in angle of
the vectors, so that each clockwise portion of a revolution is taken with
a negative sign, while each counter-clockwise portion is regarded as
positive. The index is the net result, which may a priori be any one
of the numbers 0, =1, 2, +3, - - -, corresponding to a total change in
angle of 0, 360, £720, - -- degrees. We now assert that the inder
equals 1; that is, the total change in the direction of the arrow amounts
to exactly one positive revolution. To show this, we recall that the
transformation vector at any point P on the circle is always directed
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inside the circle and never along the tangent. Now, if this transforma-
tion vector turns through a total angle different from the total angle
through which the fangent vector turns (which is 860°, because the
tangent vector obviously makes one complete positive revolution), then
the difference between the total angles through which the tangent vector
and the transformation vector turn will be some non-zero multiple of
360°, since each makes an integral number of revolutions, Hence the
transformation vector must turn completely around the tangent at
least once during the complete circuit from P; back to Py, and since the
tangent and the transformation vectors turn continuously, at some
point of the circumference the transformation vector must point directly
along the tangent. But this is impossible, as we have seen.

If we now consider any circle concentric with the circumference of
the disk and contained within it, together with the corresponding
transformation vectors on this circle, then the index of the transforma-
tion vectors on this circle must also be 1. For as we pass continuously
from the circumference to any concentric cirele, the index must change

i sy, since the directions of the transf ion vectors vary
continuously from point to point within the disk. But the index can
assume only integral values and therefore must be constantly equal to
its original value 1, since a jump from 1 to some other integer would
be a discontinuity ir. the behavior of the index. (The conclusion that a
quantity that varies continuously but can assume only integral values
is necessarily a constant is a typical bit of mathematical reasoning which
intervenes in many proofs.) Thus we can find a concentric circle as
small as we please for which the index of the corresponding transforma-
tion vectors is 1. But this is impossible, since by the assumed con-
tinuity of the transformation the vectors on a sufficiently small circle
will all point in approximately the same direction as the vector at the
center of the circle. Thus the total net change of their angles can be
made as small as we please, less than 10°, say, by taking a small enough
circle. Hence the index, which must be an integer, will be zero. This
contradiction shows our initial hypothesis that there is no fixed point
under the transformation to be untenable, and completes the proof.

The theorem just proved holds not only for a disk but also for &
triangular or square region or any other surface that s the image of a
disk under a topological transformation, For if A is any figure corre-
lated with a disk by a biunigue and continuous transformation, then a
continuous transformation of A into itself which had no fixed point
would define a continuous transformation of the disk into itself without
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a fixed point, which we have proved to be impossible. The theorem
also holds in three dimensions for solid spheres or cubes, but the proof
is not so simple.

Although the Brouwer fixed point theorem for the disk is not very obvious to
the intuition, it is easy to show that it is an immediate consequence of the follow-
ing fact, the truth of which is intuitively evident: It is impossible to transform
continuously a eircular disk into its circumference alone so that each point of the
ecircumference remains fixed. We shall show that the existence of & fixed-point-
free transformation of a disk into itself would contradict this fact. Suppose
P — P’ were such o transformation; for each point P of the disk we could draw an
arrow starting at P’ and continuing through P until it reached the citoumference
at gome point P*. Then the transformation P — P* would be a continuous
transformation of the whole disk into ite circumference ~'one and would Jeeve
each point of the circumference fixed, contrary to the sssumption that such a
transformation is 1mpossxb}e Similar reasoning may be used to establish the
Brouwer theorem in three d)menmona for the polid sphere or cube.

It jg easy to see that some 1 figures do admit i d-point
free transformations into themselves. For example, the ring-shaped region be-
tween two concentric circles admits as a i fixed-point-free
tion & rotation through any angle not a muluple of 360° about its oenzer The
surface of a sphere admits the conti point-free that
takes each point into its diametrically opposite point. But it may be proved, by
ressoning analogous to that which we have used for the disk, that any continuous
transformation which carries ne point inte its diametrically opposite point {e.g.,
any small deformation) has 2 fixed point.

Fixed point theorems such as these provide a powerful method for the proof
of many mathematical “‘existence theorems” which at first sight may not seem
to be of & geometrical character. A famous example is a fixed point theorem
conjectured by Poinearé in 1912, shortly before his death. This theorem has ag
an immediate consequence the existence of an infinite number of periodic orbits
in the restricted problem of three bodies. Poincaré was unable to confirm his
conjecture, and it was a major achievement of American mathematios when in
the following year G. D. Birkhoff succeeded in giving a proof. Since then topolog-
ical methods have been applied with great success to the atudy of the qualitative
behaviour of dynamical systems,

5. Knots
As & final example it may be pointed out that the study of knots
presents difficult } tical probl of a topological character. A

knot is formed by first looping and interlacing a piece of string and then
joining the ends together. The resulting closed curve represents a ge-
ometrical figure that remains essentially the same even if it is deformed
by pulling or twisting without breaking the string.  But how is it pos-
sible to give an intrinsic ck rization that will distinguish a knotted
closed curve in space from an unknotted curve such as the circle? The
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answer is by no means simple, and still less s0 is the complete mathe-
matical analysis of the various kinds of knots and the differences between
them. Even for the simplest case this has proved to be a sizable task.
Consider the two trefoil knots shown in Figure 134. These two knots
are completely symmetrical “mirror images” of one another, and are
topologically equivalent, but they are not congruent. The problem
arises whether it is possible to deform one of these knots into the other
in a continuous way. The answer is in the negative, but the proof of
this fact requires iderably more knowledge of the hni of
topology and group theory than can be presented here.

Fig. 1. Topologically equivalent kuats that are not deformable into ane aoother.

§4. THE TOPOLOGICAL CLASSIFICATION OF SURFACES
1. The Genus of a Surface

Many simple but important topolopical facts arise in the study of
two-dimensional surfaces. For example, let us compare the surface of
a sphere with that of a torus. It is clear from Figure 135 that the two
surfaces differ in a fundamental way: on the sphere, as in the plane,
every simple closed curve such as C separates the surface into two parts.
But on the torus there exist closed curves such as C* that do not

Fig. 135. Cuts on sphere and torus,
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separate the surface into two parts. To say that C separates the sphere
into two parts means that if the sphere is cut along € it will fall into
two distinet and unconnected pieces, or, what amounts to the same
thing, that we can find two points on the sphere such that any curve
on the sphere which joins them must interseet €. On the other hand,
if the torus is cut along the elosed curve €', the resulting surface still
hangs together: any point of the surface can be joined to any other
point by & curve that does not intersect C'. This difference between
the sphere and the torus marks the two types of surfaces as topologically
distinct, and shows that it is impossible to deform one into the other
in a continuous way.

Next let us consider the surface with two holes shown in Figure 136.
On this surface we can draw fwe non-intersecting closed curves 4 and B
which do not separate the surface. The torus is always separated into
two parts by any two such curves. On the other hand, three closed non-
intersecting curves always separate the surface with two holes.

Fig. 136, A nurface of gt ua 2.

These facts suggest that we define the genus of a surface as the largest
number of non-intersecting simple closed curves that can be drawn on
the surface without separating it. The genus of the sphere is 0, that of
the torus is 1, while that of the surface in Figure 136 is 2. A similar
surface with p holes has the genus p.  The genus is a topological prop-
erty of & surface and remains the same if the surface is deformed.  Con-
versely, it may be shown (we omit the proof) that if two elosed surfaces
have the same genus, then one may be deformed into the other, so that
the genus p = 0, 1, 2, - - - of a closed surface characterizes it completely
from the topological point of v {We are assuming that the surfaces
considered are ordinary “two-sided” closed surfaces. In Article 3 of
this section we shall consider “one-sided” surfaces)) For example,
the two-holed doughnut and the sphere with two “handles” of Figure 137
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are both closed surfaces of genus 2, and it is clear that either of these
surfaces may be continuously deformed into the other. Since the
doughnut with p holes, or its equivalent, the sphere with p handles, is

Fig, 137 Surtaces of genva 2.

of genus p, we may take either of these surfaces as the topological
representative of all closed surfaces of genus p.

*2. The Euler Characteristic of a Surface

Suppose that a closed surface 8§ of genus p is divided into a number
of regions by marking a number of vertices on § and joining them by
curved arcs, We shall show that

1) V—E+F=2-2p,

where V = number of vertices, E = number of arcs, and F = number
of regions. The number 2 ~ 2p is called the Euler characteristic of the
surface. We have already seen that for the sphere, V — E + F = 2,
which agrees with (1), since p = 0 for the sphere.

To prove the general formula (1}, we may assume that S is & sphere
with p handles. For, as we have stated, any surface of genus p
may be continuously deformed into such a surface, and during this
deformation the numbers ¥V — E -+ F and 2 — 2p will not change.
We shall choose the deformation so as to ensure that the closed curves
- where the handles join the sphere consist of ares
ion.  (We refer to Fig. 138, which illustrates the

Fig. 3%
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Now let us cut the surface 8 along the curves A2, B:, ... and
straighten the handles out. Each handle will have a free edge bounded
by a new curve A* B* ... with the same number of vertices and arcs
as Az, By, -+ respectively. Hence V — E + F will not change, since
the additional vertices exactly counterbalance the additional arcs, while
no new regions are created. Next, we deform the surface by flattening
out the projecting handles, until the resulting surface is simply a sphere
from which 2p regions have been removed. Since V — E + F is known
to equal 2 for any subdivision of the whole sphere, we have

V—E+F=2-2p
for the sphere with 2p regions removed, and hence for the original sphere
with p handles, as was to be proved.

Figure 121 illustrates the application of formula (I) to a surface S
consisting of flat polygons. This surface may be continuously deformed
into a torus, so that the genuspisland 2 — 2p = 2 — 2 = 0. As
predicted by formula (1),

V—-E+F=16—-32+16=0.

Exercise: Subdivide the doughnut with two holes of Figure 137 into regions,
and show that V — E + F = —2.

3. One-Sided Surfaces

An ordinary surface has two sides. This applies both to closed
surfaces like the sphere or the torus and to surfaces with boundary
curves, such as the disk or a torus from which a piece has been re-
moved. The two sides of such a surface could be painted with different
colors to distinguish them. If the surface is closed, the two colors never
meet. If the surface has boundary curves, the two colors meet only
along these eurves. A bug crawling along such a surface and prevented
from crossing boundary curves, if any exist, would always remaia on
the same side.

Moebius made the surprising discovery that there are surfaces with
only one side. The simplest such surface is the so-called Moebius strip,
formed by taking a long rectangular strip of paper and pasting its two
ends together after giving one a half-twist, as in Figure 139. A bug
crawling along this surface, keeping always to the middle of the strip,
will return to its original position upside down. The Moebius strip has
only one edge, for its boundary consists of a single closed curve. The
ordinary two-sided surface formed by pasting together the two ends of a
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rectangle without twisting has two distinct boundary curves. If the
latter strip is cut along the center line it falls apart into two different
strips of the same kind. But if the Moebius strip is eut along this
line {shown in Figure 139) we find that it remains in one piece. It is
rare for anyone not familiar with the Moebius strip to predict this

Fig. 139. Forming s Mosbius steip.

behavior, so contrary to one’s intuition of what “should” oceur. Tf the
surface that results from cutting the Moebius strip along the middle is
again cut along its middle, two separate but intertwined strips are
formed.
It is fascinating to play with such strips by cutting them along lines
parallel to a boundary curvé and 1/2, 1/3, ete. of the distance across.
The boundary of a Moebius strip is an unknotted closed curve which
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can be deformed into a flat one e.g. a circle. During the deformation,
the strip may be allowed to intersect itself so that a onesided selfinter-
seeting surface results as in Figure 140 known as a cross-cap. The locus
of selfintersection is regarded as two different lines, each belonging to

Fig. 141. Moebius strip with plane boyndary.

one.of the two portions of the surface which intersect there. The one-
sidedness of the Moebius strip is preserved because this property is
topological; a one-sided surface cannot be continuously deformed into
a two-sided surface. Strikingly enough it is even possible to conduct
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the deformation in such a way that the boundary of the Moebius strip
becomes flat, e.g. triangular, while the strip remains free from selfin-
tersections. Figure 141 indicates such a model, due to Dr. B. Tucker-
mann; the boundary is a triangle defining one half of one diagonal square
of & regular octahedron; the strip itself consists of six {aces of the octa-
hedron and four rectangular triangles, each one fourth of a diagonal
plane.

Another interesting one-sided surface is the “Klein bottle.” This
surface is closed, but it has no inside or outside. It is topologically
equivalent to a pair of cross-caps with their boundaries coinciding.

Fig. 142. Klein bottle.

It may be shown that any closed, one-sided surface of genus p =
1,2, -- - is topologieally equivalent to a sphere from which p disks bave
been removed and replaced by cross-caps. From this it easily follows
that the Euler characteristic V — E -+ F of such a surface is related to p
by the equation

V-E+F=2-p

The proof is analogous to that for two-sided aurfaces. First we show that the
Euler charscteristic of a cross-cap or Moebius strip is ¢, To do this we observe
that, by cutting across a Mocbius strip which has been subdivided into a number
of regions, we obtain a rectarsle that contains two more vertices, one more edge,
and the same number of regions as the Moebjus strip. For the rectangle,
V — E 4+ F = 1, as we proved on page 239, Hence for the Moebius strip
V —~ E+ F = 0. As an exercise, the reader may complete the proof,

It is considerably sirapler to study the topological nature of surfaces
such as these by means of plane polygons with certain pairs of edges
conceptually identified (compare Chapt. 1V, Appendix, Article 3). In
the diagrams of Figure 143, parallel arrows are to be brought into coinci-
dence -actual or conceptual-—in position and direction.

This method of identifiration may also be used to define three-dimen-
sional closed manifolds, analogous to the two-dimensional closed sur-
faces. For example, if we identify corresponding points of opposite
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faces of a cube (Fig. 144), we obtain  closed, three-dimensional manifold
called the three-dimensional torus. This manifold is topologically
equivalent to the space between two concentric torus surfaces, one inside
the other, in which corresponding points of the two torus surfaces are
identified (Fig. 145). For the latter manifold is obtained from the cube
if two pairs of conceptually identified faces are brought together.

Fig. 18, Another representation of three-dimensional torus. (Figure cut toshow ideatificationd
APPENDIX

*1. The Five Color Theorem

On the basis of Euler’s formula, we can prove that every map on the
sphere can be properly colored by using at most five different colors.
(According to p. 247, a map is rep arded as properly colored if no two
regions having a whole segment of their boundaries in common receive
the same color.) We shall confine ourselves to maps whose regions are
bounded by simple closed polygons composed of eircular arcs.  We may
also suppose that exactly three ares meet at each vertex; such a map
will be called regular. For if we replace every vertex at which more
than three arcs meet by a small circle, and join the interior of each such
circle to one of the regions meeting at the vertex, we obtain a new map in
which the multiple vertices are replaced by a number of triple vertices.
The new map will contain the same number of regions as the original
map. If this new map, which is regular, can be properly colored with
five colors, then by shrinking the circles down to points we shall have
the desired coloring of the original map. Thus it suffices to provethat
any regular map on the sphere can be colored with five colors.

First we show that every regular map must contain at least one
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polygon with fewer than six sides. Denote by ¥, the number of regions
of n sidee in a regular map; then, if ¥ denotes the total number of regions,
1) Fo=Frt Pyt Fot oen
Each arc has two ends, and three arcs end at each vertex. Hence, if £
denotes the number of arcs in the map, and V the number of vertices,
@) 28 = 3V.
Furthermore, a region bounded by n arcs has n vertices, and each vertex
belongs to three regions, so that
@) 2E =3V = 2F2 + 3Fs + 4F(+ ... .
By Euler’s formula, we have
V—E+F =2 or 6V —6E+ 6F = 12.
From (2), we see that 6V = 4E, so that 6F — 2K = 12.
Hence, from (1) and (3),
O6(F2+ Fat Fut o) ~ (2P + 3Fs +4Fc + ... ) = 12,

or
6 —2)Fs+ (6~ 3)Fs + (6 ~ HF + (6 — 5)Fs + (6 ~ 6)Fs

+ (6~ DF + ..
Hence at least one of the terms on the left must be positive, so that at
least one of the numbers £, Fy, Fy, Fi is positive, as we wished to show.

Now to prove the five color theorem. Let M be any regular map on
the sphere with n regions in all. We know that at leazt one of these
regions has fewer than six sides.

Case 1. M contains a region A with 2, 3, or 4 sides. In this case,
remove the boundary between A and one of the regions adjoining it.
{If A has 4 sides, one region may come around and touch two non-
adjacent sides of 4. In this case, by the Jordan curve theorem, the
regions touching the other two sides of 4 will be distinct, and we remove
the houndary between A and one of the latter regions.)

A

™M M N

Fig. 146,
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The resulting map M’ will be a regular map with n — 1 regions. If M’
can be properly colored wilh 5 colors, so can M. For since at most four
regions of M adjoin A, we can always find a fifth color for A.

Case 2. M contains a region A with five sides. Consider the five
regions adjoining 4, and call them B, C, D, E, and F. We can always
find a pair among these which do not touch each other; for if, say, B
and D touch, they will prevent € from touching either E or F, since any
path leading from € to E or F will have to go through at least one of the
regions A, B, and D (Fig. 147). (Tt is clear that this fact, too, depends
essentially on the Jordan curve theorem, which holds for the plane or
sphere. It is not true on the torus, for example.) We may therefore
assume, say, that € and ¥ do not touch. We remove the sides of 4

£

M
Fig. 147,

adjoining C and F, forming & new map M’ with = — 2 regions, which is
also regular. If the new map can be properly colored with five colors, then
so can the original map M. For when the boundaries are restored, 4 will
be in contact with no more than four different colors, since €' and ¥
have the same color, and we can therefore find a fifth color for A.

Thus in either case if 3 is a regular map with n vegions, we can con-
struct a new regular map M’ having n — 1 or n — 2 regions, and such
that if M’ can be colored with five colors, so can M. This process may
again be applied to M’ ete., and leads to a sequence of maps derived
from M:

M, MM
Since the number of regions in the maps of this sequence steadily de-
creases, we must finally arrive at a map with five or fewer regions.
Such a map can always be colored with at most five colors. Hence,
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returning step by step to M, we see that M itself can be colored with
five colors. This completes the proof. Note that this proof is con-
structive, in that it gives a perfectly practicable, although wearisome,
method of actually coloring any map with n regions in a finite number
of steps.

2. The Jordan Curve Theorem for Polygons

The Jordan curve theorem states that any simple closed curve €
divides the peints of the plane not on  into two distinct dorains (with
1o points in common) of which € is the common boundary. We shall
give a proof of this theorem for the case where C is a closed polygon P.

‘We shall show that the points of the plane not on P fall into two
classes, A and B, such that any two points of the samne class can be
joined by a polygonal path which does not cross P, while any path
joining & point of 4 to a point of B must cross P. The class A will
form the “‘outside” of the polygon, while the class B will form the
“inside.”

We begin the proof by choosing a fixed direction in the plane, not
parallel to any of the sides of 2. Since P has but a finite number of
sides, this is always possible. We now define the classes A and B as
follows:

The point p belongs to 4 if the ray through p in the fixed direction

intersects P in an evern number, 0, 2, 4, 6, --- , of points. The point p
belongs to B if the ray through p in the fixed direction intersects P in
an odd number, 1, 3, 5, - .., of points.

With regard to rays that intersect P at vertices, we shall not count an
intersection at a vertex where both edges of P meeting at the vertex
are on the same side of the ray, but we shall count an intersection at
a vertex where the two edges are on opposite sides of the ray.  We shall
say that two points p and ¢ have the same “parity” if they belong to
the same class, 4 or B.

Fig. 148. Counting intersections.
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First we observe that all the points on any line segment not inter-
secting P have the same parity.. For the parity of a point p moving
along such a segment can only change when the ray in the fixed direction
through p passes through a vertex of P, and in neither of the two
possible cases will the parity actually change, because of the agreement
made in the preceding paragraph. F¥rom this it follows that if any
point py of A is joined to a point p; of B by a polygonal path, then this path
must intersect P, for otherwise the parity of all the points of the path,
and in particular of p, and p;, would be the same. Moreover, we can
show that any two points of the same class, A or B, can be joined by a
polygonal path which does not intersect P.  Call the two points p and ¢.
If the straight segment pg joining p to g does not intersect P it is the
desired path. Otherwise, let p’ be the first point of intersection of this
segment with P, and let ¢’ be the last such point (Fig. 149). Construet
the path starting from p along the segment pp’, then turning off just
before p’ and following along P until P returns to pg at ¢'. 1f we can
prove that this path will intersect pg between ¢’ and g, rather than
between p’ and ¢’, then the path may be continued to ¢ slong ¢'g without
intersecting P. It is clear that any two points r and s near enough to
each other, but on opposite sides of some segment of P, must have
different parity, for the ray through » will intersect P in one more point
than will the ray through s. Thus we see that the parity changes as
we cross the point ¢’ along the segment pg. It follows that the dotted
path crosses pg between ¢’ and ¢, since p and ¢ (and hence every point
on the dotted path) have the same parity.

Fig. 14

This completes the proof of the Jordan curve theorem for the case
of & polygon P. The “outside” of P> may now be identified as the
class A, since if we travel far enough along any ray in the fixed direction
we shall come to a point beyond which there will be no intersection
with P, so that all such points have parity 0, and henee belong to 4.
This Jeaves the “inside” of P identified with the class B. No matter
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how twisted the simple closed polygon P, we can always determine
whether a given point p of the plane is inside or outside P by drawing a
ray and counting the number of intersections of the ray with P. If this
number is odd, then the point p is imprisoned within P, and cannot
eacape without crossing P at some point. If the number is even, then
the point p is outside P. (Try this for Figure 128.)

*One may also prove the Jordan curve theorem for polygons in the following
way: Define the order of a point pe with respeot to any closed curve C which does
not pass through pe as the net number of complete revolutions made by an arrow
joining pe to & moving point p on the curve as p traverses the curve once. Let

4 = all points penot on £ and with even order with respect to P,

B = ali points po not on P and with odd order with respect to P.
Then 4 and B, thus defined, form the outside and inside of P respectively. The
earrying out of the details of this proof is Jeft as an exercise.

*+3. The Fundamental Theorem of Algebra
The “fundamental theorem of algebra” states that if
1) f@) = 2"+ oz F an™ @z + @0,

where 7 > 1, and @a.1, Gn-2, -+ , Gy &re any complex numbers, then
there exists 2 complex number a such that f(a) = 0. In other words,
in the field of complex numbers every polynomial equalion has a root. (On
p. 102 we drew the conclusion that f(z) can be factored into n linear
factors:

f@) =z —a)e —a) - (2 — @),

where e, s, <+ - , @ are the zeros of f(2).) 1t is remarkable that this
theorem can be proved by considerations of a topological character,
related to those used in proving the Brouwer fixed point theorem.

The reader will recall that a complex number is a symbol =z + i,
where x and y are real numbers and i has the property that ¢ = —1.
The complex number z + yZ may be represented by the point in the
plane whose coérdinates with respect to a pair of perpendicular axes
are 7, y. I we introduce polar cotrdinates in this plane, taking the
origin and the positive direction of the z-axis as pole and prime direction
respectively, we may write

2=z yi=r(cos 6+ isin ),

where r = /2 4 ¢°- [t follows from De Moivre’s formula that

2" = 7" {cos nf -+ 1 sin nf).
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(See p. 98.) Thus, if we zllow the complex number z to describe a
circle of radius r about the origin, 2" will describe n complete times a
circle of radius r* as z describes its circle once. We also recall that r, the
modulus of z, written |z, gives the distance of z from O, and that if
2 = 2’ 4 ', then |z — 2’| is the distance between zand z’. With
these preliminaries we may proceed to the proof of the theorem.

Let us suppose that the polynomial (1) has no root, so that for every
complex number z

f(z) # 0.

On this assumption, if we now allow 2 to describe any closed curve in
the z,y-plane, f(z) will describe a closed curve T which never passes

Fig. 150. Proof of Jundamentat theorem of algsbra.

through the origin (Fig. 150). We may, therefore, define the order of
the origin O with respeet to the function f(z) for any closed curve €
a8 the net number of complete revolutions made by an arrow joining O to a
point on the curve T traced out by the point representing [(z) as z traces
out the curve C. As the curve C we shall take & circle with O se
center and with radius ¢, and we define the function ¢(t) to be the order
of O with respect to the funetion f(z) for the circle about O with radius ¢.
Clearly ¢(0) = 0, since a circle with radius 0 is a single point, and the
curve I reduces to the point f(0) ¢ 0. We ghall show in the next
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paragraph that $(¢) = n for large values of &. But the order $(2) depends
continuously on ¢, since f(2) is a continuous function of z. Hence we
shall have a contradiction, for the function ¢(t) can assume only integral
values and therefore cannot pass continuously from the value 0 to the
value 7.

It remains only to show that ¢(§) = n for large values of &. We ob-
serve that on a circle of radius z = ¢ so large that

t>1 and > [a]+fal+ e+ |aaa),
we have the inequality
/@) = 2"| = |anad"™ + -0 + agl
[analdz[™ + [auaa | ]2 "7 4 o+ ol
¢
= L"“[\an_ll et ;5‘3)]
LM aaa |+ | e |+ o F @]l < = {2

Since the expression on the left is the distance between the two points
2" and f(2), while the last expression on the right is the distance of the
point 2* from the origin, we see that the straight line segment joining
the two points f(z) and z" cannot pass through the origin so long as z
is on the circle of radius ¢ about the origin. This being so, we may
continuously deform the curve traced out by f(2) into the curve traced
out by 2" without ever passing through the origin, simply by pushing
each point f(2) along the segment joining it to z". Since the order of
the origin will vary continuously and can assume only integral values
during this deformation, it must be the same for both curves. Since
the order for 2" is n, the order for f(z) must also be n. This completes
the proof.

A



CHAPTER VI
FUNCTIONS AND LIMITS

INTRODUCTION

The main body of modern mathematics centers around the concepts
of function and limit. In this chapter we shall analyze these notiuns
systematically.

An expression such as

42 —3
has no definite numerical value until the value of = is assigned. We

say that the value of this expression is a function of the value of z,
and write
2+ 22 — 3 = f(z).

For example, when z = 2 then 2' 4 2.2 — 3 = 5, so that f(2) = 5,
In the same way we may find by direct substitution the value of f(z)
for any integral, fractional, irrational, or even complex number z.

The number of primes less than n is a function x(n) of the integer n.
Wi hen a value of n ig given, the value »(n) is determined, even though
no b ion for ing it is known. The area of a
triangle is a funmon of the lengths of its three sides; it varies as the
lengths of the sides vary and is determined when these lengths are given
definite values. If a plane is subjected to & projective or a topological
transformation, then the codrdinates of a point after the transformation
depend on, i.e. are functions of, the original cuordmntes of the point.
The concept of function enters wh are d by a
definite physical relationshi The volume of a gas enclosed in &
cylinder is a function of the temperature and of the pressure on the
piston. The atmospheric pressure as observed in a balloon is a function
of the altitude above sea level. The whole domain of periodic phe-
nomena—the motion of the tides, the vibratiuns of a plucked string, the
emission of light waves from an incandescent filament-—is governed by
the simple trigonometric funetions sin z and cos z.

Te Leibniz (1646-1716), who first used the word “function,” and to

272
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¢he mathematicians of the eighteenth century, the idea of a functional
relationship was more or less identified with the existence of a simple

h tical formula ing the exact nature of the relationship.
‘This concept proved too narrow for the requirements of mathemstical
physics, and the idea of a function, together with the related notion of
limit, was subjected to a long process of generalization and clarification,
of which we shall give an account in this chapter.

§1. VARIABLE AND FUNCTION

1. Definitions and Examples

Often mathematical objects oceur which we are free to choose arbi-
trarily from a whole set S of objects. Then we call such an object &
variable within the range or domain 8. It is customary to use letters
from the latter portion of the alphabet for variables. Thusif S denotes
the set of all integers, the variable X with the domain § denotes an
arbitrary integer. We say, “the variable X ranges over the set S,”
meaning that we are free to identify the symbol X with any member of
the set S, The use of variables is convenient when we wish to make
statements involving objects chosen at will from a whole set. For
example, if § again denotes the set of integers and X and ¥ are both
variables with the domain S, the statement

X+¥Y=Y+X

is & convenient symbolic expression of the fact that the sum of any two
integers is independent of the order in which they are taken. A par-
ticular case is expressed by the equation

24+3=3+2,

involving constants, but to express the general law, valid for all pairs
of numbers, symbols having the meaning of variables are needed.

It is by no means necessary that the domain S of a variable X be a
set of numbers. For example, S might be the set of all circles in the
plane; then X would denote any individual circle. Or § might be the
set of all closed polygons in the plane, and X any individual polygon.
Nor is it necessary that the domain of a variable contain an infinite
number of clements.  For example, X might denote any member of the
population S of a given city at a given time. Or X might denote any
one of the possible remainders when an integer is divided by 5; in this
case the domuin S would consist of the five numbers 0, 1, 2, 3, 4.
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The most important case of a numerical variable—in this case we
customarily use a small letter 2—is that in which the domain of vari-
ability 8 is an interval @ < z < b of the real number axis. We then
call = a continuous variable in the interval. The domain of variability
of a continuous variable may be extended to infinity. Thus S may be
the set of all positive real numbers, x > 0, or even the set of all real
numbers without exception. In a similar way we may consider a vari-
able X whose values are the points in a plane or in some given domain
of the plane, such as the interior of a rectangle or of a circle. Since
each point of the plane is defined by its two codrdinates, x, y, with re-
spect to a fixed pair of axes, we often say in this case that we have a
pair of continuous variahles, z and y.

It may be that with each value of a variable X there is associated a
definite value of another variable U, Then U is called a function of X.
The way in which U is related to X is expressed by a symbol such as

U=F(X) (read, "F of X").

If X ranges over the set S, then the variable U will range over another
set, say 7. For example, if S is the set of all triangles X in the plane,
a function F(X) may be defined by assigning to each triangle X the
length, I/ = F(X), of its perimeter; T will be the set of all positive
numbers. Here we note that two different triangles, X, and X, , may
have the same perimeter, so that the equation F(X;) = F(Xa) is possible
even though X, » X,. A projective transformation of one plane, S,
onto another, 7', assigns to each point X of S a single point U of T
according to a definite rule which we may express by the functional
symbot U = F(X). In this case F(X)) # F(X;) whenever X, # X,,
and we say that the mapping of S onto 7' is biunique (see p. 78).
Functions of a continuous variable are often defined by algebraic ex-
i E les are the ti

_ 1
Tixe
In the first and last of these expressions, z may range over the whole
set of real numbers; while in the second, z may range over the set of
real numbers with the exception of 0—the value 0 being excluded since
1/0 is not a number.

The number B(n) of prime factors of n is & function of n, where n
vanges over the domain of all natural numbers. More generally, any
sequence of numbers, ai, @, as, -+ -, may be regarded as the set of

o, S
u=2q, =, u
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values of & function, u = F(n), where the domain of the independent
variable n is the set of natural numbers, It is only for brevity that we
write a, for the nth term of the sequence, instead of the more explicit
functional notation I'(n) The expressions discussed in Chapter I,

n(n + 1)
=,

S =142+ .+
n(n + D+ D
6 ’
wn + 1
Ry

Sn) =1+ 2+ . b0l =

Ssn) =1+ 24 ... 07

are functions of the integral variable n.

If U = F(X) we usually reserve for X the name independent variable,
while U is called the dependent variable, since its value depends on the
value chosen for X.

It may happen that the same value of U is assigned to all values of X,
so that the set 7 consists of one element only. We then have the
special case where the value U of the function does not actually vary;
that is, U is constant. We shall include this case under the general
concept of function, even though this might seem strange to a beginner,
for whom the emphasis naturally seems to lie in the idea that U/ varies
when X does. But it will do no harm—and will in fact be useful—to
tegard a constant as the special case of a variable whose “domain of
variation” consists of a single element only.

The concept of function is of the greatest importance, not only in
pure mathematics but also in practical applications. Physical laws are
nothing but statements concerning the way in which certain quantities
depend on others when some of these are permitted to vary. Thus the
piteh of the note emitted by a plucked string depends on the length,
weight, and tension of the string, the pressure of the atmosphere depends
on the altitude, and the energy of a bullet depends on its mass and
velocity. The task of the physicist is to determine the exact or approxi-
mate nature of this functional dependence.

The function concept permits an exact mathematical characterization
of motion. If a moving particle is concentrated at a point in space with
rectangular coordinates ¥, y, z, and if ¢ measures the time, then the
motion of the particle is corapletely described by giving its codrdinates
z, y, 2z as functions of £

z=f), y=g0, =i



276 FUNCTIONS AND LIMITS {vi]

Thus, if a particle falls freely along the vertical z-axis under the influ-
ence of gravity alone,

=0, y= z = —ig,

where g is the acceleration due to gravity. If a particle rotates uni-
formly on a circle of unit radius in the z, y-plane, its motion is char-
acterized by the functions

z = coswl, y = sin wt,
where w is a constant, the so-called angular velocity of the motion.

A mathematical function is simply a law governing the interdepend-~
ence of variable quantities. It does not imply the existence of any
relationship of “cause and effect’” between them. Although in ordinary
language the word “function” is often used with the Iatter connota-
tion, we shall avoid all such phil ical interp ions. For Te.
Boyle's law for a gas tained in an ench at temperature
states that the product of the pressure p and the volume v is a constant ¢
(whose value in turn depends on the temperature}:

= c.
This relation may be solved for either p or v as a function of the other
variable,

p=% or v=
H )

without implying that a change in volume is the “cause” of a change in
pressure any more than that the change in pressure is the “cause” of
the change in volume It is only the form of the connection between the
two variables which is relevant to the mathematician,

and physicists differ imen a5 to the aspect of the func-
tion concept on which they put the emphasis. The former usually stresses the
law of correspondence, the mathematical operation that is applied to the independ-
ent variable z to obtain the value of the dependent variable u. In this sense
1( ) is & symbol for a mathematical operation; the value u = f(z) is the result of
applying the operation f{ ) to the number z. On the other hand, the physicist is
often more interested in the guantily u as such than in any mathemstical pro-
cedure by which the values of u can be computed from those of z. Thus the re-
sistanee % of the air to a moving object depends on the velocity ¢ and can be found
by experiment, whether or not an explicit mathematical formula for computing
u = f(z) is known. It is the actual resistance which primarily interests the
physicist and not any particular raathematical formula f(v), except insofar as the
study of such » formula may aid in analyzing the behavior of the quantity w. This
is the attitude ordinarily taken if one applies mathematics to physies or engineer-
ing. In wore advanced calculations with functions confusion can sometimes be
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svoided only by knowing exactly whether one means the operation f( ) which
essigns to 7 a quantity u = f(2), or the quantity u itself, which may also be con-
sidered to depend, in a quite different manner, on some other variable, z. For
example, the area of a circle is given by the function u = f(z) = x%, where  is the
radius, and also by the function u = g(z) = #*/4w, where  is the circumference.

Perhaps the simplest types of mathematical functions of one variable
are the polynomials, of the form

u = f(2) = a0+ aw + ar’ + - + a2’

with constant “coefficients,” as, @1, -+ ,a.. Next come the rational
functions, such a8
1 1 2z + 1
u = u =

FEIEE

which are quotients of polynomials, and the lrigonometric functions, cos =,
sin z, and tan x = sin x/cos z, which are best defined by reference to
the unit circle in the ¢, y-plane, & 4+ ° = 1. If the point P(£, n) moves
on the circumference of this circle, and if z is the directed angle through
which the positive £-axis must be rotated in order to coincide with OP,
then cos r and sin z are the codrdinates of P: cosz = £, sinz = 5.

R

2. Radian Measure of Angles

For all practical purposes angles are measured in units obtained by
subdividing a right angle into a number of equal parts. If this number
is 90, then the unit is the familiar “degree.” A subdivision into 100
parts would be better adapted to our decimal system, but would repre-
sent the same principle of measuring. For theoretical purposes, how-
ever, it is advantageous to use an essentially different method of char-
acterizing the size of an angle, the so-called radian measure. Many
important formulas involving the trigonometric functions of angles have
a simpler form in this system than if the angles are measured in degrees.

To find the radian measure of an angle we describe a cirele of radius 1
about the vertex of the angle. The angle will cut out an arc s on the
circumference of this circle, and we define the length of this arc as the
radian measure of the angle. Since the total circumference of a circle
with radius 1 has the length 27, the full angle of 360° has the radian
measure 2r. It follows that if = denotes the radian measure of an
angle and y its degree measure, then 2 and y are connected by the
relation y/360 = z/2r or

Ty = 180z.
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Thus an angle of 90° (y = 90) has the radian measure z = 90x/180 =
«/2, ete. On the other hand, an angle of 1 radian (the angle with
radian measure z = 1) is the angle that cuts out an arc equal to
the radius of the circle; in degrees this will be an angle of y = 180/x =
57.2057 ... degrees. We must always multiply the radian measure 2
of an angle by the factor 180/ to obtain its degree measure y.

The radian measure z of an angle is also equal to twice the area 4
of the sector of the unit circle cut out by the angle; for this area bears
to the whole area of the eircle the ratio which the are along the ecir-
cumference bears to the whole circumference: z/2r = A/x, z = 24.

Henceforth the angle z will mean the angle whose radian measure is z.
An angle of z degrees will be written °, to avoid ambiguity.

It will become apparent that radian measure is very convenient for
analytic operations. For practical use, however, it would be rather
inconvenient. Since = is irrational, we shall never return to the same
point of the circle if we mark off repeatedly the unit angle, i.e. the angle
of radian measure 1. The ordinary measure is 5o devised that after
marking off 1 degree 360 times, or 90 degrees 4 times, we return to the
same position.

3. The Graph of a Function. Inverse Functions

The character of a function is often most clearly shown by a simple
geometrical graph. If z, 4 are cotrdinates in a plane with respect to a
pair of perpendicular axes, then linear functions such as

u=az+b
are represented by straight lines; quadratic functions such as
u=ar+4bz+c
by parabolas; the funetion

1

u =

z
by a hyperbola, etc. By definition, the graph of any function u = y(z)
consists of all the points in the plane whose codrdinates z, u are in the
relationship » = f(z). The functions sin z, cos z, tan z, are repre-
sented by the curves in Figures 151 and 152. These graphs show
clearly how the values of the functions inerease or decrease as = varies.
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Fig. 162, 4 = tan 7.

An important method for introducing new functions is the following.
Beginning with a known function, F(X), we may try to solve the equa-
tion U = F(X) for X, so that X will appear as a function of U:

X = GU).

The function G(U) is then ealled an ¢nverse function of F(X). 'This
process leads to a unique result only if the function U = F(X) defines a
biunique mapping of the domain of X onto that of U, i.e. if the in-
equality X; # X, always implies the inequality F(X;) # F(Xy), for
only then will there be a uniquely defined X correlated with each U.
Qur previous example in which X denoted any triangle in the plane and
U = F(X) was its perimeter is a case in point. Obviously this mapping
of the set S of triangles onto the set T’ of positive real numbers is not
biunique, since there are infinitely many different triangles with the
same perimeter. Hence in this case the relation U = F(X) does not
gerve to define a unique inverse function. On the other hand, the func-
tion m = 2n, where n ranges over the sot S of integers and m over the
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set T of even integers, does give a biunique correspondence between
the two sets, and the inverse function n = m/2 is uniquely defined.
Another example of a biunique mapping is provided by the function

u =z,

»

¥ig. 163. u = o,

As z ranges over the set of all real numbers, u will likewise range over
the set of all real numbers, assuming each value once and only once
The uniquely defined inverse function is

= .
In the case of the function

u =zt
an inverse function is not uniquely determined. For since u = 2 =
(~2)’, each positive value of u will have two antecedents. But if, as

is customary, we define the symbol v/% to mean the positive number
whose square is u, then the inverse function

z=u

exists, so long as we restrict z and v to positive values.

The existence of a unique inverse of a function of one variable, u = f(z),
can be seen by a glance at the graph of the function. The inverse
function will be uniquely defined only if to each value of u there corre-
sponds but one value of z. In terms of the graph, this means that no
parallel to the z-axis intersects the graph in more than one point. This
will certainly be the case if the function u = f(z) is monotone, i.e.
steadily increasing or steadily decreasing as z increases. For example,
if u = f(x) is steadily increasing, then for z; < 2 we always have u; =
f(z1) < uz = f(x:). Hence for a given value of u there can be at most
one z such that u = f(z), and the inverse function will be uniquely
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defined. The graph of the inverse function z = g(u) is obtained merely
by rotating the original graph through an angle of 180° about the dotted
line (Fig. 154), so that the positions of the z-axisand the u-axis are inter-
changed. The new position of the graph will depict z as a function of u.
In its original position the graph shows u as the height above the hori-
zontal z-axis, while after the rotation the same graph shows z as the
height above the horizontal u-axis.

0
4

s 7/

Fig. 164. Inverse functions.

The considerations of the p di h may be ill d for

the case of the function

% = tan z.
This function is monotone for — »/2 < z < »/2 (Fig. 152). The values
of u, which increase steadily with z, range from — « to + o« ; hence
the inverse function,

z = g(w),
is defined for all values of w. This function is denoted by tan™ % or
arc tan w. Thus arc tan(l) = =/4, since tan n/4 = 1. Its graph is
shown in Figure 155.

Fig. 155 5 = aro tan
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4. Compound Functions

A seeond important method for creating new. functions from two or
more given ones is the compounding of functions. For example, the
funetion

u=§z) = Vit
is “compounded” from the two simpler functions
=g@@)=1+2" u=h@) =73
and can be written as
u = flz) = higlz]} (read, “h of g of z”).
Likewise,

u = flz) =

v
is compounded from the three functions
t=g@) =1—2, w=h)=1+2 |u=kw=—

so that
u = f(z) = k(hlg(=)]).
The function
o1
u = f(z) = sin >
is compounded from the two functions
1 .
zemgle) ==, ueh(z) = sinz
z
The funetion f{z) is not defined for z = 0, since for z = 0 the expression 1/z has
no meaning. The graph of this remarkable function is obtained from that of the

sine. We know that sin z = 0 for z = kr, where & is any positive or negative
integer. Furthermore,

for 2= <4k+1)’%,

-

sinz=
s
l—l for z=(4k~1)5.
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if & is any integer. Hence

1

-

E=1,284 -,
then, since the denominators of these fractions increase without limit, the values
of = for which the function sin {1/2) has the values 1, —1, 9, will cluster nearer
and nearer ta the point 7 = 0. Between any such point and the origin there will
still be an infinite number of oscillations of the function. The graph of the
function is shown in Figure 156.
2

If we set successively

1
Fig. 166, u w sin -.
8. sin

5. Continuity

The graphs of the functions so far considered give un intuitive idea
of the property of continuity. We shall give a precise analysis of this
concept in §4, after the limit concept has been put an a rigorous
basis. But roughly speaking, we say that a function is continuous if
its graph is an uninterrupted curve (see p. 310). A given function
u = f(z) may be tested for continuity by letting the independent vari-
able z move continuously from the right side and from the left side
towards any specified value 2. Unless the function u = f(x) is con-
stant in the neighborhood of z,, its value will also change. If the value
J(z) approaches as a limit the value f(x;) of the function at the specified
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point z = x; , ne matler whether we approach xy from one side or the other,
then the function is said to be confinuous at x, . If this holds for every
point z, of a certain interval, then the function is said to be confinuous
in the interval.

Althouo every function represented by an unbroken graph is con-
tinuous, ~ is quite easy to define functions that are not everywhere
continuoas. For example, the function of Figure 157, defined for all
+alues of z by setting

fey=1+z for >0
f@) =142z for 250

u

Fig. 187. Jump discontinuity.

is discontinuous at the point z; = 0, where it has the value —~1. If we

try to draw a graph of this funetion, we shall have to }ift our pencil

from the paper at this point. If we approach the value z; = 0 from the

right side, then f(z) approaches +1. But this value differs from the

actual value, ~1, at this point. The fact that —1 is approached by f(z)

as z tends to zero from the left side does not suffice to establish continuity.
The funetion f(z) defined for all z by setting

flz) =0 for x 0, f0) =1,

presents a discontinuity of a different sort at the point 2, = 0. Here
both right- and left-hand limits exist and are equal as x approaches 0,
but this common limiting value differs from £(0).
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Another type of discontinuity is shown by the function of Figure 158,

u=a) = 5,
.

Fig. 158. Infinite discontinuity

at the point z = 0. If z is allowed to approach zero from either side,
u tends to infinity; the graph of the function is broken at this point,
and small changes of z in the neighborhood of ¢ = 0 may produce very
large changes in w. Strictly speaking, the value of the function is not
defined for x = 0, since we do not admit infinity as a number and
therefore we cannot say that f(z) fs infinite when = = 0. Hence we say
only that f{z) “tends to infinity”’ as x approaches zero.

A still different type of discontinuity appears in the funetion u =
sin (1/z) at the point z = 0, as is apparent from the graph of that
function (Fig. 156).

The preceding examples exhibit several ways in which a function can
fail to be continuous at a point z = ;1

1) It may be possible to make the functior continuous at z = =z, by
properly defining or redefining its value when z = 2. For example,
the function u = z/z is constantly equal to 1 when z # 0; it is not
defined for z = 0, since 0,0 is & meaningless symbol. But if we agree
in this case that the value w = 1 shall alsc correspend to the value
z = 0, then the function so extended becomes continuous for every
value of 2 without exception. The same effect is produced if we redefine
(0 = 0 for the function defined at the hottom of the preceding page.
A discontinuity of this kind is said to be removable.

2) Different limits may be approached by the function as z ap-
proaches 1, from the right and from the left, as in Figure 157,

3) Even one-sided limits may not exist, as in Figure 156.
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4) The function may tend to infinity as & approaches z;, as in
Figure 158,

Discontinuities of the last three types are said to be essential; they
cannot be removed by properly defining or redefining the function at
the point = = z; alone,

—~1ai—1
@ AL (- 1)(x=+1)

Ezrercises: 1) Plot the functicns and find their

discontinuities.
2) Plot the functions z sin i and 2% sin i and verify that they are continuous
at z = 0, if one defines u = § for z — 0, in both cases.
*3) Show that the function arc tan s has a discontinuity of the second type
(jump) at z = 0.
*6. Functions of Several Variables

We return to our systematic discussion of the function concept. If
the independent variable P is a point in the plane with cotrdinates , v,
and if to each such point P eorresponds a single number u—for example,
u might be the distance of the point P from the origin—then we usually
write

u = f(z, y).
This notation is also used if, as often happens, two quantities z and y
appear from the outset as independent variables. For example, the
pressure u of a gas is a function of the volume z and the temperature y,
and the area u of a triangle is a function u = f(z, y, 2) of the lengths
z, ¥, and z of its three sides.

In the same way that a graph gives a geometrical representation of a
function of one variable, a geometrical representation of a function
u = f(z, y) of two variables is afforded by a surface in the three-dimen-
sional space with z, y, » as eodirdinates. To each point z, y in the
z, y-plane we assign the point in space whose coérdinates are z, ¥, and
u = f(z,y). Thus the function & = /1 — z¥ — 3? is represented by a
spherical surface with the equation @’ + z* + %* = 1, the linear fune-
tion u = ax + by + ¢ by a plane, the fur~“~u = zy by a hyperbolic
paraboloid, ete.

A different representation of the fun : f(z, y) may be given
in the z, y-plane alone by means of centc Instead of considering
the three-dimensional “landscape” u = f(z, y, we draw, as on a contour
map, the level curves of the function, indicating the projections on the
2, y-plane of all points with equal vertical elevation w. These level
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curves are simply the curves f(z, ¥) = ¢, where ¢ remains constant for
each ecurve. Thus the function u = z + y is characterized by Figure

@ =

Fig. 160. Hyperbolic paraboloid.

N

Fig. 161, A surtace u = f(z, y). F1a. 162, The correaponding level ourves.

Fig. 163, Lovel curvesof u =z +-.

163. The level curves of a spherical surface
are a set of concentric circles. The func-
tion u = 2 + 3" representing a paraboloid of

lution is likewise characterized by circles
(Fig. 165). By numbers attached to the
different curves one may indicate the height
u = cC.

Funetions of several variables occur in
physics when the motion of a eontinuocus
substance is to be deseribed. Yor example,
suppose a string is stretched between two
points on the z-axis and then deformed so that

the particle with the position z is moved a certain distance perpendicu-
lazly to the axis. If the string is then released, it will vibrate in such
a way that the particle with the original cotrdinate z will have at the
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time ¢ a distance u = f(z, ) from the z-axis. The motion is completely
described as soon as the function » = f(z, {) is known.

i ¥
Fig. 184, Pa. soloid of revolution. Fig. 165, The corres, onding level surves.
The definition of inuity given for i of a single variable

carvies over directly to functions of several variables. A function
u = f(z, y) is said to be continuous at the point z = =, y = p if f(z, y)
always approaches the value f(z1, ¥1) when the point z, ¥ approaches
the point z; , y from any direction or in any way whatever.

There is, however, one important difference between functions of one
and of several variables. In the latter case the concept of an inverse
function becomes meaningless, sinee we cannot solve an equation u =
f(x, y), e % = z + y, in such a way that each of the independent
quantities = and y can be expressed in terms of the one quantity v. But
this difference in the aspect of functions of one and of several variables
disappears if we emphasize the idea of a function as defining a mapping
or transformation.

*7. Functions and Transformations

A correspondence between the points of one line I, characterized by a
codrdinate z along the line, and the points of another line I’, character-
ized by a codrdinate 2’, is simply a function 2z’ = f(z). In case the
correspondence is biunique we also have an inverse function z = g(z').
The simplest example is a transformation by projection, which—we
state here without proof—is characterized in general by a function of
the form 2’ = f(z) = {(ax + b)/{cz + d), where ¢, b, ¢, d, are constants.
In this case, the inverse function is 2 = g(x") = (—dx’ + ¥)/(cz’ ~ a).

Mappings in two dimensions from a plane = with codrdinates z, y
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onto a plane =’ with codrdinates ', ' cannot be represented by a single
function z’ = f(z), but require two functions of two variables:

2’ = f(z,9),

¥ =gz, ).

For example, a projective transformation is given by a function system,
,_ax+by+c

Ly ey
,_dzteyt+ /S
Tty k
where ¢, b, .. , k are constants, and where z, y and z’, y’ are codrdi-
nates in the two planes respectively. From this point of view the idea of
an inverse transformation makes sense. We simply have to solve this
system of equations for = and y in terms of 2’ and y’. Geometrically,
this amounts to finding the inverse mapping of =’ onto =. This will be
uniquely defined, provided the correspondence between the points of
the two planes is biunique.
The transformations of the plane studied in topology are given, not
by simple algebraic equations, but by any system of functions,

z' = fa, v),
¥ =gz 9),

that define a biunique and bicontinuous transformation.

Ezercises: *1) Show that the transformation of inversion (Chapter I11, p. 141)
in the unit circle is given analytically by the equations z’ = z/(z* + 1),
y' = y/(z* + y?). Find the inverse transformation. Prove analytically that
inversion transforms the totality of lines and circles into lines and circles,

2) Prove that by a transformation z’ = (az + b)/(cz + d) four points of the
z-axig are transformed into four points of the z’-axis with the same cross-ratio.
{See p. 175.)

§2. LIMITS

1. The Limit of a Sequence a,,

As we have seen in §1, the description of the continuity of a function
is based on the limit concept. Up to now we have used this concept
in a more or less intuitive form. In this and the following sections we
shall consider it in a more tic way. Since are rather
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simpler than functions of a continuous variable, we shall begin with a
study of sequences.

In Chapter II we d a, of bers and studied
their limits as n increases indefinitely or “‘tends to infinity.” For ex-
ample, the sequence whose nth term is a, = 1/n,

11 1

Lz o
has the limit 0 for inereasing n:

1)

@ 1,0 as nes o
n

Let us try to state exactly what is meant by this. As we go out farther
and farther in the sequence, the terms become smaller and smaller.
After the 100th term all the terms are smaller than 1/100, after the
1000th term all the terms are smaller than 1/1000, and so on. None of
the terms is actually equal to 0. But if we go out far enough in the
sequence (1), we can be sure that e h of its terms will differ from 0
by as ULitle as we please.

The only trouble with this explanation is that the meaning of the
italicized phrases is not entirely clear, How far is “far enough,” and how
little is “as little as we please”? If we can attach a precise meaning
to these phrases then we can give a precise meaning to the limiting
relation (2).

A geometric interpretation will help to make the situation clearer.
If we represent the terms of the sequence (1) by their corresponding
points on the number axis we observe that the terms of the sequence
appear to cluster around the point 0, Let us choose any interval I on
the number axis with center at the point 0 and total width 2e, so that
the interval extends a distance e on each side of the point 0. If we
choose ¢ = 10, then, of course, all the terms a, = 1/2 of the sequence
will lie inside the interval I. If we choose e = 1/10, then the first few
terms of the sequence will lie outside 7, but all the terms from ey cn,

I 1 11

[RC v
will lie within I. Even if we choose ¢ = 1/1000, only the first thou-
sand terms of the sequence will fail to lie within I, while from the term
@ on, all the infinitely many terms

1003, Giowz 5 Gaooy 5 ***
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will lie within I.  Clearly, this reasoning holds for any positive number
as so0n as a positive ¢ is chosen, no matter how small it may be, we can
then find an integer N so large that

1

w<e,

From this it follows that all the terms a, of the sequence for which
n > N will lie within 7, and only the finite number of termsa;, @z, +- -,
ay_y can lie outside. The important point is this: First the width of
the interval I is assigned at pleasure by choosing e. Then a suitable
integer N can be found. This process of first choosing a number ¢ and
then finding a suitable integer N can be carried out for any positive
number ¢, no matter how small, and gives a precise meaning to the
statement that all the terms of the sequence (1) will differ from 0 by
as little as we please, provided we go out far enough in the sequence.

To summarize: Let ¢ be any positive number. Then we can find an
integer N such that all the terms a, of the sequence (1) for whichn 2 N
will lie within the interval I of total width 2¢ and with center at the
point 0. This is the precise meaning of the limiting relation (2).

On the basis of this example we are now ready to give an exact defini-
tion of the general : “The of real b ar, @,
a3, -+~ has the limit .” We include a in the interior of an interval I
of the number axis: if the interval is small, some of the numbers a, may
lie outside the interval, but as soon &s n beeomes sufficiently large, say
greater than or equal to some integer N, then all the numbers a, for
which # > N must lie within the interval I. Of course, the integer N
may have to be taken very large if a very small interval I is chosen,
but no matter how small the interval I, such an integer N must exist
if the scquence is to have a as its limit.

The fact that a sequence a, has the limit a is expressed symbolically
by writing

lima, = a agn— o,
or simply
> a asn — ©

(read: a, tends to a, or converges to @). The definition of the convergence
of & sequence . to a may be formulated more concisely as follows: The
sequence 4y, 8z, s, +~- has the limit a as n tends to infinity if, corre
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sponding to any positive number ¢, no maller how small, there may be
Jound an integer N (depending on e}, such that

@ la~a. ] <e
Sor all
n>N.

This is the abstract formulation of the notion of the limit of a se-
quence. Small wonder that when confronted with it for the first time
one may not fathom it in a few minutes. There is an unfortunate,
almost snobbish attitude on the part of some writers of textbooks, who
present the reader with this definition without a thorough preparation,
as though an explanation were beneath the dignity of a mathematician.

The definition suggests a contest between two persons, 4 and B.
A sets the requirement that the fixed quantity e should be approached
by 4. with a degree of accuracy better than a chosen margin ¢ = « ;
B meets the requirement by demonstrating that there is a certain integer
N = N such that all the a, after the element ax, satisfy the e-require-
ment. Then 4 may become more exacting and set a new, smaller,
margin, e = . B again meets his demand by finding a (perhaps much
larger) integer N = Np. If B can satisfy A no matter how small A sets
his margin, then we have the situation expressed by s, — a.

There is a definite psychologic-1 difficulty in grasping this precise
definition of limit. Our intuition suggests a “‘dynamic” idea of a limit
a9 the result of a process of “motion”: we move on through the row of
integers 1, 2, 3, «-«+, n, ... and then observe the behavior of the se-
quence a,. We feel that the approach @, — a should be observable.
But this “natural” attitude is not capable of clear mathematical formu-
lation. To arrive at a precise definition we must reverse the order of
steps; instead of first looking at the independent variable n and then at the
dependent variable @, , we must base our definition on what we have to
do if we wish actually to check the statement a, — a. In such a pro-
cedure we must first choose an arbitrarily small margin around a and
then determine whether we can mect this condition by taking the inde-
pendent variable » sufficiently large. Then, by giving symbolic names,
¢ and N, to the phrases “arbitrarily small margin” and “sufficiently
large n,” we are led to the precise definition of limit,

As another example, let us consider the sequence

1234 n

2315 el
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where a, = n*%_I . Istate that lim @, = 1. 1f you choose an interval

whose center is the point 1 and for which ¢ = 1/10, then I can satisfy
your requirement (3) by choosing N = 10; for
n ntl-—n 1 1

T TWET TAF1H
as soon as n > 10. If you strengthen your demand by choosing ¢ =
1/1000, then again I can meet it by choosing N = 1000; and similarly
for any positive number ¢, no matter how small, which you msy choose;
in fact, I need only choose any integer N greater than 1/e. This
process of assigning an arbitrarily small margin ¢ about the number a
and then proving that the terms of the sequence a, are all within a dis-
tance ¢ of a if we go far enough out in the sequence, is the detailed
deseription of the fact that lim a, = a.

If the members of the sequence ay , @2, @, - - - are expressed as infinite
decimals, then the statement lim a. = a simply means that for any
positive integer m the first m digits of a, coincide with the first m digits
of the infinite decimal expansion of the fixed number a, provided that n
is chosen sufficiently large, say greater than or equal to some value N
(depending on m). This merely corresponds to choices of ¢ of the
form 1077,

There is another, guite suggestive, way of expressing the limit concept.
If lim @, = @, and if we enclose @ in the interior of an interval I, then
no matter how small I may be, all the numbers a, for which » is greater
than or equal to some integer N will lie within 7, so that at most a
finite number, N—1, of terms at the beginning of the sequence,

Ay, U, ooy Oy,
can le outside I If I is very small, N may be very large, say a hundred
or even a thousand billion; still only a finite number of terms of the
sequence will lie outside I, while the infinitely many remaining terms
will lie within 1.

We may say of the members of any infinite sequence that “almost ali”’
have a certain property if only a finite number, no matter how great,
do not have the property. For example “almost all” pesitive integers
are greater than 1,000,000,000,000. Using this terminology, the state-
ment im g, = ais equivalent to the statement: If [ 4s any interval with a
as its center, then almost all of the numbers a, lie within 1,

It should be noted in passing that it is not necessarily assumed that
all the terms a. of a sequence have different values. It is permissible for
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some, infinitely many, or even all the numbers a. to be equal to the
limit value a. For example, the sequence for which a; = 0,a; = 0, - - .
a, = 0, ... is & legitimate sequence, and its limit, of course, is 0.

A sequence a, with a limit a is called convergent. A sequence a,
without a limit is called divergent.

Exzercises: Prove:

hae the limit 0. (Hint: aa = L.

1
nt~
n

. n
1. The sequence for which aa frgrast

1
is less than n and greater than 0.)

1

* 41
2. Thesequencea, = - :[ L Bas the limit0. (Hint: ¢, = hes between

atl,

0and 2)
N

3. The sequence 1, 2, 3, 4, --+ and the oscillating sequences
1,2,1,21,2 .,
~L1, =1 = e (e gy = (<),
and 1, L L4, 1,30, 4, e
do not have limits.

If in a sequence a, the members become so lazze that eventually a.
is larger than any preassigned number K, then we say that 0 tends lo
infindty and write lim @, = o, or @, ~» . For example, n’ — « and
2" — ». This termmology is useful, though perhaps not quite con-
sistent, because o is not considered to be a number a. A sequence
tending to infinity is still called divergent,

z 1
Brercise: Prove that the scquence as = - : tends to infinity; similarly
foran < 1 w1 w
or n = T, , and gy = o
P R b g

Beginners sometimes fall into the error of thinking that a passage to
the limit s n — = may be performed simply by substituting n = «
in the expression for .. For example, 1/n — 0 because “1/w = 0.”
But the symbol « is not a number, and its use in the expression 1/ %
is illegitimate. Trying to imagine the limit of a sequence as the “ulti-
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mate” or “last” term a, when n = <« misses the point and obscures the
issue.
2. Monotone Sequences
- In the general definition of page 2081, no specific type of approach of a
convergent sequence @y, &, @y, --- to its limit a is required. The

. simplest type is exhibited by a so-called monotone sequence, such as
the sequence

123 on
5’5'4" vn+1y""
Each term of this sequence is greater than the preceding term. For
nEl_, L [ S A,
Gt = T 1 nﬂ>1 e e Bl A sequence

of this sort, where .41 > @, Is said to be monofone increcsing. Simi-
larly, a sequence for which a, > @nit such as the sequence 1, 1/2,
1/8, -+, is called ng. Such can spproach
their hmxt,a from one side only. In contrast to these, there are sequences
that oscillate, such as the sequence —1, +1/2, —1/3, +1/4, ...
This sequence approaches its limit 0 from both sides (see Fig. 11, p. 69).

The behavior of 8 monotone sequence is especially easy to determine,
Such a sequence may have no limit, but run away completely, Like the
sequence

1,2,3,4, -,
where a, = n, or the sequence
2,3,57,11,13, ...,
where a, is the nth prime number, p,. In this case the sequence tends
to infinity. But if the terms of a monotone increasing sequence remain
bounded-—that f every term is less than an upper bound B, known
in advance—then it is intuitively clear that the sequence must tend to a
certain limit a which will be Jess than or at most equal to B, We

; s MR |
+ + . L |

i
-+t ]
a a q a B

Fig. 106. Monotene bonnded sequance.

formulate this as the Principle of Monolone Sequences: Any mono-
one increasing sequence thal has an upper bound must converge to o limit.
{A similar statement holds for any monotone decreasing sequence with a
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lower bound.) It is remarkable that the value of the limit ¢ need not
be given or known in advance; the theorem states that under the pre.
seribed conditions the limit exists. Of course, this theorem depends on

the i duction of irrational bers and would otherwise rot always
be true; for, as we have seen in Chs,pter I, any irrational number (such
83 4/2) is the limit of the b and bounded

of rotional decimal fractions obtained by breaking off a certain mhmte
decimal at the nth digit.

* Although the principle of monotone sequences appeals to the intuition as an
obvious truth, it will be instructive to give a rigorous proof in the modern fashion.
"Fo do this we must show that the principle is  logical consequence of the deBni-
tions of real number and li

Suppose that the numbess a:, a1, @1, «++ form a monotone increasivg but
bounded sequence. We can express the terms of this sequence as infinite deciwmals,

a1 = Arpipipr---
a3 = Aypgems oo,

a3 = Aurirars

where the A, are integers and the p:, g., ete. are digits from 0 to 9. Now run

down the coluran of integers A1, As, As, -~ . Since the sequence @, az,
Gy, - is bounded, these integers cemnot increase indefinitely, and since the
sequence is monotone increasing, the s «quence of integers Ay, 41, Ay, -+ will

remain constant after atlaining its mazimum value. Call this maximum value 4,
and suppose that it is attained at the Noth row. Now run down the second
column pi, g1, 71, -+, confining attention to the terms of the Noth and sub-
sequent rows. 1If 7, is the largest digit to appear in this column after the Noth
row, then z; will appear constantly after its first appearance, which we may sup-
pose to occur in the Nth row, where Ny > No. For if the digit in this column
decreased at any time thereafter, the sequence a,, @, a3, -+ would not be mono-
tone increasing. Next we consider the digits p1, gz, 72, -+~ of the third column.
A similar argument shows that after a certain integer 7 > N, the digits of the
third column are constantly equal to some digit z,. If we repeat this process
for the 4th, 5th, +-+ columns we obtain digits Zs, Zs, s , -+ and corresponding
integers Na, N, Ny, --- . It is eagy to gee that the number

= Az e
is the limit of the sequence @i, as, s, «-+ . For if ¢ is chosen > 10°™, then for
all n > N, the integral part and first m places of digits after the decimal point
in a. will coincide with those of e, so that the difference | @ — o, | cannot exceed
19-». Since this can be done for any positive ¢, hawever small, by choosing m
sufficiently large, the theorem is proved.

It is also possible to prove this theorem on the basis of any one of the other
definitions of real numbers given in Chapter 1I; for example, the definition by
nested intervals or by Dedekind euts. Such pmofs are to be found in most texts
on advanced ealculus.
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The principle of monotone sequences could have been used in Chapter IT to
define the sum and product of two positive infinite decimals,
e = A.08:05 -,
b= B.biby
Two such expressions cannot be added or multiplied in the ordinary way, starting
from the right-hand end, for there is nosuch end, (As an example, the reader may
try to add the two infinite decimals 0.333333 --- snd 0.989895 --- .) But if 7.
denotes the finite decimal fraction obtuined by breaking off the expressions for
a and b st the nth place and adding in the ordinary way, then the sequence z; , %3,
4, +-- will be monotone inereasing and buunded (by the integer A + B + 2,
sor example). Hence this sequence has a limit, and we may define a + b = lim z, .
A similar process serves to define the product eb, These definitions ean then be
extended by the ordinary rules of arithmetic to cover ali cases, where o and b are
positive or negative.
Ezercise: Show in this way that the sum of the two infinite decimals considered
above is the real number 1.323232 -+ = 131/69.

The importance of the limit concept in mathematics lies in the fact
that many numbers are defined only as limits—often as limits of mono-
tone bounded sequences. This is why the field of rational numbers, in
which such limits may not exist, is too narrow for the needs of
mathematics.

3. Euler’s Number e
The number ¢ has had an established place in h ics al ids
the Archimedean number 7 ever since the publication in 1748 of Euler’s
Introductio in Analysin Infindtorum. It provides an excellent illustra-
tion of how the principle of monotone sequences can serve to define a
new real number. Using the abbreviation
al=1.234...n

for the product of the first n integers, we comsider the sequence
41,0, 0, -, where

1 1 1
@ =l gt t e+ oy
The terms a. form a monotone increasing sequence, since ¢.4 originates

from a, by the addition of the positive increment Moreover,

1
e
the values of a, are bounded above:

5) @ < B = 3.

For we have
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and hence

1,1 1
an<l+x+§+§g+2_z+“‘+

=142 -®H" <3,
using the formula given on page 13 for the sum of the first n terms of a
geometric series. Hence, by the principle of monotone sequences, a,
must approach a limit as n tends to infinity, and this limit we call e,
To express the fact that ¢ = lim a., we may write ¢ as the “infinite
series”

()

1 1 1
Fitata oot

This “equality,” with a row of dots at the end, is simply another way
of expressing the content of the two statements

1 1 1
G=ld g gt
and

Qp —> € 88 N~ ©,

The series (6) permits the calculation of e to any desired degree of
aceuracy. For example, the sum (to nine digits) of the terms in (6}
up to and including 1/121is T = 2.71828183 ... . (The reader should
check this result.) The “error,” i.e. the difference between this value
and the true value of ¢ can easily be appraised. We have for the differ-
ence (¢ — 2) the expression

1 1 1
mtmt o <m

2

This is so small that it cannot affect the ninth digit of 2. Hence, allow-
ing for a possible error in the last figure of the value given above, we
have e = 2.7182818, to eight digits.

* The number e 4s irrational. To prove this we shall proeced indireetly by as-

suming that ¢ = p/g, where p and q ave integers, and then deducing an absurdity
from this assumption. Since we know that 2 < e < 3, e cannot be an integer,
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and therefore ¢ must be at least equal to 2. Now we multiply both sides of (6)
by gl = 2.3 :+- g, obtaining
eglep23:-(g—1)
=gl gl 434 g+ 4G gt et (g Dg+g+1l
1

1
BT TRATE ST

@

On the left side we obviously have an integer. On the right side, the term in
brackets is likewise an integer, The remainder of the right side, however, is a
positive number that is Jess than § and hence no integer. For ¢ > 2, and hence
the terms of the series 1/{g 4 1) + -~ are respectively not greater than the

ing terws of the icel series 1/8 + 1/3' + 1/8* -+ ..+, whose
sum is 1/3{1/(1 ~ 1/3)] = }. Hence (T) presents a contradiction: the integer on
the left side cannot be equal to the number ou the right side; for this latter num-
ber, being the sum of an integer and a positive nwwber less than %, is not an
integer.

4. The Number r

As is known from school mathematics, the length of the circumference
of a circle of unit radius can be defined as the limit of a sequence of
lengths of regular polygons with an' increasing number of sides. The
length of the circumference so defined is denoted by 25.  More precisely,
if p. denotes the length of the inscribed, and g, the length of the circum-
seribed regular n-sided polygon, then p, < 2r < g,. Moreover, asn
increases, each of the sequences p., g. approaches 2r monotonically,
and with each step we obtain a smaller margin for the error in the
approximation of 27 given by pa or ¢. .

On page 124 we found the expression

P o= 2MV2 SN2 VT
containing m — 1 nested square root signs.
This formula can be used to compute the ap-
proximate value of 2.

Exercises: 1. Find the approximate value of
given by po, pe, and -

*2. Find a fornula

*3. Use this formuls L and g .
From a knowledge of p + bounds between which = must e,

Fig. 167. Circle approximated
by polygons

‘What 2s the number 7?7« nequality p, < 27 < g, gives the com-
plete answer by setting up a sequence of nested intervals which close
down on the point 2x. Still, this answer leaves something to be de-
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sired, for it gives no information about the nature of = as a real number:
is it rational or irrational, algebraic or transcendental? As we have
mentioned on page 140, = is in fact a transcendental number, and hence
irrational. In contrast to the proof for e, the proof of the irrationality
of =, first given by J. H. Lambert (1728-1777), is rather difficult and
will not be undertaken here. However, other information about = is
within our reach. Recalling the statement that the integers are the basic
material of mathematics, we may ask whether the number x has any
simple relationship to the integers. The decimal expansion of =, al-
though it has been caleulated to several hundred places, reveals no trace
of regularity. This is not surprising, since = and 10 have nothing to do
with one another. But in the eighteenth century Euler and others
found beautiful expressions linking « to the integers by means of infinite
series and products. Perhaps the simplest such formula is the following:

T 1,1 1
ilmgtgmet o
expressing #/4 as the limit for increasing » of the partial sums
1,1 a1
& = 1—§+5‘ cee (=) Prest

‘We shall derive this formula in Chapter VIII. Another infinite series
for = is
~

1 1 1 1 1 1
FTrtatatatatet o

Still another striking expression for = was discovered by the English
mathematician John Wailis (1616-1703). His formula states that

224466 2n am |
priied Z e e b = A8 L O,
5 Vet 2

'This is sometimes written in the abbreviated form

8

2244686

2 8 ..
1 9

[ME

the expression on the right being called an infinite product.
A proof of the last two formulas will be found in any comprehensive
book cn the calculus (see p. 482 and pp. 509-510).
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*5. Continued Fractions

In ting limiting p oceur in ion with inued
fractions. A finite continued fraction, such as
57 1
=3 T
1
1+g

represents a rational number. On page 49 we showed that every ra-
tional number can be written in this form by means of the Euclidean

Igorith For irrational b however, the algorithm does not
stop after a finite number of steps. Instead, it leads to a sequence of
tions of i ing length, each ing a rational number. In

particular, all real algebraic numbers (see p. 108) of degree 2 may be
expressed in this way. Consider, for example, the number z = V3 -1,
which is a root of the quadratic equation
1

2 - -

T+ 2 =1, or I"2+x‘
If on the right side z is again replaced by 1/(2 + =) this yields the
expression

and then

2+ ]
2t i

and so on, so that after n steps we obtain the equation
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As n tends to infinity, we obtain the “infinite continued fraction”
VE=1+ _—11_,
2+ T
ey

This remarkable formula connects 4/2 with the integers in a much
more striking way than does the decimal expansion of /2, which dis-
plays no regularity in the succession of its digits.

For the positive root of any quadratic equation of the form

z = ar+ 1, or x=a+:1;,

we obtain the expansion
z =0+ ~—1——
a+ - a—
at+ o

For example, setiing a = 1, we find
z=3(1+VE) =14
1

1+‘i‘+—‘

(cf. p. 123). These examples are special cases of a general theorem
which states that the real rools of quadratic equations with integral co-
efficients have periodic continued fraction developments, just as rational
numbers have periodic decimal expansions,
Euler was able to find almost equally simple infinite continued
fractions for e and x. The following are exhibited without proof:

e=2+
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§3. LIMITS BY CONTINUOUS APPROACH

I dueti General

Tn §2, Article 1 we succeeded in giving a precise formulation of the
statement, “The sequence a (i.e. the function a, = F(n) of the integral
variable ) has the limit a as n tends to infinity.” We shall now give a
corr dil ition of the “The function u = f(z) of
the continuous variable = has the limit a as z tends to the value z; "
In an intuitive form this concept of limit by continuous approach of
the independent variable z was used in §1, Article 5 to test the con-
tinuity of the function f(x).

Again let us begin with a particular example. The function

5
fz) = (—7%1) is defined for all values of z other than z = 0, where the

denominator vanishes. If we draw a graph of the function u = f(z)
for values of z in the neighborhood of 0, it is evident that as z “ap-
proaches” 0 from either side the corresponding value of u = f(z) “ap-
proaches” the limit 1. In order to give a precise description of this
fact, let us find an explicit formula for the difference between the value
f(x) and the fixed number 1:

z432

_ _zt+d -z
f(z)—l—T—l_.__

z
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If we agree to consider only values of z near 0, but not the valuez = 0
itself (for which f(z) is not even defined), we may divide both numerator
and denominator of the expression on the right side of this equation by
«, obtaining the simpler formula

f@y —1=4"
"

Fiz 108w + (x4 2z,
Clearly, we can make this difference as small as we please by confining
ztoa suﬁcienlly small neighborboed of the value 0. Thus forz = iflﬁ'
1
flz) ~ 1 = T' jforz = :tm,f(z) 17)10-00, and so on. More
generally, if e is any positive number, no matter how small, then the
difference between f(z) and 1 will be smaller than ¢, provided only that
the distance of  from 0 is less than the number 8 = y/¢. For if
[z] < Ve
then
@) = 1] = |a*|< e
The analogy with our definition of limit for a is
On page 291 we made the definition, “The sequence a, has the limit a
as n tends to infinity if, corresponding to every positive number ¢, no
matter how small, there may be found an integer N (depending on €
such that

jan—a| < e
for all n satisfying the inequality
n> N

1In the case of & function f(z) of a continuous variable z as z tends to &
finite value z;, we merely replace the “sufficiently large” n given by
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N by the “sufficiently near” ; given by a number 3, and arrive at the
following definition of limit by continuous approach, first given by
Cauchiy around 1820: The function f(x) has the imil a as X tends to the
value X, f, corresponding to every positive number e, no matter how small,
there may be found a positive number 3 (depending on ¢) such that

1) ~al <e
Jor all x # x, salisfying the inequaliiy

{o—z|<s
When this is the case we write

[y a8 z-ran
In the case of the function f(z) = (x + 2% /2 we showed above that

J{z) has the limit 1 as x tends to the value 2, = 0. In this case it was
sufficient always to choose § = /¢.

2. Remarks on the Limit Concept

The (e, )-definition of limit i the result of more than a hundred
years of trial and error, and embodies in a few words the result of per-
sistent effort to put this concept on a sound mathematical basis. Only
by limiting processes can the fundamental notions of the caleulus—
derivative and integral-—be defined. But a clear understanding and a
precise definition of limits had long been blocked by an apparently
insurmountable difficuity.

In their study of motion and change the mathematicians of the
seventeenith and eigh h centuries ted as a matter of course
the concept of o quantity = steadily changing and moving in a contin-
uous flow toward a limiting value z:.  Associated with this primary flow
of time or of a quantity x behaving like time they considered & sec-
ondary value u = f(z) that followed the motion of z. The problem
was to attach a precise mathematical meaning to the idea that fiz)
“tends to” or “approaches’ a fixed value @ 4 z moves toward ;.

But from the time of Zeno and his paracaxes the intuitive physical
or metaphysical concept of continuous motion has eluded all attempts
at an exact mathematical formulation.  There is no difficulty in proceed-
ing step by step through a discrete sequence of values ai, @2, a5 ,. . ..
But in dealing with a continuous variable x that ranges over a whole
interval of the number axis it is impossibie to say how z shall “approach”
the fixed value z, in such a way as to assume consecutively and in their
order of magnitude !l the values in the interval. For the points ona
line form a dense set, and there is no “next” point after a r*ven point




306 FUNCTIONS AND LIMITS [VI}

has been reached. Certainly, the intuitive idea of & continuum has a
psychological reality in the human mind. But it cannot be called upon
to resolve & mathematical impossibility; there must remain a discrep-
ancy between the intuitive idea and the mathematical language
designed to describe the scientifically relevant features of our intuition
in exact logical terms. Zeno's paradoxes are a pointed indication of this
diserepancy.

Cauchy’s achievement was to realize that, as far as the mathematical
concepts are concerned, any reference to a prior intuitive idea of con-
tinuous motion may and even must be omitted. As happens so often,
the path to scientific progress was opened by resigning an attempt in a
metaphysical direction and instead operating solely with notions that
in principle correspond te “observable” phenomena. If we analyze
what we really mean by the words “continuous approach,” how we must
proceed to verify it in a specific case, then we are forced to accept a
definition such as Cauchy's. This definition is static; it does not pre-
suppose the intuitive idea of motion. On the contrary, only such a
static definition makes possible a precise mathematical analysis of con-
tinuous motion in time, and disposes of Zeno’s paradoxes as far as
mathematical science is concerned.

In the (e, 8)-definition the independent variable does not move; it
does not “tend to” or “approach” a limit z; in any physical sense.
These phrases and the symbol — still remain, and no mathematician
need or should lose the suggestive intuitive feeling that they express.
But when it comes to checking the existence of a limit in actual scientific
procedure it is the (e, 8)-definition that must be applied. Whether
this definition corresponds satisfactorily with the intuitive “dynamic”
notion of approach is a question of the same sort as whether the axioms
of geometry provide a satisfactory description of the intuitive concept
of space. Both formulations leave out something thati is real to the
intuition, but they provide an adequate mathematical framework for
expressing our knowledge of these concepts.

As in the case of sequential limit, the key to Cauchy’s definition lies
in the reversal of the “natural” order in which the variables are con-
sidered.  First we fix our attention on a margin ¢ for the dependent vari-
able, and then we seek to determine a suitable margin § for the inde-
pendent variable. The statement “f(z) — a as z — 2,” is only a briel
way of saying that this can be done for every positive number e. In
particular, no part of this statement, e.g. “c —> )’ has a meaning by
itself.
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One more point should be stressed. In letting z “tend to” 2) We may
permit z to be greater than or less than z;, but we expressly exclude
equality by requiring that £ » z:: = tends to 21, but never actually
assumes the value z;. Thus we can apply our definition to functions
that are not defined for z = =z, bv.lxt have definite limits as 2 tends

to z; ; e.g. the function f(z) = % considered on page 303. Exclud-

z
ing z = z; corresponds to the fact that, for limits of sequences ax as
n— ®,eg @, = 1/n, we never substitute » = « in the formula.

However, as © tends to 71, f(z) may approach the limit @ in such a
way that there are values z » 1, for which f(z) = a. For example, in
considering the function f(z) = z/z as z tends to 0 we never allow z to
equal 0, but f(z) = 1for all 7 % 0 and the limit o exists and is equal to 1
saccording to our definition.

3. The Limit of 227

1f  denotes the radian measure of an angle, then the expression SA‘Z—’:

is defined for all x except ¢ = 0, where it becomes the meaningless
symbol 0/0. The reader with access to a table of trigonometric func-
tions will be able to compute the value of §l¥ for small values of z.
These tables are commonly given in terms of the degree measure of
angles; we recall from §1, Article 2 that the degree measure = is related
to the radian measure y by the relation z = ]%J y = 0.01745y, to §
places. From a four-place table we find that for an angle of

sin x

10°, = 01745, sinz = 01736, = 0.9948
5°, 00873, 0.0872, 0.9988
2°, 0.0349, 0.0349, 1.0000
1°, 0.0175, 00175, 1.0000.

Although these figures ate stated to be accurate only to four places,
it would appear that

N sinx/r — 1 asz — 0.

We shall now give a rigorous proof of this limiting relation.
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From the unit circle definition of the trigonometric functions, if z
is the radian measure of angle BOC, for 0 < z < 12( we have
area of triangle OBC = §.1.sinz
ares, of circular sector OBC = }.x (see p. 278)
area of triangle OBA = }.1.tan z.

Hence
sinz <z < tan z.

Dividing by sin z we obtain

z I
<,
sinz ~cosx

or

(2 cosz <

1+cosz _1-cos’z _ sin'z
Nowl —cosz = (I ~ ———
( cow)1+cusz T+csz 1+cosz
sin’ x. Since sin # < z, this shows that

3) 1—cosz < 2",

or

1~ 2% < cosz.
Together with (2), this yields the final inequality
@ 1 <s‘”<1

Although we have been assumiry that 0 < z < , this inequality is

also true for —% < x < 0, since SL (=2) = :SE—E = din I, and
2 (—z) -2 z
(—2)" = 2%
From (4) the limit relation (1) is an immediate consequence. For
the difference between aw and 1 is less than =°, and this can be made

less than any number e by choosing |z | < & = /e

1—cosz

Exzercises: 1) From the inequality (3) deduce the limiting relation

38 7~ 0.
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Find the limits as z —» 0 of the following functions:

o HE sinz , tme o osner
) oz~ D P )
8i in 2 sinzx .. . .
5 S22 2 gy ®2F it 2 s mensured in degrees.
sin ba ] P
1 l 1 1
[T R S
z tan z 8inz tan z

4. Limits as x — «

If the variable z is sufficiently large, then the function f(z) = 1/z
becomes atbitrarily small, or “tends to 0.” In fact, the behavior of
this function as z inereases is essentially the same as that of the sequence
1/~ as n increases. We give the general defivition: The function
(x) has the limit a as x tends lo infinity, written

J&) —a asz — ®,
if, corresponding to each positive number e, no matier how small, there can
be found a positive number K (depending on <) such that
[fl@) —a] <e
provided only that | x| > K. (Compare with the corresponding defini-
tion on p. 303.)

Tn the case of the function f(z) = 1/, for which ¢ = 0, it suffices to

choose K = 1/, as the reader may at once verify.

Ezercises: 1. Show that the foregoing definition of the statement
f@—a a8 zow
18 equivalent to the statement
fzy e a1l

Prove that the {ollowing limit relations hold:

2 i
2. sz, 3. z;t:—“:i—*l Az o,
1
4 e :T:']“O e
6. ~MZ L aermw 7 e pmnolimitasz @
x4 coRT €08 X
8. Defino: “f(z) = » as 3~ =" Give an examole.
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There is one difference between the case of & function f(z) and a sequence d,
1In the ease of a sequence, n can tend to infinity only by increasing, but for a
function we may sliow = to become infinite either positively or tegatively. If it
s desired to restrict attention to the bebavior of f(z) when z assurmes large posi-
tive values only, we may replace the condition | z | > K by the condition z > K;
for large negative values of  we use the condition z < —K. To symbolize these
two method~ of “one-sided”’ approach to infinity we write

Zb 4w, Zb -
respectively.

§4. PRECISE DEFINITION OF CONTINUITY

In §1, Article 5 we stated what amounts to the following eriterion for
the continuity of a funetion: “A function f(z) is continuous at the point
x = z; if, when z h , the gt ity f(z) hes the value
f(z1) as a Limit.” If we analy e thls definition we see that it consists
of two different requirements:

a) the limit ¢ of f(z) must exist as = tends to z,,

b) this limit @ must be equal to the value f(zy).

If in the limit definition of page 305 we set a = f(z;), then the condi-
tion for continuity takes the following form: The funciion f(x) is con-
tinuous for the value X = X, if, corresponding to every positive number e,
no matter how small, there may be found a positive number § (depending
on ¢) such that

@) — fl) | < e
Sor all x satisfying the inequality
lz—az] <8
(The restriction z # 2, imposed in the limit definition is unnecessary
here, since the inequality | f(z)) — f(21) | < ¢is automatically satisfied.)

e e— nr
D vl ! =/

Fig. 170 A fanction continuous stz = 11, Yig. 173, A function discontingcus at € = 71,
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As an example, let us check the continuity of the function f(z) = z*
at the point ;1 = 0, say. We have

f@) =

Now let us assign any positive value to ¢, for example ¢ = ﬁﬁ Then

we must show that by confining z to values sufficiently near z; = 0, the
correspondirZz values of f(:c) will not differ from 0 by more than ﬁ,
ie. will lie between 1700—0 and - 56 000 We see immediately that this
margin i8 not exceeded if we restnct z to vnlues differing from z; = 0

Y0 S L =
bylessthana—,‘/lm U foni[a:]< thenlf(x)[ <

In the same way we can replace ¢ =

00'0
by ¢ = 107*, 10, or whatever

margin we desire; 8 = Ve wi\l always satisfy the requirement, since
i |2] < Ve, then |f(z) | = 2* < e

On the basis of the (e, 8)-definition of continuity one can show in a

similar way that all poly ials, rational i an

functions are continuous, except for isolated values of & where the func-
tions may become infinite.

In terms of the graph of a function u = f(z), the definition of con-
tinuity takes the following geometrical form. Choose any positive
number ¢ and draw parallels to the x-axis at a height f(z)) — e and
f(z,) + eaboveit. Then it must be possible to find a positive number
such that the whole portion of the graph which lies within the vertical
band of width 25 about z; is also contained within the horizontal band
of width 2e about f(z:). Figure 170 shows a function which is continuous
at 2, while Figure 171 shows a function which is not. In the latter
case, no matter how narrow we make the vertical band about 2, it
will always include a portion of the graph that lies outside the hori-
zontal band corresponding to the choice of e.

I T assert that a given function u = f(z) is continuous for the value z = z;,
it means that I am prepared to fulfll the following contract with you, You may
choose any positive number ¢, as small as you please, but fixed. Then T must
produce & positive number & such that | z — z, | < & implies [ f(z) — f(z) | < e
T do not contract to produce at the outset & number 8 that will suffice for what-
ever ¢ you may subsequently choose; my choice of & will depend on your choice of e.
If you can produce but one value e fur which I eannot provide a suitable 3, then
my sssertion is contradicted. Hence to prove that I can fulfill my contract in
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any concrete cuse of & function u = f{(z), | usually construct an explicit positive
function
5= ple),

defined for every positive number ¢ for which I can prove that {z ~ a: | < &
implies always | f(z) ~ f(z1) | < & In the case of the function u = f(z) = &*
at the value z; = 0, the function § = ¢(u) was § = Ve.

[Ezercises: 1) Prove that sin #, cos « are continuous functions.

2) Prove the continuity of 1/(1 + 2%) and of v/1 -+ 25

Tt should now be clear that the (e, 8)-definition of continuity agrees
with what might be called the observable facts concerning a function.
As such it is in line with the general prineiple of modemn science that
sets up as the criterion for the usefulness of a concept or for the “scientific
existence” of a phenomenon the possibility of its observation (at least
in principle) or of its reduction to observable facts.

§5. TWO FUNDAMENTAL THEOREMS ON CONTINUOUS
FUNCTIONS

1. Bolzano’s Theorem

Bernard Bolzano (1781-1848), a Catholic priest trained in scholastic
philosophy, was one of the first to introduce the modern concept of rigor
into mathematical analysis. His important booklet, Paradozien des
Unendlichen, appeared in 1850. Here for the first tlme it was recognized
that many ty obvious fune-
tions can and must be proved if they are to be used in full generality.
The following theorem on continuous functions of one variable is an
example.

A continuous function of @ variable x which is positive for some value of x
and negative for some other value of x in a closed interval a < x < bof
continuity must have the value zero for some intermediate value of x. Thus,
if f(z) is continucus as z varies from a to b, while f(z) < 0 and f(b) > 0,
then there will exist a value « of z such that @ < @ < b and f(a) = 0.

Bolzano’s theorem corresponds perfectly with our intuitive idea of a
continuous curve, which, in order to get from a point below the z-axis
to a point above, must somewhere cross the axis. That this need not
be true of discontinuous functions is shown by Figure 157 on page 284.

*2. Proof of Bolzano’s Theorem

A rigorous proof of this theorem will be given. (Like Gauss and other great
mathematicians, one may accept and use the fact without proof.) Our objective
i8 to reduce the theorem to fundamental properties of the real number system,
in particular to the Dedekind-Cantor postulate concerning nested intervals




PROOF OF BOLZANO'S THEOREM 313

(. 68). To this end we consider the interval I,a < 7 < b, in which the func-
tion f(z) is defined, and bisect it by marking the mid-point, &1 = “%b It at

a, b 3
T2 ST Ty
Fig o n theotem.

this mid-point we find that f(z,} = 0, «n there remains nothing further to prove.
If, however, f(z) % 0, then f(z:) must be either greater than or less than zero.
In either case one of the halves of 7 will again have the property that the sign of
() is different at its twa extremes. Let ug call this interval I1,. We continue
the process by bisecting I ; then either f(z) = 0 at the midpoint of /,, or we can
choose an interval Ja , half of I, , with the property that the sign of f(z) is different
Bt it two extremes. Repeating this procedure, either we shall find after a finite
number of biseetions & point for which f(z) = 0, or we shall obtain a sequence of
nested intervals 11, I, Ly, -+~ . In the latter case, the Dedekind-Cantor postu-
late assures the existence of a point « in I commen to all these intervals, We
assert that f(a) = 0, 80 that a is the point whose existence proves the thearem.

So far the assumption of continuity has not been used. It now serves to elinch
the argument by a bit of indirect reasoning. We I prove that f(a) = 0 by
assuming the contrary and deducing a contradictic... Buppose that f(a) # 0,
e.g. that f(a) = 2¢ > 0. Since f(z} is continuous, we can find a (perhaps very
small) interval J of length 23 with o as midpoint, such that the value of f(z)
everywhere in J differs {rom f(a) by less than «. Hence, since f(a) = 2¢, we can
be sure that f(z) > ¢ everywhere in J, so that f(z) > 0 in J. But the interval /
is fixed, and if n is sufficiently large the little interval 7, must necessarily fall
within J, since the sequence I, shrinks to zero. This yields the contradietion;
for it follows from the way I was chosen that the function f(z) has opposite signe
at the two endpoints of every I, , 50 that f(z) must have negative values some-
where in J. Thus the absurdity of f(«) > 0 and (in the same way) of fla) <0
proves that f(a) = 0.

3. Weierstrass’ Theorem on Extreme Values

Another important and intuitively plausible fact about
functions was formulated by Karl Weierstrass (1815-1897), who, per-
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haps more than anyone else, was responsible for the modern trend
towards rigor in mathematical analysis. This theorem states: If a func-
tion f(x) s continuous in an interval I, a< x < b, including the end-
points & and b of the interval, then there must ezist ot least one point
in I where {(x) attains its largest value M, and another point where {(x)
attains s least value m. Intuitively spesking, this means that the
graph of the continuous function u = f(z) must have at least one highest
and one lowest point.

It is important to observe that the statement need not be true if the
function f(z) fails to be continuous at the endpoints of 7. For example,

the function f(z) = i has no largest value in the interval 0 < z < 1,

lthough f(z) is i 2 s the interior of this interval,
Nor need a discontinuous function assume a greatest or a least value
even if it is bounded. For example, consider the very discontinuous
function f(z) defined by setting

[f(z) = = for irrational x,
f(z) = % for rational z,

in the interval 0 < z < 1. This function always takes on values
between 0 and 1, in fact values as near to 1 and 0 as we may wish, if z
is chosen as an irrational number sufficiently near to 0 or 1. But f(z)
can never be equal to 0 or 1, since for rational z we have f(z) = $,
and for irrational z we heve f(z) = z. Hence 0 and 1 are never
atteined.

* Weierstrass’ theorem can be proved in much the same way as Bolzano's
theorem. We divide  into twa cloved half-intervals I’ and I and fix our atten-
tion on I’ a8 the interval in which the greatest value of f(z) must be sought,
unless there is @ point a in I such that f{a) evcceds all the values of f(z) in I'; in
the latter case we seloct . The interval so selected we call 7, . Now we proceed
with 7, in the same say as we did with J, obtaining an interval I, and so on. This
process will define & sequence Iy, 73, -+, In, --- of nested intervals ali contain-
ing & point z. We shall prove that the value f(z) = 3 is the largest attained by
#(z) in 1, i.e. that there cannot be a points in 7 for which f(s) > M. Suppose there
were & poiat & with f(s) = M + 2¢, where ¢ is a (perhaps very smsll) positive
sumber. Around z as center we can, because of the continuity of f(z), mark off
a small interval K, leaving s outside, and such that in X the values of f(z) differ
from f(z) = M by less than ¢, so that we certainly have /(z) < M + ein K. But
for sufficiently large n the interval 1, lies inside X, and I, was so defined that no
value of f(z) for z outsidé 7, can exceed all the values of f(z) for z in In. Since
& is outside /. and f(x) > M + ¢ while in K, and hence in I,, we have
f(z) < M + ¢, we have arrived at a contradiction.
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The existence of a least value m mey be proved in the ssme way, or it follows
directly from what has already been proved, since the least value of f(z) is the
greatest value of glz) = —f(z).

Weierstrass’ theorem can be proved in a similar way for continuous functions
of two or more variables z . -+~ . Instead of an interval with its endpoints we
have to consider a cl~ted ~  &in, e.g. & rectangle in the z, y-plane which includes
its boundary.

EBaercise: Whers, in the proofs of Bolzano's and Weierstrass’ theorems, did
we use the fact that f(z) was assumed to bo defined and continuous in the whole
closed interval a < z < b and not merely in the interval a <z < bora < z < b?

) th idedl

The proofs of Bolzano’s an have 2 d;
non-constructive character, They do not provide a method for actually
finding the location of a zero or of the greatest or smallest value of &
function with a prescribed degree of precision in a finite number of steps.
Only the mere exist or rather the absurdity of the
of the desired values is proved. This is another important instance
where the “intuitionists” (see p. 86) have raised objections; some have
even insisted that such tk be elimi d from math The
student of mathematics should take this no more seriously than did
most of the crities.

*4. A Theorem on Sequences. Compact Sets

Let z1, 22, 23, -+ - be any infinite sequence of numbers, distinet or
not, all contained in the closed inferval I, @ < = < b. The sequence
may or may not tend to a limit. But in any case, 1t is always possible
to extract from such a sequence, by omitting certain of its lerms, an infinite
subsequence, y1, Y2, ¥s, +++, -Shich lends to some limit y contained in the
interval 1.

To prove this theurem we divide the interval I into two closed sub-

intervals I’ and 7" by marking the m)dpomt 5 of I:

In at least one of these, which we may call Iy, there must lie infinitely
many terms z. of the original sequence. Choose any one of these terms,
say ., , and call it . Now proceed in the same way with the inter-
val Iy, Since there are infinitely many terms z, in I, there must be
infinitely many terms in at least one of the halves of I3, which we may
<all I,. Hence we can certainly find & term z, in I, for which n > =,
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Choose some one of these, and call it . Proceeding in this way, we
can find a sequence I, I3, I3, - ++ of nested intervals and a subsequence
Y1, Y2, Y, of the original sequence, such that y. lies in I, for every n.
This sequence of intervals closes down on a point y of I, and it is clear
that the sequence ¥1, ¥, ¥s, - -+ has the limit a, 2s was to be proved.

* These considerations are capable of the type of generalization that is typical
of modern mathematics. Let us consides a varisble X ranging over & general st
S in which some notion of “distance” is defined, S may be a set of points in the
plane ot in space. But this s not necessary; for example, S might be the set of
alf triangles in the plane. 1f X and ¥ are two triangles, with vertices 4, B, €
and 4/, B, C* respectively, then we can define the “distance’ between the two
triangles a5 the number

d(X,Y) = AA’ + BB' + CC,

where AA’, etc. denotes the ordinary distance between the points 4 and A,
Whenever there exists such a notion of “distance’ in a set § we may definé the

concept of & sequence of clements X, X3, Xs, -+ tending to & limit element
X of S. By this we mean that d(X, X.) ~ 0 as n — @, Wo shall now say that
the set S is compact if from any sequence Xy, X1, Xa , -+ of elements of 8 we

can always extract o subsequence which tends to some limit element X of 8. We
have shown in the preceding paragraph that a closed interval a S z < bis compaot
in this sense. Hence the concept of s compact set may be regarded as a generaliza-
tion of a closed interval of the number axis. Note that the number axis as a'wholeis
not corapact, since the sequence of integers 1,2, 3, 4, 5, --- neither tends to a limit
nor contains any subsequence that does, Nor is an open interval such as
0 < z < 1, not including its endpoints, compact, since the sequence 3, 4,
}, --- or any subsequence of it tends to the limit 0, which is not a point of
the open interval, In the same way it may be shown that the region of the plane
consisting of the points interior to a square or rectangle is not compact, but be-
comes compact if the boundary peints are added. Furthermore, the set of all
triangles whose vertices lie within or on the circumference of a given circle is
compact.

We may also extend the notion of continuity to the case where the variable
X ranges over any set § in which the notion of limit is defined. The function
« = 7/Y), where u is a real number, is said to be continuous at the element X if,

sequence of elements X1, X3, X5, +-- which tends to X as limit, the cor-

fing sequence of numbers ¥(X1), F(X3), --- tends to the limit F(X). (An

_ .Jlent (¢, 8)-definition could alse be given.) It is quite easy to show that

Weicrstrass’' theorem also holds in the general case of a continuous function
defined over the elements of any compact set:

If u = F(X) is any continuous function defined on @ compact et S, then there
always exists an element of § for which F(X) atluins its largest value, and also
one for which it attains ils smallest value,

The proof is simple once one has zrasped the general concepts involved, but
we ghall not go further into this subject. It will appesr in Chapter VII that
the general theorem of Weierstrass is of great importance in the theory of maxima
and minima.
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§6. SOME APPLICATIONS OF BOLZANO'S THEOREM
1. Geometrical Applications

Bolzano’s simple yet general theorem may be used to prove many
facts which are not at all obvious at first sight. We begin by proving:
If A and B are any two areas in the plane, then there exists a siraight line
in the plane which bisects A and B simultaneously. By an “area” we
mean any portion of the plane included within a simple closed curve.

Let us begin by choosing some fixed point P in the plane, and drawing
from P a directed ray PR from which to measure angles. If we take
any ray PS which makes an angle z with PR, there will exist a directed
straight line in the plane bisecting the area A, and with the same direction
as the ray PS. For if we take a directed line ; with the direction of PS
and lying wholly on one side of 4 and move this line parallel to itself
until it is in position & (see Fig. 173), wholly on the other side of 4,
then the function whose value is defined to be the area of A to the right
of the line (the east direction if the arrow on the line points north)
minus the area of 4 to the left of the line will be positive for position 4
and negative for position l,. Since this function is continuous, by
Bolzano’s theorem it must be zero for some intermediate position I,
which therefore bisects A. For each value of & from z == 0° to & = 360°,
the line I; which bisects 4 is uniquely defined.

[

P I3

Fig. 173, Simultancous bitcetion of two areas.

Now let the function y == f(z) be defined as the area of B to the right
of I minus the area of B to the left of I,. Suppose that the line l
which bisects 4 and lias the direction of PR has more of B to the right
than to the left; then for x == 0° y is positive. Let z increase to 180°,
then the line s with direction RP which bisects A is the same as
but oppesitely directed, with right and left interchanged; hence the
value of y for z = 180° is the same numerically as for z = 0°, butl with
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opposite sign, and therefore negative. Since y is a continuous function
of z as I, turns around, there exists some value « of z between 0° and
180° for which y is zero. It follows that the line I bisects A and B
simultaneously. This completes the proof.

Note that although we have proved the ezistence of & line with the
desired property, we have given no definite procedure for constructing
it; this exhibits again the distinguishing feature of hematical exist-
ence proofs as compared with constructions.

A similar problem is the following: Given a single area in the plane,
it is desired to cut it into four equal pieces by two perpendicular lines.
In order to prove that this is always possible, we return to our previous
problem at the stage where we had defined I, for any angle «, but we
forget about the area B. Instead, we take the line l.4e0 which is per-
pendicular to I: and which also bisects 4. If we number the four pieces
of 4 as shown in Figure 174, then we have

Ar+ Ay = Az + A

and
A+ Ay = A+ Ao,

s

o
Y
5.
Fig. 176,

from which it follows, on subtracting the second equation from the first,
that

A= Ay = Ay ~ 4i,

Ay = Ay,
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and hence
As = Ay
Thus if we can show the existence of an angle a such that for I,
Axa) = Aafa),
then our theorem will be proved, since for such an angle all four areas

will be equal. To do this, we define a function y = f(z) by drawing L
and setting
f(z) = ArE) — Ay(z).

Forz = 0° f(0) = 4:(0) — A.(0) may be positive, In that case, for
z = 90° A41(90) — A(90) = A:(0) — 45(0) = A,(0) — A,(0) will be
negative. Therefore, since f(z) varies continuously s z increases from
0° to 90°, there will be some value a between 0° and 90° for which
flo) = Aie) — As(e} = 0. The lines I, and l.ieo then divide the area
into four equal pieces.

It is interesting to observe that these problems may be generalized
to three and higher di i In three di fons the first problem
becomes: Given three volumes in space, to find a pl ne which bisects
all three simultaneously. The proof that this is always possible again
depends on Bolzano’s theorem. In more than three dimensions the
theorem is still true but the proof requires more advanced methods.

*2, Application to a Problem of Mechanics

‘We shall conclude this section by discussing an apparently difficult
problem in mechanics that is easily answered by an argument based on
continuity eoncepts. (This problem was suggested by H. Whitney.)

Suppose a train travels from station 4 to station B along a straight
section of track. The journey need not be of uniform speed or accelera-
tion. The train may act in any manner, speeding up, slowing down,
coming to a halt, or even backing up for a while, before reaching B.
But the exact motion of the train is supposed to be known in advance;
that is, the function s = f(t) is given, where ¢ is the distance of the train
from station 4, and { is the time, measured from the instant of departure.
On the floor of one of the cars a rod is pivoted so that it may move with.
out frietion either forward or backward until it touches the floor. If it
does touch the floor, we assume that it remains on the floor henceforth;
this will be the case if the rod does not bounce. Is it possible to place
the rod in such a position that, if it is released at the instant when the
train starts and allowed to move solely under the influence of gravity
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and the motion of the train, it will not fall to the floor during the entire
journey from 4 to B?

Fig 175,

It mizht seem quite unlikely that for any given schedule of motion
the interplay of gravity and reaction forces will always permit such
& maintenance of balance under the single condition that the initial posi-
tion of the rod is suitably chosen. Yet we state that such & position
always exists.

Paradoxical as this assertion might seem at first sight, it can be proved
easily once one concentrates on its essentially topological character,
No detailed knowledge of the laws of dynamics is needed; only the
following simple assumption of a physical nature need be granted: The
motion of the rod depends continuously on its initial position. Let us
characterize the initial position of the rod by the initial angle = which it
makes with the floor, and by y the angle which the rod makes with the
floor at the end of the journey, when the train reaches the point B. If
the rod has fallen to the floor we have either y = Oory = 7. Fora
given initial position z the end position y is, according to our assump-
tion, uniquely determined as a function y = g(z) which is continuous
and has the values y = Oforz = Oand y = = for z = » (the latter
assertion simply expressing that the rod will remain flat on the floor if
it starts in this pesition). Now we recall that g(z), as a continuous
funetion in the interval 0 < z <, assumes all the values between g(0) =
0 and g(x) = =; consequently, for any such values y, e.g. for the value

y = g, there exists a specific value of z such that g(z) = y; in particular,

there exists an initial position for which the end position of the rod at
B is perpendicular to the floor. (Note: In this argument it should not
be forgotten that the motion of the train is fixed once for all.)

Of course, the reasoning is entirely theoretical. If the journey is of
long duration or if the train schedule, expressed by s = f(), is very
erratic, then the range of initial positions z for which the end position
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g(x) differs from 0 or = will be exceedingly small, as is known to anyone
who has tried to balance a needle upright on 2 plate for an appreciable
time. Still, our reasoning should be of value even to a practical mind
inasmuch as it shows how qualitative result,s m dynamxcs may be ob-
tained by simple ts without tech

Egercises: 1. Using the theorem of page 315, show that the reasoning above
may be generslized to the case where the journey is of infinite duration,

2. Generalize to the case where the motion of the train is along any curve in
the plane and the rod may fall in any direction, (Hint: It is not possible to map
8 circular disk continuously onto its cireumference alone by a mapping which
eaves every point of the circumference fixed (see p. 266)),

3. Show that the iime required for the rod to fall to the floor, if the car is
stationary and the rod i released at an angle « from the vertical position, tends
to infinity as ¢ tenda to zero.



SUPPLEMENT TO CHAPTER VI
MORE EXAMPLES ON LIMITS AND CONTINUITY

§1. EXAMPLES OF LIMITS

1. General Remarks

In many eases the convergence of a sequence a, can be proved
by an argument of the following sort. We find two other sequences, b,
and ¢, whose terms have a simpler structure than those of the original
sequence, and such that
[eV) by <oy S ea
for every n. Then if we can show that the sequences b, and ¢, both con~
verge to the same limit a, it follows that . also converges to the limit o.
We shall Jeave the formal proof of the statement to the reader.

It is clear that applications of this procedure will involve the use of
inequalities. It is therefore appropriate to recall a few elementary rules
which govern arith ical i with i iti

1. a > b, then a + ¢ > b + ¢ (any number may be added to both
sides of an inequality).

2. If a > b and the number ¢ is positive, then ac > be (an inequality
may be multiplied by any positive number).

3. Ifa < b, then —b < —g (the sense of an inequality is reversed if
both sides are multiplied by —1). Thus 2 < 3 but —3 < —2.

4. If @ and b have the same sign, and if @ < b, then 1/a > 1/b.

5. la+b|<lal+ 0]

2. The Limit of ¢*

If ¢ is 2 number greater than 1, the sequence ¢" will increase beyond
any bound, as does the sequence 2, 2°, 2°, ... for ¢ = 2. The sequence
“tends to infinity” (see p. 204). The proof in the general case is based
on the important inequality (proved on p. 15)

2) I+ B" 21+ nk> nk
where & is any positive number. Weset ¢ = I + h, where & > 0; then
¢"=(1+hk" >k
322
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If k is any positive number, no matter how large, then for all n > k/A
it follows that

q" > nh >k
hence g" — .

1f g = 1, then the members of the sequence ¢" are all equal to 1, and 1
is therefore the limit of the sequence. If g is negative, then ¢" will
alternate between positive and negative values, and will have no limit
ifg< -

Ezercise: Give a rigorous proof of the last statement.

On page 64 we showed that if —1 < ¢ < 1, then ¢" — 0. We may
give another and very simple proof of this fact. First we consider the
case where 0 < ¢ < 1. Then the numbers ¢, ¢, ¢' - -+ form a mono-
tone decreasing sequence bounded below by 0. Hence, according to
page 295, the sequence must approach a limit: ¢" ~ a. Multiplying
both sides of this relation by ¢ we obtam ¢ > ag.

Now ¢"*" must have the same limit as ¢", since the name, n or n + 1,
of the increasing exponent, does not matter. Hence ag = a, or
alg — 1) = 0. Since 1 — ¢ » 0, this implies that a = 0.

If ¢ = 0, the statement ¢" — 0 is trivial. If —1 < ¢ < 0, then
0 < |g¢] < 1;hence |¢"] = |¢|" — O by the preceding argument
From this it follows that always ¢" — 0 for | ¢| < 1. This complete
the proof.

Ezercises: Prove that for n ~»

1) @/l + 24 = 0;

2) (/1 + at)* — 0;

3) (z%/4 + %) tends to infinity for & > 2, toOfor |z | < 2

3. The Limit of v/p
“The sequence a, = ~/p, i.e. the sequence p, /p, v/p, ¥/p, +++ , has
the limit 1 for any fixed positive number p:
3) Vp—lasn— =,
(By the symbol {/p we mean, as always, the positive nth root. For
negative numbers p there are no real nth roots when = is even.)
To prove the relation (3), we first suppose that p > 1; then \/w will
also be greater than 1. Thus we may set
p=1+h,
where k. is a positive quantity depending on n. The inequality (2)
then shows that
p= (14 k)" > nha.
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On dividing by = we see that
0 < ha < p/n.

Since the sequences b, = 0 and ¢, = p/n both have the limit 0, it
follows by the argument of Article 1 that &, also has the limit 0 as n
increases, and our assertion is proved for p > 1. Here we have a
typical instance where a limiting relation, in this case k, — 0, is recog-
nized by enclosing k, between two bounds whose limits are more easily
obtained.

Incidentally, we have derived an estimate for the difference k. between
/7 and 1; this difference must always be less than p/n.

If0 < p <1, then ¥/p < 1, and we may set

" 1

Ve
where k., is again a positive number depending on n. It follows that

1 1
L e N

40 that

B<h<t,

np

From this we conclude that A, tends to 0 as n increases. Hence, since
Up = 1/(1 + h,), it follows that /p — 1.

The equalizing effect of nth root extraction, which tends to push
every positive number towards 1 as n increases, is even strong enough
to do this in some cases if the radicand does not remain constant. We
shall prove that the sequence 1, v/, v/3, v/4, v/5, -+ tends to 1,

i.e. that
V1
asn increases. By a little device this can again be shown to follow from
the inequality (2). Instead of the nth root of n, we take the nth root
of v/n. If we set v/\/% = 1 + ka, where k, is a positive number
depending on =z, then the inequality yields v/2 = (1 + k)" > nk,,
80 that
fn < \L— =
n \/ n
Hence
V< mm (b hY = L2k + K <1 2t ]

it
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The right side of this inequality tends to I as n increases, so that v/ n
must also tend to 1.
4. Discontinuous Functions as Limits of Continuous Functions

We may consider limits of sequences a, when a, is not a fixed number
but depends on a variable z: a, = f.(z). If this sequence converges
as n — , then the limit is again a function of z,

F@) = lim fu(z).

Such representations of functions f(r) as limits of others are often
useful in reducing “higher” functions f(z) to elementary functions fa(z).

This is true in particular of the representation of discontinuous func-
tions by explicit formulas. For example, let us consider the sequence

S = D}; For[z] = 1 we have 2* = 1 and hence fu(z) = 1/2

for every n, so that fo(z) — 1/2. For|z| < 1 wehavez*" —0, and hence
fa@) — 1, while for | z | > 1 we have 2" — «, and hence f,(z) — 0.
Summarizing:

{1 forjz|<1,
——-{I/?fur\zl =1,
o for(z|>1.

1 -
e

fx) = lim

Here the discontinuous function f(z) is represented as the limit of a
of i rational functi
Another interesting example of a similar character is given by the
sequence

22 152 CE!
et ot Taea
Forz = 0 all the values f,(x) are zero, and therefore f(0) = lim f.(0) = 0.
For z > 0 the expression 1/(1 + z°) = ¢ is positive and less than 1;
our results on geometrical series guarantee the convergence of fu(z)
for n ~» o, The limit, i.e. the sum of the infinite geometrical series, is

T’ Zz
T=q¢

f@) =2 + +

, which is equal to 1 + z*. Thus we see that

1] -

+ 2
fal) tends to the function f(z) = 1 + z* for x # 0, and to f(z) = 0
for » = 0. This function has s removable discontinuity at 2 = 0.
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*5. Limits by Iteration
Often the terms of & sequence are such that @,4: is obtained from a,
by the same procedure 8s a, from a.; ; the same process, indefinitely
repeated, produces the whole sequence from & given initial term. In
such cases we speak of a process of “iteration.”
For example, the sequence
LVIFL VTFVE VIFVIFVE, -
has such a law of formation; each term after the first is formed by taking
the square root of 1 plus its predecessor. Thus the formula
=1, =1+ an
defines the whole sequence. Let us find its limit. Obviously a, is
greater than 1 for n > 1. Furthermore a, is & monotone increasing
sequence, for
Gt = an = (1 + ) = (I + Ga1) = Gn = Gnoa.
Hence whenever a, > @, it will follow that a,.: > a.. But we know
that @z — @ = /2 — 1 > 0, from which we conclude by methematical
mductmn that g.41 > a. for all n, i.e. that the sequence is monotone

it sk ded; for by the previous results we
bave
1+ an 1+ toss 1
=—— < —F =14 — <2
Gt = [ + [
By the principle of t: we lude that for n — =

a, — a, where a is some number between 1 and 2. We easily see that a
is the positive root of the quadratic equation z® = 1 + 2. Forasn— w
the equation ah4; = 1+ @, becomesa’ = 1 + a.  Solving this equation,
1+ 5
7

we find that the positive rootisa = Thus we may solve this

quadratic equation by an iteration process which gives the value of the
root with any degree of approximation if we continue long enough.

‘We can solve many other algebraic equations by iteration in a similar
way. For example, we may write the cubic equation 2* — 3z + 1 = 0
in the form

= .
3 -z

We now choose any value for a,, say &y = 0, and define
1

Gngl = ——5,
8~ ay
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obtaining the sequence @, = 1/3 = 3333 ... , a3 = 9/26 = .3461...,
aq = 676/1947 = 3472 ..., etc. It may be shown that the sequence
a, obtained in this way converges to a limit ¢ = .3473 --- which is &
solution of the given cubic equation. Iteration processes such as thir
are highly important both in pure mathematics, where they yield “ex
istence proofs,” and in applied mathematics, where they provide ap-
proximation methods for the solution of many types of problems.
Exzercises on limits. Forn — o

1) Prove that v/n + 1 ~ v/n — 0.

(Hint: write the difference in the form

2) Find the limit of v/aF F & — v/A b,
3) Find the limit of /n% + o 5 - n

4) Find the limit of ~

5) Prove that the limit of
6) What ia the limit of \/a»
7 WhM is the hmlL of \/m

+berifa>b>c >0
9) We shall see later (p. 440) that ¢ = lim (1 4+ 1/a)". What then is
lim (1 4 1/22)%?

§2. EXAMPLE ON CONTINUITY

To give a precise proof of the continuity of a function requires the
explicit verification of the definition of page 310. S 1 this is &
lengthy procedure, and therefore it is fortunate ',hat as we shall see in
Chapter VIII, ity is a of di iability. Since
the latter will be established ically for all ek 'y functions,
we may follow the usual course of omitting tedious individual proofs of
continuity. But as a further illustration of the general definition we

We

shall analyze one further example, the funetion f(z) = i%l- p
may restrict  to a fixed interval [z | < M, where M is an arbitrarily
selected number. Wricing

flz) — flz) =
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we find for jz| < M and |m| < M
[fa) ~ fa)| £ |z = &ulfz + x| < [2 — = | 2M.

Hence it is clear that the difference on the left side will be smaller than any

€
oM "

Tt should be noted that we are being quite generous in our appraisals.
For large values of z and z; the reader will easily see that a much larger
& would suffice.

positive number ¢ if only |2y — 2| < & =




CHAPTER VII
MAXIMA AND MINIMA

INTRODUCTION

A straight segment is the shortest ion between its end
An arc of a great circle is the shortest curve joining two points on &
sphere. Among all closed plane curves of the same length the circle
encloses the largest area, and among all closed surfaces of the same
ares. the sphere encloses the largest volume.

Meximum and minimum properties of this type were known to the
Greeks, even though the results were often stated without a real at-
tempt at a proof. One of the most significant Greek discoveries is
ascribed to Heron, the Alexandrian scientist of the first centary A.D.
It had long been known that a light ray from 2 point P meeting a plane
mirror L in a point R is reflected in the direction of a point @ such that
PR and QR form equal angles with the mirror. Heron found that if R’
is any other point on the mirror, then the total distance PR’ + RQ
is larger than the distance PR + RQ. This theorem, which we shail
prove presently, characterizes the actual path of light PRQ between P
and Q as the shortest possible path from P to @ by way of the mirror—
a discovery that can be considered the germ of the theory of geometrical
optics.

It is only natural that h icians should be i d in ques-
tions of this sort. In daily life problems of maxima and minima, of the
“best” and the “worst,” arise ly. Many probl of tical
importance present themselves in this form. For example, how should
8 boat be shaped so as to have the least possible resistance in water?
What cylindrical container made from a given amount of material has
a maximum volume?

Starting in the seventeenth century, the seneral theory of extreme
values—maxima and minima—has become one of the systematic inte-
grating principles of seience. Fermat’s first steps in his differential
ealeulus were prompted by the desire to study questions of maxima and
minima by general methods. In the century that followed, the scope

328
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of these methods was greatly widened by the invention of the “caleulus
of variations.” [t became increasingly apparent that the physical laws
of nature are most adequately expressed in terms of 2 minimum principle
that provides a natural access to 8 more or less complete sclution of
particalar problems. One of the most remarkable achievements of
contemporary mathematics is the theory of stationary values—an
extension of the notion of extreme values which combines analysis and
topology. Our approach to the whole subject will be quite elementary.

§1. PROBLEMS IN ELEMENTARY GEOMETRY
1. Maximum Area of a Triangle with Two Sides Given

Given two segments a and b; required to find the triangle of maximum
area having a and b as sides. The sclution is simply the right triangle
whose two legs are @ and b.  For consider any triangle with a and b as
sides, as in Figure 176. If A is the altitude
on the base g, then the area of the triangle is
A = }ah. Now }ch is clearly & maximum
when h is largest, and this occurs when h

incides with b; that is, for a right triangle.
Hence the maximum area is ab.

2. Heron’s Theorem. Extremum Property of Light Rays

Given a line L and two points P and @ on the same side of L. For
what point B on L is PR + RQ the shortest path from P to L to Q7
This is Heron’s problem of the light ray. (If L were the bank of a
stream, and someone had to go from P to Q as fast as possible, fetching
a pail of water from L on the way, then he would have to solve just this
problem.) To find the solution, we reflect P in L as in & mirror, ob-
taining the point P’ such that L is the perpendicular bisector of PP’
The line P'Q intersects L in the required point B. It is simple to prove
that PR + RQ is smaller than PR’ 4 R’Q for any other point B’ on L.
For PR = P'R and PR’ = P'R’; hence, PR + RQ = P'R + RQ = P'Q
and PR’ + R'Q = P'R' + R'Q. But P'R’ + R'Q is greater than P'Q)
(since the sum of any two sides of a triangle is greater than the third
side), hence PR’ 4+ R'Q is greater than PR + RQ, which was to
be proved. In what follows we assume that neither P nor @ lies on L.

From Figure 177 we see that X3 = %2, and %2 = X1, so that
%1 = %3. In other words, R is the puint such that PR and QR make
equal angles with L. From this it follows that a light ray reflected in
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L (which is known from experiment to make equal angles of incidence
and reflection) actually takes the shortest path from P to L to Q, as
stated above in the introduction.
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Fig. 17, e theorem.

The problem can be generalized to include several lines L, M, ... .
For example, consider the case where we have two lines L, M and two
points P, Q situated as in Figure 178, with the problem of finding the
path of minimum length from P to L, then to M, then to . Let Q'
be the reflection of @ in M and Q" the reflection of @' in L. Draw

49
O
T
L . % !
b o
5
M Q

Fig. 178. Reflection in two mirrors.

PQ” intersecting I, in K and RQ’ intersecting M in S; then R and §
are the required points such that PR + RS + 5@ is the path of minimum
length from P to L to M to Q. The proof of this fact is very similar
to that of the previous problem, and is left as an exercise for the reader.
If L and M were mirrors, a light ray from P, reflected from L to M,
and there reflected to @, would meet L at B and M at S; hence the
light ray would again take the path of shortest length.

One might ask for the shortest path first from P to M, then to L,
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and from there to Q. This would give a path PRSQ (see Fig. 170)
determined in a manner similar to the previous path PRSg. The length
of the first path may be greater than, equal to, or less than that of the
second.

Fig. 179.
* Ezercise: Show that the first path is smaller than the second if O and R lie
on the same side of the line PQ. When will the two paths be of equal length?
3. Applications to Problems on Triangles

With the help of Heron’s theorem solutions to the following two
problems are easily obtained.

a) Given the area A and one side ¢ = PQ of a triangle; among all
such triangles to determine the one for which the sum of the other sides
@ and b is smallest. Prescribing the side ¢ and the area 4 of a triangle
is equivalent to prescribing the side ¢ and the altitude 2 on ¢, since
A = }he. Referring to Figure 180, the problem is therefore to find a

Fig. 180. Triangle of minjmum perimoter with given base and are=

point R such that the distance from R to the line PQ is equal to the
given %, and such that the sum a + b is & minimun.  From the first
condition it follows that R must lie on the line parallel to P@ at a dis-
tance h. The answer is given by Heron’s theorem for the special case
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where P and § are equally distant from L: the required triangle PRQ
is isosceles.

b) In a triangle let one side ¢ and the sum a - b of the two other
sides be given; to find among all such triangles the one with the largest
area. This is just the converse of problem a). The solution is again
the isosceles triangle for which @ = b. As we have just shown, this
triangle has the minimum value of a <+ b for its area; that is, any
other triangle with the base ¢ and the same area has a greater value
of @ + b. Moreover, it is clear from &) that any triangle with base ¢
and an area greater than that of the isosceles triangle also has a greater
value of ¢ + b.  Hence any other triangle with the same values of a + b
and of ¢ must have a smaller area, so that the isosceles triangle provides
the maximum area for given ¢ and a + b.

4. Tangent Properties of Ellipse and Hyperbola. Corresponding
Extremum Properties

The problem of Heron is connected with some important geometrical
theorems. We have proved that if B is the point on L such that
PR 4 RQ is a minimum, then PR and RQ make equel angles with L.
This minimum total distance we shall ¢all 2a. Let p and g denote the
distances from any point in the plane to P and Q respectively, and con-
sider the locus of all points in the plane for which p + ¢ = 2a. This
locus is an ellipse, with P and § as foci, that passes through the point
R on the line L. Moreover, L must be tangent fo the ellipse at R. If
L intersected the ellipse at a point other than R, there would be &

L

Fig. 181. Tangent property of ellips

segment, of L lying inside the ellipse; for each point of this segment
P + ¢ would be less than 2a, since it is easily seen that p + ¢ is less
than 2¢ inside the ellipse and greater than 2a outside. Since we know
that p + ¢ > 2z on I, this is impossible. Hence L must be tangent
to the ellipse at B. But we know that PR and RQ make equal angles
with L; hence we have incidentally proved the important theorem: A




334 MAXIMA AND MINIMA [viLy

tangent to an ellipse makes equal angles with the lines ining the foci
to the point of tangency.

Closely related to the foregoing discussion is the following problem:
Given a straight line L and two points P and @ on opposite sides of L
(see Fig. 182), to find a point B on L such that the quantity [p — ¢,
that is, the absolute value of the difference of the distances from P and
Q to R, is a mazimum. (We shall assume that L is not the perpendicular
bisector of PQ; for then p — ¢ would be zero for every point B on I
and the problem would be meaningless.) To solve this problem, we
first reflect P in L, obtaining the point P’ on the same side of L as Q.
For any point R’ on L, we have p = R'P = R'P', ¢ = R'Q. Since R/,
Q, and P’ can be regarded as the vertices of a triangle, the quantity
|p — gl = [R'P' — R'Q| is never greater than P’Q, for the difference

Fig. 182, | PR ~ QR | = waximum,

between two sides of a triangle is never greater than the third side. If
R, P!, and Q all lie on a straight line, | p — g | will be equal to P'Q,
ag is seen from the figure. Therefore the desired point X is the inter-
section of L with the line through P’ and Q. As in the previous case,
it is easily seen that the angles which RP and RQ make with L are
equal, since the triangles RPR’ and RP’R’ are congruent.

This problem is connected with & tangent property of the hyperbola,
just as the preceding one was connected with the ellipse. If the maxi-
mum difference | PR — QR | has the value 2¢, we can consider the locus
of all peints in the plane for which p — ¢ has the absolute value 2a.
This is a hyperbola with P and @ as its foei and passing through the
point R. As is easily shown, the absolute value of p — g is less than
2¢ in the region between two branches of the hyperbola, and greater
than 2a on that side of each branch where the corresponding focus lies.
It follows, by essentially the same argument as for the ellipse, that L
must be tangent to the hyperbola at R.  Which of the two branch:
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touched by L depends on whether P or Q is nearer to L; if P is nearer,
the branch surrounding P will touch L, and likewise for @ (see Fig. 183)

‘Fig. 183, Taogent property of byperbola.

If P and Q are equidistant from L, then L will touch neither branch of
the hyperbola, but will, instead, be one of the curve’s asymptotes.
This result becomes plausible when one observes that for this case the
preceding construetion will yield no -(fnite) point R, since the line
P'Q will be parallel to L.

In the same way as before this argument proves the well known
theorem: A tangent to a hyperbola at any point bisects the ai..e sub-
tended at that point by the foci of the hyperbola.

It may seem strange that if P and @ are on the same side of L we
have & minimum problem to solve, while if they are on opposite sides of
L we considered a maximum problem. That this is natural can be seen
at once. In the first problem, each of the distances p, ¢, and therefore
their sum, becomes larger without bound as we proceed along L in-
definitely in either direction. Hence it would be impossible to find a
maximum value for p + ¢, and a minémum problem is the only possi-
bility. It is quite different in the second case, where P and @ lie on dif-
ferent sides of L. Here, to avoid confusion, we have to distinguish
between the difference p — g, its negative ¢ — p, and the absolute value
| p — gl; it is the latter which was made a mazimum. The situation
is best understooed if we let the point R move along the line L through
different positions, R, Ra, Bs, ---. There is one peint for which
the difference p — ¢ is zero: the in fon of the per dicular
bisector of PQ with L. 'This point therefore gives a minimum for the
absolute value | p — g|.  Buton one side of this point p is greater than
g, and on the other, less; hence the quantity p ~ ¢ is positive on one
side of the point and negative on the other. Consequently p — ¢
itself is neither a maximum nor a minimum at the point for which
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{p — ¢} = 0. However, the point making | p — ¢| & maximum is
actually an extremum of p — ¢q. If p > g, we have a maximum for
» — ¢;if ¢ > p, a maximum for ¢ — p and hence a minimum for p — ¢.
Whether a maximum or a minimum for p — ¢ is obtainable is deter-
mined by the position of the two given points P, @ relative to the
line L.

We have seen that no solution of the maximum problem exists if P
and @ are equidistant from L, since then the line P’Q in Figure 182
is parallel to L. This corresponds to the fact that the quantity | p — ¢ |
tends to a limit as R tends to infinity along L in either direction. This
limiting value is equal to the length of the perpendicular projection s
of PQ on L (the reader may prove this as an exercise}. If P and Q
have the same distance from L, then | p — ¢ | will always be less than
this limit and no maximum exists, since to each point B we can find
another farther out for which | p — g | is larger, but still not quite equal
to 8.

*5. Extreme Distances to a Given Curve

First we shall determine the shorfest and the longest distance from a
point P to a given curve €. For simplicity we shall suppose that C'is a
simple closed curve with a tangent everywhere, as in Figure 184. (The
concept of tangent to a curve is here accepted on an intuitive basis
that will be analyzed in the next chapter.) The answer is very simple:

Fig. 184. Bxtre -3 distancss to & cur-e.

A point R on C for whieh the distance PR has its smallest or its largest
value must be such that the line PR is perpendicular to the tangent to
€' at R; in other words, PR is perpendicular to €. The proof is as
follows: the circle with center at P and passing through R must be
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tangent to the curve. For if R is the point of minimum distance, C
must lie entirely outside the circle, and therefore cannot cross it at R,
while if R is the point of maximum distance, C' must lie entirely inside
the circle, and again eannot cross itat B.  (This follows from the obvious
fact that the distance from any point to P is less than RP if the point
lies inside the circle, and greater than RP if the point lies outside the
circle.) Hence the circle and the curve C will touch and have a common
tangent at R. Now the line PR, being a radius of the circle, is per-
pendicular to the tangent to the circle at R, and therefore perpendicular
toCatR.

Incidentally, the diameter of such & closed curve C, that is, its longest
chord, must be perpendicular to €' at both endpoints. The proof is
left as an exercise for the reader. A similar statement should be
formulated and proved in three dimensions.

Exercise: Prove that the shortest and longest segments connecting two non-
intersceting closed ourves are perpendicular to the curves at their endpoints.

The probi in Article 4 ing the sum or difference of dis-
tances can now be generalized. Consider, instead of a straight line L,
a simple closed curve C with a tangent at every point, and two points,
Pand @, not on €. We wish to characterize the points on € for which
the sum, p + ¢, and the difference, p — ¢, take on their extreme values,
where p and ¢ denote the distances from any point on C to P and Q
respectively. No use can be made of the simple construction of reflec-
tion with which we solved the problems for the case where C is a straight
line. But we may use the properties of the ellipse and hyperbola to
solve the present problems. Since € is a closed curve and no longer &
line extending to infinity, both the mini and i b
make sense here, for it may be taken as granted that the quantlnes
p + gand p — ¢ have greatest and least values on any finite segment of a
eurve, in particular on a closed curve (see §7).

For the case of the sum, p + ¢, suppose R is the point on € for which
P + g is & maximum, and let 2¢ denote the value of p + gat B.  Con-
sider the ellipse with foci at P and @ that is the locus of all points for
which p + ¢ = 2a. This ellipse must be tangent to € at R (the proof
is left as an exercise for the reader). But we have seen that the lines
PR and QR make equal angles with the ellipse at R; since the ellipse is
tangent to C at B, the lines PR and QR must also make equal angles
with C gt R. If p + gis a minimum for R, we see in the same way that
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PR and QR make equal angles with C at R.  Thus we have the theorem:
Given a closed curve C and two points P and Q on the same side of C;
then at a point B of C' where the sum p < ¢ takes on its greatest or
least value on C, the lines PR and QR make equal angles with the curve
C (i.e. with its tazgent) at R.

If P is inside ' and @ outside, this theorem also holds for the greatest
value of p + ¢, but fails for the least value, since the ellipse degenerates
into a straight line.

Fig. 165. Grestest and least valuer of Fig. 166, Least value of PR - QR.
PR+ QR.

By an entirely analogous procedure, making use of properties of the
hyperbola instead of the ellipse, the reader may prove the following
theorem: Given a closed curve € and two points P and @, on different
sides of C; then at a point R of € where p — g takes on its greatest or
least value on (| the lines PR and QR make equal angles with C.  Again
we emphasize that the problem for a closed curve C differs from that
for an infinite line inasmuch as in the latter problem the maximum of
the absolute value |p — ¢ | was sought while now a maximum (as well
as a minimum) of p — ¢ exits.

*§2. A GENERAL PRINCIPLE UNDERLYING EXTREME
VALUE PROBLEMS

1. The Principle

The di bl are les of a general question which is
best formulated in analytic language. 1If, in the problem of finding the
extreme values of p + ¢, we denote by z, ¥ the codrdinates of the point
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R, by 11, y: the cobrdinates of the fixed point P, and by 2, , ys those of @,
then

P=Vie-al+y-p 1=V G-,
and the problem is to find the extreme values of the function

Ja,y)=p+4q

This function is continuous everywhere in the plane, but the point with
the codrdinates r, y is restricted to the given curve €. This curve will
be defined by an equation g(z, ¥) = 0; eg 2* + 3 — 1 = ¢ if it is
the unit eircle. Our problem then is to find the extreme values of
f(z, ¥) when z and y are restricted by the condition that glz, y) = 0,
and we shall consider this general type of problem.

To characterize the solutions, we consider the family of curves with
the equations fx, ) = c; that is, the curves given by equations of this
form, where the constant ¢ may have any value, the same for all points
of any one curve of the family. Let us assume that one and only one
curve of the family f(z, ¥) = ¢ passes through each point of the plane,
at least if we restrict ourselves to the vicinity of the curve €. Then as
¢ changes, the curve f(z, y) = c will sweep out & part of the plane, and
no point in this part will be touched twice in the sweeping process.
(The curves * — ' = ¢, x + y = ¢, and & = ¢ are such families.) In
particular, one curve of the family will pass through the point Ry , where

fz)=b

flzy)=e R

Fig. 187, Extiema of & function oo & curve

fiz, y) takes on its greatest value on €, and anosher one through the
point R, where f(x, ¥} takes on its least value, Let us call the greatest
value ¢ snd the least ae b, On one side of the curve fz, a the
value of f(x, ) will be less than a. and on the other side greater than a.
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Since f(x, y) < @ on C, € must lie entirely on one side of the curve
(x, ) = a; hence it must be tangent to that curve at By . Similarly,
€ must be tangent to the curve f(z, y) = b at B,. We thus have the
general theorem: If af a point R on @ curve C & function £(x, y) has an
extreme value a, the curve {{x, y)} = a is tangent fo C af R.

2, Examples

The results of the preceding section are easily seen to be special cases
of this general theorem. If p + ¢ is to have an extreme value, the
function f(z, ¥) is p + ¢, and the curves f(z, ¥} = c¢ are the confocal
ellipses with foei P and Q. As predicted by the general theorem, the
ellipses passing through the points on C where f(z, ¥) takes on its ex-
treme values were seen to be tangent to C at these points. In the case
where the extrema of p — g are sought, the function f(z, ¥} is p ~ ¢,
the eurves f(z, y) = c are the confocal hyperbolas with P and @ as their
foci, and the hyperbolas passing through the points of extreme value
of f(z, y) were scen to be tangent to C.

©) |

Fig. 185, Confocs] eilipsea. Fig. 189. Gonfocal byperboles,

Another example is the following: Given a line segment PQ and a
straight line L not intersecting the line scgment. At what point of I
will @ subtend the greatest angle?

The function to be maximized here is the angle 8 subtended by PQ
from points on L. The angle subtended by PQ from any point R in
the planc is a function # = fix, y) of the coirdinates of B, From
elementary geometry we know that the family of eurves 8 = f(z,y) = ¢
is the family of cireles through P and @, since a chord of a circle sub-
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tends the same angle at all points of the circumference on the same side
of the chord,  As is seen from Figure 190, two of these circles will, in gen-

Fig, 199. Point on L from which segment PQ appoars lacgest.

eral, be tangent to L, with centers on opposite sides of Q. One of the
points of tangency gives the absolute maximum for 8, while the other
point yields a “relative’” maximum (that is, the value of ¢ will be less
in a certain neighborhood of this point than at the point itself. The
greater of the two maxima, the absolute maximum, is given by that
point of tangency which lies in the acute angle formed by the extension
of PQ and L, and the smaller one by the point which lies in the obtuse
angle formed by these two lines, (The point where the extension of the
segment Q) intersects L gives the minimum value of 6, zero.)

As a generalization of this problem we may replace L by a curve
and seek the point B on € at which a given line segment PQ (not inter-
secting C) subtends the greatest or least angle. Here again, the circle
through P, @, and R must be tangent to C at R.

§3. STATIONARY POINTS AND THE DIFFERENTIAL
CALCULUS
1. Extrema and Stationary Points

In the preceding arguments the technique of the differential calculus
was not used. As a mstter of {act, our elementary methods are far
more simple and direet than those of the caleulus.  As a rule in scientific
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thinking it is better to consider the individual features of a problem
rather than to rely exclusively on general methods, although individual
efforts should always be guided by a principle that clarifies the meaning
of the special procedures used. This is indeed the réle of the differential
ealeulus in extremum problems. The modern search for generality
represents only one side of the case, for the vitality of mathematics
depends most decidedly on the individual coler of problems and methods.

In its historic development, the differential calculus was strongly in-
fluenced by individual maximum and minimum problems. The con-
nection between extrema and the differential calculus arises as follows,
In Chapter VIII we shall make a detailed study of the derivative f'(z)
of a function f(z) and of its geometriee] meaning. In brief, the deriva-
tive J*(x) iz the slope of the tangent to the curve y = f(z) at the point
(x, ). It is geometrically evident that at a maximum or minimum of
a smooth eurve y = f(z) the tangent to the curve must be horizontal,
that is, its slope must be equal to zero. Thus we have the condition
f'(z) = 0 for the extreme values of f(z).

To see what the vanishing of f/(z) means, let us examine the curve
of Figure 191. There are five points, 4, B, C, D, E, at which the tangent

¥

\
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Fig. 191, Stationary points of a function.

to 1his eurve is horizontal; let the values of f(z) at these points be a, &,
¢, d, e respectively. The maximum of f{z) in the interval pictured is at
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D, the minimum at 4. The point B also represents a maximum, in
the sense that for all other points in the immediate neighborhood of B,
f(z) is less than b, although f(z) is greater than b for points close to D.
For this reason we call B a relative marimum of f(z), while D is the
absolute mazimum. Similarly, C represents a relative minimum and 4
the absclute minimum. Finally, at E, f(z) has neither 2 maximum ner
& minimum, even though f'(z) = 0. From this it follows that the
vanishing of f/(z) is a necessary, but not a sufficient condition for the
occurrence of an extremum of a smooth function f(z}; in other words,
at any extremum, relative or absolute, f(x) = 0, but not every point
at which f(z) = 0 need be an extremum. A point where the derivative
vanishes, whether it is an extremum or not, is called a stationary point,
By a more refined analysis, it is possible to arrive at more or less com-
plicated conditions on the higher derivatives of f(x) which completely
characterize the maxima, minima, and other stationary points.

2. Maxima and Minima of Functions of Several Varisbles. Saddle
Points

There are problems of maxima and minima that cannot be ex-
pressed in terms of a function f(z) of one variable, The simplest such
ease is that of finding the extreme values of a function z = f(z, y) of
two variables.

We can represent f(z, y) by the height 2z of a surface above the z, y-
plane, which we may interpret, say, as a mountain landscape. A
maximum of f(z, y) cor Is to a in top; 2 mini to the
bottom of a depression or of a lake. In both cases, if the surface is
smooth the tangent plane to the surface will be horizontal. But there
are other points besides summits and the bottoms of valleys for which
the tangent plane is horizontal; these are the points given by mountain
passes. Let us examine these points in more detail. Consider as in

.

Fig. 182. 4 mouotain pas. Fig. 199 The corresponding contour map.

Figure 192 two mountains 4 and B on s range and two points € and D
on different sides of the mountain range, and suppose that we wish to
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gofrom Cto D. Let us first consider only the paths leading from € to D
obtained by cutting the surface with some plane through € and D.
Each such path will have a highest point. By changing the position of
the plane, we change the path, and there will be one path CD for which
the altitude of that highest point is least. The point £ of maximum
altitude on this path is a mountain pass, called in mathematical
language a saddle point. It is clear that E is neither a maximum nor a
minimum, since we can find points as near % as we please which are
higher and lower than £. Instead of confining ourselves to paths that
lie in a plane, we might just as well consider paths without this restric-
tion. The characterization of the saddle point E remains the same.

Similarly, if we want to proceed from the peak A to the peak B, any
particular path will have a lowest point; if again we consider only plane
sections, there will be one path 4 B for which this lowest point is highest,
and the minimum for this path is again at the point £ found above.
‘This saddle point E thus has the property of being & highest minimum
or a lowest i ; that is, a d-mini or & mini- z
The tangent plane at E is horizontal; for, since £ is the minimum point
of AB, the tangent line to 4B at E must be horizontal, and similarly,
since K is the maximum point of CD, the tangent line to CD at E must
be horizontal. The tangent plane, which is the plane determined by
these lines, is therefore also horizontal, Thus we find three different
types of points with horizontal tangent planes: maxima, minima, and
saddle points; corresponding to these we have different types of station-
ary values of f(z, y).

Another way of representing a function f(z, y) is by drawing contour
lines, such as those used in maps for representing altitudes (see p. 286).
A contour line is a curve in the z, y-plane along which the function
f(z, y) has a constant value; thus the contour lines are identical with the
curves of the family f(z, ) = ¢. Through au ordinary point of the
plane there passes exactly one contour line; & maximum or minimum
is surrounded by closed contour lines; while at a saddle point several
contour lines cross. In Figure 193 contour lines are drawn for the
landscape of Figure 192, and the maximum-minimum property of E is
evident: Any path connecting A and B and not going through E has
to go through a region where f(z, y) < f(E), while the path AEB of
Figure 192 has a minimum at E. Tn the same way we see that the value
of f(z, y) at E is the smallest maximum for paths connecting € and D.
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3. Minimax Points and Topology

There is an intimate connection between the general theory of sta-
tionary points and the concepts of topology. Here we can give only a
brief indication of these ideas i in connectxon with a smple example.

Let us consider the 1 on a ring-shaped island B
with the two boundaries € and €’. If again we reprcavm the altitude
above sea-level by u = f(z, ¥), with f(z, ¥) = 0 on C and C’ and
f(z, ¥) > 0in the interior of B, then there must exist at least one moun-
tain pass on the island, shown in Figure 194 by the point where the
contour lines cross. Intuitively, this can be seen if one tries to go from

Fig. 194. Stationary poink 15 & doubly connected vegion,

C to €’ in such a way that one’s path does not rise higher than necessary.
Each path from C to C’ must possess a highest point, and if we select
that path whose highest point is as low as possible, then the highest
point of this path is a saddle peint of u = f(z, ). (There is a trivial
exception when a horizontal plane is tangent to the mountain crest all
around the ring.) For a domain bounded by p curves there must exist,
in general, at least p — 1 stationary points of minimax type. Similar
relations have been discovered by Marston Morse to hold in higher
dimensions, where there is a greater variety of topological possibilities
and of types of stationary points. These relations form the basis of the
modern theory of stationary points.

4. The Distance from a Point to a Surface

For the distance between a peint P and a closed curve there are (st
feast) two i 'y values, a mini and a it . Nothing
new occurs if we try to extend this result to three dimensions, so long
as we consider a surface € topologically equivalent to a sphere, e.g. an
ellipsoid. But new phenomena appear if the surface is of higher genus,
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e.g. a torus. There is still a shortest and a longest distance from P to
a torus C, both segments being perpendicular to C. In addition we
find extrema of different types representing maxima of minima or minima
of maxima. To find them, we draw on the torus a closed “meridian’
circle L, as in Figure 195, and we seek on L the point Q nearest to P,
Then we try to move L so that the distance P@Q becomes: a) a minimum.
This @ is simply the point on C nearest to P. b) a maximum. This
yields another stationary point. We could just as well seek on L the
point farthest from P, and then find L such that this maximum distance
is: ¢) a maximum, which will be attained at the point on C farthest
from P. d) a minimum. Thus we obtain four different stationary
values of the distance.

Fig. 195 Fig. 196

* Ezercise: Repeat the reasoning with the other type L’ of closed curve on ¢
that cannot be contracted to a point, as in Figure 196.

§4. SCHWARZ'S TRIANGLE PROBLEM

1. Schwarz’s Proof

Hermann Amandus Schwarz (1843-1921) was a distinguished mathe-
matician of the University of Betlin and one of the great contributors
to modern function theory and analysis. He did not disdain to write
on elementary subjects, and one of his papers treats the following
problem: Given an acute-angled triangle, to inscribe in it another
triangle with the least possible perimeter. (By an inseribed triangle
we mean one with a vertex on each side of the original triangle.) We
shall see that there is exactly one such triangle, and that its vertices
are the foot-points of the altitudes of the given triangle. We shall call
this triangle the altstude triangle.
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Schwarz proved the minimum property of the altitude triangle by
the method of reflection, with the help of the following theorem of
elementary geometry (see Fig. 197): At each vertex, P, Q, R, the two
sides of the altitude triangle make equal angles with the side of the orig-
inal triangle; this angle is equal to the angle at the opposite vertex of
the original triangle. For example, the angles ARQ and BRP are both
equal to angle C, ete.

To prove this preliminary theorem, we note that OPBR is a quad-
rilateral that can be inscribed in a circle, since X 0PB and X.0RB are
right angles. Consequently, X.PBO = X PR(, since they subtend the
same arc PO in the circumscribed circle.  Now % PBO is complementary
to %.C, since CBQ is a right triangle, and X PRO is complementary to
% PRB. Thercfore the latter is equal to 4.C. In the same way, using
the quadrilateral QORA, we see that X.QR4 = X.C, etc.

<
£>

Fig. 197. Altitads trisngle of 4BC, showing equal augles.

This result enables us to state the following reflection property of
the altitude triangle: Sinee, for example X AQR = X CQP, the reflec-
tion of R in the side AC is the continuation of I’Q, and vice versa;
similarly for the other sides.

We shall now prove the minimum property of the altitude tri-
angle. In the triangle 4 BC consider, together with the altitude triangle,
any other inscribed triangle, UVW. Reflect the whole figure first in the
side AC of ABC, then reflect the resulting triangle in its side 4B then
in BC then again in AC, and finally in AB. In this way we obtain
altogether six congruent triangles, each with the altitude triangle and
the other one inscribed. The side BC of the last triangle is parallel to
the original side BC'. For in the first reflection, BC is rotated clockwise
through an angle 2C, then through 2B clockwise; in the third reflection
it is not affected, in the fourth it rotates through 2C counterclockwise,
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c

¥ig. 198, Schwars'a proof that altitude trianglo has least perimetor.

and in the fifth through 2B counterclockwise. Thus the total angle
through which it has turned is zero.

Due to the reflection property of the altitude triangle, the straight
line seement PP’ is equal to twiee the perimeter of the altitude triangle;
for P.> is composed of six pieces that are, in turn, equal to the first,
second, and third side of the triangle, each side occurring twice. Simi-
larly, the broken line from U to U’ is twice the perimeter of the other
inscribed triangle. This line is not shorter than the straight line sig-
ment UU’. Since UL’ is parallel to PP/, the broken line from U to U’
is not shorter than PP’, and therefore the perimeter of the altitude



SCHWARZ'S PROOF 349

triangle is the shortest possible for any inscribed triangle, as was to be
proved. Thus we have at the same time shown that there is a minimum
and that it is given by the altitude triangle. That there is no other
triangle with perimeter equal to that of the altitude triangle will be
seen presently.

2. Another Proof

Perhaps the simplest solution of Schwarz’s problem is the following,
based on the theorem proved earlier in this chapter that the sum of
the distances from two points P and Q to a line L is least at that point
R of L where PR and QR make the same angle with L, provided that
P and Q lie on the same side of L and neither lies on L. Assume that
the triangle PQR inscribed in the triangle ABC solves the minimum
problem. Then R must be the point on the side AB where p + g is a
minimum, and therefore the angles ARQ and BRP must be equal;
similarly, £ AQR = %CQP, X BPR = %CPQ. Thus the minimum
triangle, if it exists, must have the equal-angle property used in
Schwarz’s proof. It remains to be shown that the only triangle with
this property is the altitude triangle. Moreover, since in the theorem
on which this proof is based it is assumed that P and § do not e on AB,
the proof does not hold in case one of the points P, §, R is a vertex of
the original triangle (in which case the minimum triangle would de-
generate into twice the corresponding altitude); in order to complete the
proof we must show that the perimeter of the altitude triangle is shorter
than twice any altitude.

Fig. 199, Fig. 200,

To dispose of the first point, we observe that if an inscribed triangle
has the equal-angle property mentioned above, the angles at P, @, and
R must be equal to X 4, X B, and % € respectively. For assume, say,
that X ARQ = X € + & Then, since the sum of the angles of a tri-
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angle is 180°, the angle at  must be B — 5, and at P, 4 — 3, in order
that the triangles ARQ and BRP may have the sum of their angles
equal to 180°. But then the sum of the angles of the triangle CPQ is
A4 — 3+ B — 8+ C = 180° — 25; on the other hand, this sum must be
180°. Therefore § is equal to zero. We have already seen that the
altitude triangle has this equal-angle property. Any other triangle
with this property would have its sides parallel to the corresponding
sides of the altitude triangle; in other words, it would have to be similar
to it and oriented in the same way. The reader may show that no other
such triangle can be inscribed in the given triangle (see Fig. 200).
Finally, we shall show that the perimeter of the altitude triangle
is less than twice any altitude, provided the angles of the original
triangle are all acute. We produce the sides QP and QR and draw the

Fig. 201

perpendiculars from B to QP, QR, and PR, thus obtaining the points
L, M,and N. Then QL and QM are the projections of the altitude QB
on the lines QP and QR respectively. Consequently, QL + QM < 2QB.
Now QL + QM equals p, the perimeter of the altitude triangle. For
triangles MRB and NRB are congruent, since angles MEB and NEB
are equal, and the angles at M and N are right angles. Hence
RM = RN; therefore QM = QR -+ RN. In the same way, we see that
PN = PL, so that QL = QP + PN. We therefore have QL + QM =
QP + QR + PN + NR = QP + QR + PR = p. But we have
ghown that 2QB > QL + QM. Therefore p is less than twice the
altitude QB; by exactly the same argument, p is less than twice any
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altitude, as was to be proved. The minimum property of the altitude
tri:mgle is thus cnmpletely proved.

Incid ion permits the direct caleulation of p.
We know that Lhe m.,,les PQC and RQA are equal to B, and therefore PQB =
RQB = 90° — B, so that cos (PQB) = sin B. Therefore, by elementary trigo-
nometry, Q¥ = QL = QB sin B, and p = 2QB sin B. In the same way, it can be
shown that p = 2PA sin 4 = 2RC sin C. From trigonometry, we know that
RC = gein B = bsin 4, etc., which gives p = 2asin B sin C' = 2b sin C'sin 4 = 2¢
#in A sin B, Finally, since ¢ = 2r sin A, b = 2r sin B, ¢ = 2r sin C, where r is the
radius of the circumscribed circle, we obtain the symmetrical expression, p =
4r sin A sin B sin .

3. Obtuse Triangles

In both of the foregoing proofs it has been assumed that the angles
4, B, and C are all acute. If, say, C is obtuse, as in Figure 202, the

Q -

A R B
Fig. 203. Altituds trirngle for obtuse triangle.

points P and Q will lie outside the triangle. Therefore the altitude
triangle ean no longer, strictly speaking, be said to be inscribed in the
triangle, unless by an inscribed triangle we merely mean one whose
vertices are on the sides or on the extensions of the sides of the original
triangle. At any rate, the altitude triangle does not now give the
minimum perimeter, for PR > CR and QR > CR; hence p = PR +
QR 4+ PQ > 2CR. Since the reasoning in the first part of the last
proof showed that the minimum perimeter, if not given by the altitude
triangle, must be twice an altitude, we conclude that for obtuse triangles
the “inscribed triangle” of smallest perimeter is the shortest altitude
counted twice, although this is not properly a triangle. Still, one can
find & proper triangle whose perimeter differs from twice the altitude by
as little as we please. ¥or the boundary case, the right triangle, the
two solutions—twice the shortest altitude, and the altitude triangle—
coineide.

The interesting question whether the altitude triangle has any sort
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of extremum property for obtuse triangles eannot be discussed here.
Only this much may be stated: the altitude triangle gives, not a mini-
mum for the sum of the sides, p + ¢ + r, but a stationary value of
minimax type for the expression p + ¢ — r, where r denotes the side
of the inseribed triangle opposite the obtuse angle.

4. Triangles Formed by Light Rays
If the triangle ABC represents a chamber with reflecting walls, then
the altitude triangle is the only triangular light path possible in the
chamber. Other closed light paths in form of polygons are not excluded,
as Figure 203 shows, but the altitude triangle is the only such polygon
with three sides.

Fig. 203. Closed light path in u tr'-urolar mirror.

We may generalize this problem by askirg for the possible “light
trianzles” in an arbitrary domain boun @ )y one or even several
smooth curves; i.e. we ask for triangles wi  their vertices somewhere
on the boundary curves and such that each two adjacent edges form
the same angle with the curve. As we have seen in §1, the equality of
angles is a condition for maximum as well as minimum total length of
the two edges, so that we may, aceording to circumstances, find different
types of light triangles. For example, if we consider the interior of a
single smooth curve C, then the inseribed triangle of maximum length
must be a light triangle. Or we may consider (as suggested to the
authors by Marston Morse) the exterior of three smooth closed curves.
A light triangle 4 BC may be characterized by the fact that its length
has a stationary value; this value may be a minimum with respect to all
three points 4, B, C, it may be a minimum with respect to any of the
combinations such as A and B and a maximum with respect to the third
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point €, it may be a minimum with respect to one point and a maximum
with respect to the two others, or finally it may be a maximum with
respect to all three points. Altogether the existence of at least =8
light triangles is assured, since for each of the three points independently
either a maximum or & minimum is possible.

Figs. 204-7. The four types of light triangles betweon threo circh

*5. Remarks Concerning Problems of Reflection and Ergodic Motion

1t is a problem of major interest in dynamics and opties to describe
the path or “trajectory” of a particle in space or of a light ray for an
unlimited length of time. If by some physical device the particle or
ray is restricted to a bounded portion of space, it is of particular interest
to know whether the trajectory will, in the limit, fill the space every-
where with an approximately equal distribution. Such a trajectory is
called ergodic. The ion of its existence is basic for statistical
methods in modern dynamics and atomie theory. But very few relevant
instances are known where a rigorous mathematical proof of the “ergodic
hypothesis” can be given.

The simplest examples refer to the case of motion within a plane
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ourve C, where the wall € is supposed to act as a perfect mirror, reflecting
the otherwise free particle at the same angle at which it hits the bound-
ary. For example, a rectangular box (an idealized billiard table with
perfect reflection and a mass point as billiard ball) leads in general to
an ergodic path; the ideal billiard ball going on for ever will reach the
vicinity of every point, except for certain singular initial positions and
directions. We omit the proof, although it is not difficult in principle.

OF particulur interest is the case of an elliptical tuble with the foci
Fyand ¥y, Since the tangent to an ellipse makes equal angles with
the lines joining the point of tangency to the two foci, every trajectory
through a focus will be reflected through the other focus, and so on.
1t is not hard to see that, irrespective of the initial direction, the trajec-
tory after n refleetions tends with inereasing n to the major axis FiFy .
1f the initial ray does not go through a focus, then there are two possi-
bilities. Tf it passes between the foci, then all the reflected rays will
pass between the foel, and all will be tangent to a certain hyperbola
heving Fyand Fa as focl.  If the initial ray does not separate Fyand £y,
then none of the reflected rays will, and they will all be tangent to an
ellipse having F; and F. as foci. Thus in no case will the motion be
ergodic for the ellipse as a whole.

*Ezercises: 1) Prove thatif the initial ray passes through a focus of the ellipse,
the nth reflection of the initial ray will tend to the major axis as n increases,

2) Prove that if the initial ray passes between the two foci, all the reflected
rays will do so, and all will be tangent to some hyperbola having #; and F as
foei; similarly, if the initial ray does not pass between the foci, none of the re-
flected rays will, and all will be tangent to some ellipse with Fi and 1 as foci.
(Hint: Show that the ray before and after reflection at R makes equal angles with
the lines RF) and RF; respectively, and then prove that taogents to confocal
conics ean ba charactarized in this way.)

§5. STEINER'S PROBLEM
1. Problem and Solution

A very simple but instructive problem was treated by Jacob Steiner,
the famous representative of geometry at the University of Berlin in the
early nineteenth century. Three villages 4, B, C are to be joined by a
system of roads of minimum total length. Mathematically, three
points 4, B, € are given in a plane, and a fourth point P in the plane is
sought so that the sum a + & + ¢ shall be a minimum, where @, b, ¢
denote the three distances from £ to A, B, C respectively, The answer
to the problem is: If in the triangle A BC all angles are less than 120°,
then P is the point from which each of the three sides, 48, BC, C4,
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c
Fig, 208, Least: m of distances to threo pointa.

subtends an angle of 120°.  If, however, an angle of A BC, e.g. the angle
at €, 1s equal to or larger than 120°, then the point P coincides with the
vertex (.

It is an easy matter to obtain this solution if we use our previous
results concerning extrems. Suppose P is the required minimum point.
There are these alternatives: either P coincides with one of the vertices
4, B, C, or P differs from these vertices. In the first case it is clear that
P must be the vertex of the largest angle C of 4 BC, because the sum
CA + CB is less than any other sum of two sides of the triangle ABC.
Thus, to complete the proof of our statement, we must analyze the
second case. Let K be the circle with radius ¢ around C. Then P
must be the point on K such that PA +4 PBisa minimum. If 4 and B

Fie. 208,

are outside of K, as in Figure 209, then, according to the result in §1,
P4 and PB must form equal angles with the circle K and hence with
the radius PC, which is perpendicular to K. Since the same reasoning
applies also to the position of P and the circle with the radius a around 4,
it follows that all three angles formed by P4, PB, PC are equal, and
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consequently equal to 120°, as stated. This reasoning was based on
the assumption that 4 and B are both outside of K, which remains to
be proved. Now, if at least one of the peints A and B, say 4, were
on or inside K, then, since P, as assumed, is not identical with 4 or B,
we should have ¢ + b > 4B. But AC < ¢, since A is not outside K.,
Henee
a+b+c> AB+ AC,

which means that we should obtain the shortest sum of distances if P
coincided with 4, contrary to our assumption. This proves that 4
and B are both outside the circle K. The corresponding fact is simi-
larly proved for the other combinations: B, C with respect o a circle
of radius a about A4, and 4, € with respect to a cirele of radius b about B.

2. Analysis of the Alternatives

To test which of the two alternatives for the point P actually cecurs
we must examine the construetion of P. To find P, we merely draw
the eircles Ky, X on which twe of the sides, say AC and BC, subtend
arcs of 120°. Then AC will subtend 120° from any point on the shorter
are into which AC divides K, , but will subtend 60° from any point on
the longer are. The intersection of the two shorter ares, provided such
an intersection exists, gives the required point P, for not only will
AC and BC subtend 120° at P, but AB will also, the sum of the threc
angles being 360°.

1t is clear from Figure 210 that if no angle of triangle 4BC is greater
than 120° then the two shorter ares intersect inside the triangle. On

¥ig, 210.

the other hand, if ene angle, C, of triangle ABC is greater than 120°,
then the two shorter ares of K; and K, fail to intersect, as is shown in
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Fig. 211,

Figure 211. In this case there is no point P from which all three sides
subtend 120°. However, K, and K, determine at their intersection a
point P’ from which AC and BC subtend angles of 60° each, while the
side AB opposite the obtuse angle subtends 120°.

For a triangle ABC having an angle greater than 120° there is, then,
no point at which each side subtends 120°. Hence the minimum point P
must coincide with a vertex, since that was shown to be the only other
alternative, and this must be the vertex at the obtuse angle. If, on the
other hand, all the angles of a triangle are less than 120°, we have seen
that & point P can be constructed from which each side subtends 120°.
But to complete the proof of our theorem we have yet to show that
a + b + ¢ will actually be less here than if P coincided with any vertex,
for we have only shown that P gives a minimum #f the smallest total
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length is not attained at ome of the vertices. Accordingly, we must
show that @ + b + ¢ is smaller than the sum of any two sides, say
AB + AC. Todo this, extend BP and project 4 on this line, obtaining
a point D (Fig. 212). Since X APD = 60°, the length of the projection
PDis 2a. Now BD is the projection of AB on the line through B and
P, and consequently BD < AB. But BD = b -+ 1a, therefore
b+ 3a < AB. In exactly the same way, by projecting A on the ex-
tension of PC, we see that ¢ + ja < AC. Adding, we obtain the
inequality @ + b 4+ ¢ < AB -+ AC. Bince we already know that if
the minimum point is not one of the vertices it must be P, it follows
finally that P is actually the point at which ¢ 4 b + ¢ is a minimum,

3. A Complementary Problem~

‘The forms! methods of mathematics sometimes reach out beyond
one’s original intention. For example, if the angle at € is greater than
120° the procedure of geometrical construction produces, instead of the
solution P (which in this case is the point C itself) another point P/,
from which the larger side AB of the triangle ABC appears under an

P
pEN

Fig. 210, 8 + b — ¢ = minimum,

angle of 120°, and the two smaller sides under the angle of 60°. Cer-
tainly P’ does net solve our minimum problem, but we may suspect
that it has some relation to it. The answer is that P’ solves the fol-
lowing problem: to minimize the expression ¢ + b — ¢. The proof is
entirely analogous to that given above for @ + b + ¢, based on the
results of §1, Article 5, and is left as an exercise for the reader. Com-
bined with the preceding result, we have the theorem:

If the angles of a triangle ABC are all less than 120°, then the sum
of the distances g, b, ¢ from any point to A, B, C, respectively, is least
at that point where each side of the triangle subtends an angle of
120° and a + b — c is least at vertex C; if one angle, say C, is greater
than 120°, then @ + b + ¢ is least at C, and a + b — ¢ is least at that
point where the two shorter sides of the triangle subtend angles of 60°
and the longest side subtends an angle of 120°.
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Thus, of the two minimum problems, one is always solved by the
circle construction and the other by a vertex. For X C = 120° the two
solutions of each problem, and indeed the solutions of the two problems,
coincide, since the point obtained by the construction is then precisely
the vertex C.

4. Remarks and Exercises

If from a point P inside an equilateral trirngle UVW we drop three
perpendicular lines PA, PB, PC as shown in Figure 214, then 4, B, C,
and P form the figure studied above. This remark can serve in solving
Steiner’s problem by starting with the points 4, B, C and then finding
U, v,w.

L4

U < v
Fig. 214. Another proof of Bteiner's solution.

Exzercises: 1) Carry out this scheme, using the fact that from any point in
an equilateral triangle the sum of the three perpendicular sesments is constant
and equal to the altitude.

2) Using the corresponding fant when P is outside UV, discuss the comple-
mentary probiem,

In three dimensions one might study a similar problem: Given four points
A4, B, C, D; to find a fifth point P such that a + b + ¢ + d is a minimum.

* Exercise: Investigate this problem and its complementary prablem by the
methods of §1, or by using a regular tetrahedron.

5. Generalization to the Street Network Problem
In Steiner’s problem three fixed points 4, B, C are given. It is
natural to generalize this problem to the case of n given points,
Ay, Az, -+, A.; we ask for the point P in the plane for which the
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sum of the distances & -+ a; -+ -+ - + a, is & minimum, where a; is the
distance PA,. (For four points; arranged as in Fig. 215, the point P

A

A, Ay

Fig. 215. Least suma of distances to four pointe

is the point of i ion of the di Is of the dril. 1
A3dy4;A, ; the reader may prove this as an exercise.) This prob-
lem, which was also treated by Steiner, does not lead to interesting
results. It is one of the superficial generalizations not infrequently
found in mathematical literature. To find the really significant exten-
sion of Steiner’s problem we must abandon the search for a sngle
point P. Instead, we look for the “street network” of shortest total
length. Mathematically expressed: Given n points, Ay, - ,A. fo
find a connected system of straight line segments of shortest total length
such that any two of the given points can be joined by a polygon consisting
of segments of the system.

The appearance of the solution will, of course, depend on the arrange-
ment of the given points. The reader may with profit study the subject
on the basis of the solution to Steiner’s problem. We shall content our-

A
4

4 A

A
A
Figa. 216-8. Shortest networks joining more than 3 points.
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selves here with pointing out the answer in the typical cases shown in
Figures 216-8. In the first case the solution consists of five segments with
two multiple i ions where three meet at angles of 120°.
In the second case the sclution contains three multiple intersections, If
the points are differently arranged, figures such as these may not be
possible.  One or more of the multiple intersections may degenerate
and be replaced by one or more of the given points, as in the third case.
In the case of n given points, there will be at most n — 2 multiple
intersections, at each of which three segments meet at angles of 120°,
The solution of the problem is not always uniquely determined. For
four points 4, B, €, D forming a square we have the two equivalent
solutions shown in Figures 219-20. If the points 4,, 4y, .-« , 4, are

Fige, 219-20, Two shortest notworks joining 4 pointa.

the vertices of a simple polygon with sufficiently flat angles, then the
polygon itself will give the minimum.

§6. EXTREMA AND INEQUALITIES

One of the characteristic features of higher mathematics is the impor-
tant réle played by inequalities. The solution of 4 maximum problem
always leads, in principle, to an inequality which expresses the fact that
the variable quantity under consideration is less than or at most equal
to the maximum value provided by the solution. In many ecases such
inequalities have an independent interest. As an example we shall
consider the important inequality between the arithmetical and geo-
metrical means.

1. The Arithmetical and Geometrical Mean of Two Pesitive Quantities

We begin with a simple maximum problem which occurs very often
in pure matt ics and its applications. In geometrical language it
to the following: Among all les with a prescribed per-
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imeter, to find the one with largest area. The solution, as one might
expect, is the square. To prove this we reason as follows. Let 2a bt
the ibed peri of the rectangle. Then the fixed sum of the
lengths z and y of two adjacent edges is # + ¥, while the variable are
zy is to be made as large as possible. The “arithmetical mean” of
and y is simply

We shall also introduce the quantity

_I.‘
d="g

80 that
g=m+d, y=m-—d,
and therefore

2
=t dm—d) =t —d=EED g

Sin is greater than zero except when d = 0, we immediately obtain
the wequality

z
o vy <t LY,

where the equality sign holds only whend = Qandz = y = m.

Since z + y is fixed, it follows that +/zy, and therefore the area zy,
is & maximum when z = y. The expression

g =y,

where the positive square root is meant, is called the “geometrical
mean’” of the positive quantities  and y; the inequality (1) expresses
the fundamental relation between the arithmetical and geometrical
means.

The inequality (1) also follows directly from the fact that the ex-
pression

Wz -y =cty— 2w
is necessarily non-negative, being a square, and is zero only for x = y.
A geometrical derivation of the inequality may be given by con-
sidering the fixed straight line z + y = 2m in the plane, together with
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the family of curves xy = ¢, where ¢ is constant for each of these curves
(hyperbolas) and varies from curve to curve.  As is evident from Figure

¥

Z+y=2m

Fig. 221. Maximav! ar given 7 + 7.

221, the curve with the greatest vatue of ¢ having a point in common
with the given straight line will be the hyperbola tanzent to the line at
the point # = y = m; for this hyperbola, therefore, ¢ = m’. Hence

It should be remarked that any inequality, f(z, ) < g(x, ¥), can be
read both ways and therefore gives rise to a maximum as well as to a
minimum property. For example, (1) also expresses the fact that
among all rectangles of given area the square has the least perimeter.

2. Generalization to n Variables

The inequality (1) between the arithmetical and geometrical means
of two positive quantities can be extended to any number = of positive
quantities, denoted by #1, 22, +++ ,2.. We call

+ 2

their arithmetical mean, and

g= Tz T
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their geometrical mean, where the positive nth root is meant. The
general theorem states that

@ g<m,
and that ¢ = m only if all the z; are equal.

Many different and ingenious proofs of this general result have been
devised. The simplest way is to reduce it to the same reasoning used
in Article 1 by setting up the f()llowmg mummum problem: To partiti«m
a given positive quantity C into n po: eports, C =z + -« - 2,
so that the produet P = 22, - - - 5 shall be as large as pn;slble. We
start with the assumption—apparently ohvious, but analyzed later in
§7--that a maximum for P exists and is attained by a set of values

= Ly e, Tn = O

All we have to prove is that a; = ¢ = <.+ = a., for in this case ¢ = m.
Suppose this is not true--for example, that @y 5% a2, We consider the
n quantities

where

s=ata

In other words, we replace the quantities a; by another set in which
only the first two are changed and made equal, while the total sum C
is retained. We can write

a =3s+d, @ =8 —d,
where

The new product is
P =ga.-a,
while the old product is
Pe(s+d-(s—daz-ao= (&~ deag - an,
so that obviously, unless d = 0,
P<P,
contrary to the assumption that P was the maximur., Hence d =
and a; = az. In the same way we can prove that @ = a;, where a;
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is any one of the a’s; it follows that all the a’s are equal. Since g = m
when all the z; are equal, and since we have shown that only this gives
the maximum value of g, it follows that g < m otherwise, as stated in
the theorem.

3. The Method of Least Squares

The arithmetical mean of n numbers, z; , -+ , Z, , which need not be
assumed all positive in this article, has an important minimum prop-
erty. Let u be an unknown quantity that we want to determine as
accurately as possible with some measuring instrument. To this end
we make a number n of readings which may yield slightly different
results, 1, - -+ , Za , due to various sources of experimental error. Then
the question arises, what value of u is to be accepted as most trust-
worthy? It is customary to select for this “true” or “optimal” value
AT,

w
for this assumption one must enter into a detailed discussion of the
theory of probability. But we can at least point out a minimum prop-
erty of m which makes it a reasonable choice. Let u be any possible
value for the quantity measured. Then the differences w — z;, -+,
u — 7z, are the deviations of this value from the different readings.
These deviations can be partly positive, partly negative, and the ten-
dency will naturally be to assume as the optimal value for u one for
which the total deviation is in some sense as small as possible. Follow-
ing Gauss, it is customary to take, not the deviations themselves, but
their squares, (u — z.)°, as appropriate measures of inaccuracy, and to
choose as the optimal value among all the possible values for u one
such that the sum of the squares of the deviations

the arithmetical meanm = To give a real justification

@— o)+ (= o) A (u— 7))

iz as small as possible.  T'hds optimal value for u is exactly the arithmetic
mean , and it is this fact that constitutes the point of departure in
Gauss's important “method of least squares,” We can prove the itali-
cized statement in an elegant way, By writing

= z) = (m~z) + (u~m),
we obtain

(w— 2 = (m — z) + (= m)’ + 200 — z)(u — m).
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Now add all these equations for ¢ = 1,2, ... ,n. The last terms yield
2(u — m)(nm — z; — ... — z,), which is zero because of the definition
of m; consequently we retain
(=) b - )t

= (n o~ o) o+ fm = 2 onln — W)
This shows that

@)t ) 2 ) e - )

and that the equality sign holds only for w = m, which is exactly what
we were to prove,

The general method of least squares takes this result as a guiding
prineiple in more complicated cases when the problem is to decide on a
plausible result from slightly incompatible measurements. For example,
suppose we have measured the cobrdinates of » points z:, y; of &
theoretically straight line, and suppose that these measured points do
not lie exactly on a straight line. How shall we draw the line that
best fits the n observed points? Our previous result suggests the fol-
lowing procedure, which, it is true, might be replaced by equally reason-
sble variants. Let y = ax - b represent the equation of the line,
80 that the problem is to find the coefficients o and b. The distance
in the y direction from the line to the point =, y: is given by
¥i = (a% + b) = yi — az; — b, with a positive or negative sign accord-
ing as the point is above or below the line. FHence the square of this
distance is (y; — az; — b)Y, and the method is simply to determine a
and b in such a way that the expression

i — e =B 4 o (g — ez, — )
attains its least possible value. Here we have a minimum problem in-
volving two unknown quantities, a and b. The detailed discussion of
the solution, though quite simple, is omitted here.

§7. THE EXISTENCE OF AN EXTREMUM.
DIRICHLET'S PRINCIPLE
1. General Remarks

In seme of the previous extremum problems the solution is directly
demonstrated to give a better vesult than any of its competitors. A
striking instanee is Schwarz’s solution of the triangle problem, where we
could sce at once that no inseribed triangle has a perimeter smaller than
that of the altitude triangle. Other examples are the minimum or
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p whose depend on an explicit inequality,
such as that between the arithmetical and geometrical means. But in
some of our problems we followed a different path. We began with the
assumption that a solution had been found; then we analyzed this
assumption and drew lusions which lly permitted a deserip-
tion and construction of the solution. This was the case, for example,
with the solution of Steiner’s problem and with the second treatment of
Schwarz's problem. The two methods are logically different. The
first one is, in a way, more perfect, since it gives a more or less con~
structive demonstration of the solution. The second method, a8 we
saw in the case of the triangle problem, is likely to be simpler. But it
is not so direct, and it is, above all, conditional in its structure, for it
gtarts with the assumption that a solution to the problem exists. It
gives the solution only provided that this is granted or proved. With-
out this assumption it merely shows that if a solution exists, then it
must have a certain character.t

Because of the apparent obviousness of the premise that a solution
exists, mathematicians until late in the nineteenth century paid no
attention to the logical point involved, and assumed the existence of a
solution to extremum problems as a matter of course. Some of the
greatest mathematicians of the nineteenth century—Gauss, Dirichlet,
and Riemann—used this assumption indiscriminately as the basis for
deep and otherwise hardly ibl in h ical physies
and the theory of functions. The climax came when, in 1849, Riemann
published his doctoral thesis on the foundations of the theory of func-
tions of a complex variable. This concisely written paper, one of the
great pioneering achievements of modern msthematics, was so ecom-
pletely unorthodox in its approach to the subject that many people
would have liked to ignore it. Weierstrass was then the foremost mathe-
matician at the University of Berlin and the acknowledged leader in the
building of a rigorous function theory. Impressed but somewhat doubt-
ful, he soon discovered a logical gap in the paper which the author had
not bothered to fill. Weierstrass’ shattering criticism, though it did
not disturb Riemann, resulted at first. in an almost general neglect of his

theory. Riemann’s meteoric me to a sudden end after a few
years with his death fror n. But his ideas always found

1 The logical necessit he existence of an extremurm is illus-
trated by the followin; s u sargest integer. For let us denote the
largest integer by z. then 27 > z, hence z could not be the largest

integer. Therefore z m_.. . vquel to 1.
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some enthusiastic disciples, and fifty years after the publication of his
thesis Hilbert finally succeeded in opening the way for a complete answer
to the questions that he had left unsettled. This whole development in
mathematics and mathematical physics became one of the great tri-
umphs in the history of modern mathematical analysis.

In Riemann’s paper the point open to critical attack is the question of
the existence of & minimum. Riemann based much of his theory on
what he called Dirichlet’s principle (Dirichlet had been Riemann’s
teacher at Goettingen, and had lectured but never written about this
principle.) Let us suppose, for example, that part of a plane or of any
surface is covered with tinfoil and that a stationary electric current is
set up in the layer of tinfoil by connecting it at two points with the
poles of an electric battery. There is no doubt that the physical experi-
ment leads to a definite result. But how about the corresponding
mathematical problem, which is of the utmost importance in function
theory and other fields? According to the theory of electricity, the
physicsl phenomenon is deseribed by a “boundary value problem of 2
partial differential equation”. It is this mathematical problem that con-
cerns us; its solvability is made plausible by its assumed equivalence to
a physical phenomenon but is by no means mathematically proved by
this argument. Riemann disposed of the mathematical question in two
steps. First he showed that the problem is equivalent to a minimum
problem: a certain quantity expressing the energy of the electric flow is
minimized by the actual flow in comparison to the other flows possible
under the prescribed conditions. Then he stated as “Dirichlet’s prin-
ciple” that such a minimum problem has a solution. Riemann took
not the slightest step towards a mathematical proof of the second asser-
tion, and this was the point attacked by Weierstrass Not only was the
existence of the minimum not at all evident, but, as it turned out, it
was an extremely delicate question for which the mathematics of that
time was not yet prepared and which was finally settled only after many
decades of intensive research.

2. Examples

We shall illustrate the sort of difficulty involved by two examples.
1) We mark two points 4 and B at a distance d on a straight line L,
and ask for the polygon of shortest length that starts at 4 in a direction
perpendicular to L and ends at B. Since the straight segment AB is
the shortest connection between 4 and B for all paths, we can be certain
that any path admissible in the competition has a length greater than d,
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for the only path giving the value d is the straight segment AB, which
violates the restriction imposed on the direction at A, and hence is not
admissible under the terms of the problem, On the other hand, con-

o

o

A B L
Fig. 222,

sider the admissible path AOB in Figure 222. If we replace O by a
point O near enough to A, we can obtain an admissible path with a
length differir 5 as little from d as we like; hence if a shortest admissible
path exists, it cannot have a length exceeding d and must therefore have
the exact length d.  But the only path of that length is not admissible,
as we saw. Hence there can exist no shortest admissible path, and the
proposed minimum problem has no solution.

2) As in Figure 223, let C be a circle and 8 a point at a distance 1
above its center. Consider the class of all surfaces bounded by C that
go through the point S and lie above € in such
a way that no two different points have the same
vertical projection on the plane of €. Which of
these surfaces has the least area? This problem,
natural as it appears, has no solution: there is no
admissible surface with & minimum area. If the
condition that the surface go through S had not
been prescribed, the solution would obvicusly be the
plane eircular disk bounded by €. Let us denote
its ares by 4. Any other surface bounded by
€ must have an area larger than 4. But we can
find an admissible surface whose area exceeds A by
a8 little as we please. For this purpose we take a conical surface of
heizht 1 and so slender that jts area is less than whatever margin may
have been assigned. We plaes this cone on top of the disk with its ver-
tex at 8, and consider the total surface formed by the surface of the
cone and the part of the disk outside the base of the cone. It is im-
mediately clear that this surface, which deviates from the plane only
near the center, has an aren exceeding A by less than the given margin,

s

Fig. 223
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Since this margin can be chosen as small as we like, it follows again
that the minimum, if it exists, cannot be other than the area A of the
disk. But among all the surfaces bounded by C only the disk itself has
this area, and since the disk does not go through 8 it violates the con-
ditions for admissibility. Asa consequence, the problem has no solution

We can dispense with the more sophisticated examples given by Weier-
strass. The two just considered show well enough that the existence of
a minimum is not a trivial part of 8 mathematical proof. Let us put the
matter in more general and abstract terms. Consider a definite class of
objects. e.g. of curves or surfaces, to each of which is attached as a
function of the object a certain number, e.g. length or area. If there
is only a finite number of ohjects in the class, there must obviously be a
largest and a smallest among the corresponding numbers. But if there
are infinitely many objects in the class, there need be neither a largest
nor a smallest number, even if all these numbers are contained between
fixed bounds. 1In general, these numbers will form an infinite set of
points on the number axis. Let us suppose, for simplicity, that all the
numbers are positive. Then the set has a “gre- test lower bound”,
that is, & point « below which no number of the set lies, and which is
either itself an element of the set or is approached with any degree of
accuracy by members of theset.  If a belongs to the set, it is the smallest
element; otherwise the set simply does not contain a smallest element.
For example, the set of numbers 1, 1/2, 1/3, ... contains no smallest
element, since the lower bound, 0, does not belong to the set. These
examples illustrate in an abstract way the lc_cal difficulties connected
with the existence problem. The h ical solution of a mini
problem is not complete until one has provided, explicitly or implicitlz,
a proof that the set of values associated with the problem contains a
smallest element.

3. Elementary Extremum Problems

In elementary problems it requires only an attentive analysis of the
basic coneepts involved to settle the question of the existence of a solu-
tion. In Chapter VI, §5 the genaral notion of a compact set was dis-
cussed; it was stated that a continuous function defined for the elements
of & compact set always assumes 2 largest and a smallest value some-
where in the set. In each of the elementary problems previously dis-
cussed, the competing values can be regarded as the values of a function
of oge or severval ariables in a domain that is either compact or can
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easily be made so without essential change in the problem. In such a
case the existence of & maximum and a minimum is assured. In
Steiner’s problem, for example, the quantity under consideration is the
sum of three distances, and this depends continuously on the position
of the movable point. Since the domain of this point is the whole plane,
nothing is lost if we enclose the figure in a large circle and restrict the
point to its interior and boundary. For as soon as the movable point is
sufficiently far away from the three given points, the sum of its dis-
tances to these points will certainly exceed 4B + AC, which is one of
the admissiblé values of the function. Hence if there is & minimurm for a
point restricted to a large cirele, this will also be the minimum for the
unrestricted problem. But it is easy to show that the domain con-
sisting of a circle plus its interior is compact, hence a minimum for
Steiner’s problem exists,

The importance of the agsumption that the domain of the independent
variable is compact can be shown by the following example. Given
two closed curves C; and Cy , there always exist two points. Py, Py, on
Cy, O respectively, which have the least possible distance from each
other, and points @, , @ which have the largest possible distance. For
the distance between a point 4, on C, and a point 4, on C; is a con-
tinuous function on the compact set consisting of the pairs 4;, 4, of

T T
—

Fig 224 Curves between which there ia no longest or shortest distance.

points under consideration. However, if the two curves are not bounded
but extend to infinity, then the problem may not have a solution, In
the case shown in Figure 224 neither a smallest nor a largest distance
between the curves is attained; the Jower bound for the distance is zero,
the upper bound i infinity, and neither is attained, In some cases &
minimum but no maximum exists. For the case of two branches of a
hyperbola (Fig. 17, p. 76} only a minimum distance is attained, by A and
A’, since obviously ne two poinis exist with a maximum distance apart.
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We can account for this difference in behavior by artificially restricting
the domain of the variables. Select an arbitrary positive number R,
and restriet z by the condition |z | £ R. Then both a maximum and
a minimum exist for each of the last two problems. In the first one,
restricting the boundary in this way assures the existence of a maximum
and a minimum dist=nce, both of which are attained on the boundary.
1f R s increased, the points for which the extrema are attained are
again on the boundary. ence as R increases, these points disappear
towards infinity. In the sceond case, the minimum distance is attained
in the interior, and no matter how much R is increased the two points
of minimum distance remain the same.

4. Difficulties in Higher Cases

While the existence question is not at all serious in the elementary
problems involving one, two, or any finite number of independent vari-
ables, it is quite different with Dirichlet’s principle or with even simpler
problems of a similar type. The reason in these cases is either that the
domain of the independent variable fails to be compact, or that the
function fails to be continuous. In the first example of Article 2 we
have a sequence of paths AQ'B where 0’ tends to the point 4. Fach
path of the sequence satisfies the conditions of admissibility. But the
paths AO'B tend to the straight segment AB and this limit is no longer
in the admitted set. The set of admissible paths is in this respect like
the interval 0 < z < 1 for which Weierstrass’ theorem on extreme
values does not hold (see p. 314). In the second example we find a
similar situation: if the cones becomne thinner and thinner, then the se-
quence of the corresponding admissible surfaces will tend to the disk
plus & vertical straight line reaching to 8. This limiting geometrical
entity, however, is not among the adm le surfaces, and again it is
true that the set of admissible surfaces is not com

As an example of non-continuous dependence sonsider the
length of a curve. This length is no longer a fune iite n+ mber
of numerical variables, since a whole curve cannot ya
finite number of “codrdinates,” and it is not a ¢ Lof
the curve. To see this let us join two points 4 ance d
by a zigzag polygon P. which together with the + forms n

equilateral 27 ngles. It is clear from Figure 225 thac we total length
of P, will be exactly 2d for every value of n.  Now consider the sequence
of polygons Py, Py, --- . The single waves of these polygons decrease
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in height as they inerease in number, and it is clear that polygon P,
tends to the straight line 4B, where. in the limit, the roughness has
disappeared completely. The length of P, is always 2d, regardless of
the index 7, while the length of the limiting curve, the straight segment,
is only d. Hence the length does not depend continuously on the curve.

277 e

AAAAA asAAAA,

ig. 225, Approximstion (o« wment by polygous of twive ity length,

All these examples confirm the fact thal caution as to the existence
of a solution is really necessary in minimum problems of a more complex
structure.

§8. THE ISOPERIMETRIC PROBLEM

That the cirele encloses the largest area among all closed curves with a
preseribed length is one of the “obvious” facts of mathematics for which
only madern methods have yielded a rigorous proof. Steiner devised
various ingenious ways of proving this theorem, of which we shall con-
sider one.

Tet us start with the assumption that a solution does exist. This
granted, suppose the curve € is the required one with the preseribed
fength L avd maximum area.  Then we can easily show that C must be
convex, in the sense thal the straight segment joining any two points
of C must lie entirely inside or on C. For if € were not convex, as in
Figure 226, then a segment such as OP could be drawn between some
pair of points O and P on €, such that OF lies outside of . The arc
OQ'P which is the reflection of OQP in the line OP forms, together with
the arc ORP, a curve of length L enclosing a larger area than the original
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curve C, since it includes the additional areas I and II. This contra-
dicts the assumption that C contains the largest area for a closed curve
of length L. Hence C must be convex,

Fig. 228

Now choose two points, 4, B, dividing the solution eurve € into arcs
of equal length. Then the line AB must divide the area of € into two
equal parts, for otherwise the part of greater area could be refiected in
AB (Fig. 227) to give another curve of length L with greater included
area that C. It follows that half of the solution C must solve the
following problem: To find the arc of length L/2 having its endpoints
4, B on a straight line and enclosing a maximum area between it and

Fig. 227

this straight line. Now we shall show that the solution to this new
problem is a semicirele, so that the whole curve C solving the iso-
perimetric problem is a circle. Let the arc 408 solve the new problem.
It is sufficient to show that every inscribed angle such as X A0UB in
Figure 228 is a right angle, for this will prove that AOB is a semicirele.
Suppose, on the contrary, that the angle AOB is not 90°. Then we can
replace Figure 228 by another one, 229, in which the shaded areas and
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the length of the arc AOB are not = “iged, while the triangular area is
increased by making % AOB equal to or at least nearer to 90°. Thus
Fizure 229 gives a larger are- “ha- the original (see page 330). Butwe
started with the assumption wnat rigure 228 solves the problem so th-*
Figure 229 could not possibly yield a larger area. This contradicti.
shows that for every point O, X A0B must be a right angle, and tt
completes the proof.

The isoperimetric property of the circle can be expressed
of an inequality. If L is the circumference of the circle, its w. 1 is
L*/4r, and therefore we must have the isoperimetric inequality, A <
L?/4m, between the area 4 and length L of any closed curve the equality
sign holding only for the circle.

*As is apparent from the discussion in §7, Steiner’s proof has only a
conditional value: “If there is a curve of length L within maximal area

0
é % é | %
A B A B

Fig. 228 Fig. 229

then it must be a circle.”” To establish the hypothetical premise an
essentially new argument is needed. First we prove an elementary
theorem concernir,, closed polygons P, with an even number 2n of
edges: Among all such 2n-gons with the same length, the regular 2n-gon
has thelargestarea. The proof follows the pattern of Steiner’s r -~ ~Ining
with the following modifications. There is no difficulty about the ques-
tion of existence here, since a 2n-gon, together with its length and area,
depends continuously on the 4n coérdinates of its v-rtices, which may
without loss of generality be restricted to o com set of points in
4n-dimentional space, Accordingly, in this probuw for polygons we
may safely begin with the assumption that some polygon P {s the solu-
tion, and on this basis analyze the properties of P, Exactly - in
Steiner’s proof, it follows that P must be convex. We prove now v
all the 2n edges of P must have the same length. For assume that two
adjacent edges AB and BC had different lengths; then we could cut off
triargle ABC from P and replace it by an isosceles triangle AB'C, in
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which 4B’ + B'C = AB + BC, and which has a larger area (sce §1).
Thus we would obtain a polygon P’ with the same perimeter and a
larger area, contrary to the assumption that P
was the optimal polygon of 2n edges. Therefore
all the edges of P must have equal length, and
what remains to be shown is that P is regular; for
this it suffices to know that all the vertices of P lie
on a cirele. The reasoning follows Steiner's
pattern. First we show that any diagonal joining
opposite vertices, e.g. the first with the (n -+ 1)-st,
cuts the area in two equal parts.  Then we prove
that all the vertices of one of these parts
lie on a semicirele. The details, which follow
exactly the previous pattern, are left to the reader as an ex-
ercise.

The existence, together with the solution, of the isoperimetric problem
can now be obtained by a limiting process in which the number of
vertices tends to infinity and the optimal regular polygon to a circle.

Steiner’s reasoning is not at all suited to proving the corresponding
isoperimetric property of the sphere in three dimensions. A somewhat
different and more complieated treatment was given by Steiner that
works for three dimensions as well as for two, but since it cannot be so
immedintely adapted to giving the existence proof it is omitted here.
As a matter of fact, proving the isoperimetric property of the sphere
is a much harder task than for the circle; indeed, a complete and rigorous
proof was first given much later, in a rather difficult paper by H. A.
Schwarz. The three-dimensional isoperimetric property can be ex-
pressed by the inequality

Fig. 230

36aV" < 4°

between the surface area 4 and the volume V of any closed three-
dimensional body, the equality holding only for the sphere,

*§9. EXTREMUM PROBLEMS WITH BOUNDARY CONDI-
TIONS. CONNECTION BP TWEEN STEINER'S PROB-
LEM AND THE ISOPERIMETRIC PROBLEM

Interesting results arise in extremum problems when the domain of
the variable s restricted by boundary conditions. The theorem of
‘Weierstrass that in & compact domain a continuous function attains a
largest and smallest value does not exclude the possibility that the ex-~
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treme values are attained at the boundary of the domain. A simple,
almost trivial, example is afforded by the function » = z. If z is not
restricted and may range from — « to -, then the domain B of the
independent variable is the entire number axis; and hence it is under-
standable that the function » = z has no largest or smallest value any-
where. But if the domain B is limited by boundaries, say 0 < z < 1,
then there exists a largest value, 1, sttained at the right endpoint, and
a smallest value, 0, attained at the lelt endpoint. However, these ex-
treme values are not represented by a summit or a depression in the
curve of the function; they are not extrema relative to a full two-sided
neighborhood. They change as soon as the interval is extended, be-
cause they remain at the endpoints. For a genuine peak or depression
of a function, the extremal character always refers to a full neighborhood
of the point where the value is attained; it is not affected by slight
changes of the boundary. Such an extremum persists even under a
free variation of the independent variable in the domain B, at least in a

fficiently small neighborhood. The distinction between such “free”
extrema and those assumed at the boundary is illuminating in many
apparently quite different contexts. For functions of one variable, of
course, the distinction is simply that between monotone and non-mono-
tone functions, and thus does not lead to particularly interesting ob-
servations. But there are many significant instances of extrema
attained at the boundary of the domain of variability by functions of
several variables.

This may occur, for example, in Schwarz’s triangle problem. There
the domain of variability of the three independent variables consists of
all triples of points, one on each of the three sides of the triangle 4 BC.
The solution of the problem involved two alternatives: either the mini-
mum is attained when all three of the independently variable points
P, Q, R lie inside the respective sides of the triangle, in which case the
minimum is given by the altitude triangle, or the minimum is attained
for the boundary position when two of the points P, Q, R coincide with
the common endpoint of their respective intervals, in which case the
minimum inscribed “triangle” is the altitude from this vertex, counted
twice. Thus the character of the solution is quite different according
to which of the alternatives accurs.

In Steiner’s problem of the three villages the domain of variability of
the point P is the whole plane, ‘of which the three given points 4, B, ¢
may be considered as boundary puints. Again there are two alternatives
yieldir.z two entirely different types of solutions: either the mini is
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attained in the interior of the triangle 4 BC, which is the case of the
three equal angles, or it is attained at a boundary point C. A similar
pair of alternatives exists for the complementary problem.

As a last example we may consider the isoperimetric problem modified
by restrictive boundary conditions. We shall thus obtain a surprising
connection between the isoperimetric problem and Steiner’s problem
and at the same time what is perhaps the simplest instance of a new type
of extremum problem. In the original problem the independent varia-
able, the elosed curve of given length, can be arbitrarily varied from the
circular shape, and any such deformed curve is admissible into the
competition, so that we have a genuine free minimum. Now let us
consider the following modified problem: the curves C under considera-
tion shall include in their interior, or pass through, three given points, P,
Q, B, the area A is prescribed, and the length L is to be made & minimum,
This represents a genuine boundary condition.

It is clear that, if A is prescribed sufficiently large, the three points
P, Q, R will not affect the problem at all. Whenever the circle circum-
seribed about the triangle PQR has an area less than or equal to 4, the
solution will simply be a circle of area 4 including the three points.
But what if 4 is smaller? We state the answer here but omit the some-
whnt detaxled proof, although it would not be beyond our reach. Let
us the ions for & of values of A which de-
creases to zero. As soon as 4 falls below the area of the circumseribed
circle, the original isoperimetric circle breaks up into three arcs, all
having the same radius, which form a convex circular triangle with

OO A

Fig. 232 Fig. 238
? P
'
A /1\
B Q R @
Fig 2 ¥ie. 238

Figs. 131-5. Inopacizaetsio gures tonding to the solution of Steiner's problem.
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P, Q, B as vertices (Fig. 232). This triangle is the solution; its dimen-
sions can be determined from the given value of A, If A decreases
further, the radius of these arcs will increase, and the arcs will become
more and more nearly straight, until when A4 is exactly the area of the
triangle PQR the solution is the triangle itself. If A now becomes
even smaller, then the solution will again consist of three eircular arcs
having the same radius and forming a triangle with corners at P, @, R.
This time, however, the triangle is concave and the arcs are inside the
triangle PQR (Fig. 233). As 4 continues to decrease, there will come
a moment when, for a certain value of 4, two of the eoncave arcs become
tangent to each other in a corner B.  With an additional deerease of 4,
it is no longer possible to construct a circular triangle of the previous
type. A new phenomenon occurs: the solution is still given by & con-
cave circular triangle, but one of its corners B’ has become detached
from the corresponding corner R, and the solution now consists of a
circular triangle PQR’ plus the straight line RR' eounted twice (because
it travels from R’ to B and back). This straight segment is tangent to
the two arcs tangent to each other at R’. If A decreases further, the
separation process will also set in at the other vertices. Eventually we
obtain as solution a circular triangle consisting of three ares of equal
radius tangent to each other and forming an equilateral circular triangle
P'Q'R’, and in addition three doubly counted straight segments P'P,
QQ, R'R (Fig. 234). 1f, finally, 4 shrinks to zero, then the circular
triangle reduces to a point, and we return to the solution of Steiner's
problem; the latter is thus seen to be & limiting case of the modified
isoperimetric preblem.

If P, Q, B form an obtuse triangle with an angle of more than 120°,
then the shrinking process leads to the corresponding solution of Steiner's
problem, for then the circular arcs shrink toward the obtuse vertex.
The selutions of the generalized Steiner problem (see Figs. 216-8 on p.
360) may be obtained by limiting processes of a similar nature.

§10. THE CALCULUS OF VARIATIONS

1. Introduction

The isoperimetric problem is one example, probably the oldest, of a
large class of important problems to which attention was called in 1696
by Johann Bernoulli. In Aecte Eruditorum, the great scientific journal
of the time, he posed the following “brachistochrone™ problem: Imagine
a particle constrained to slide without friction along a certain curve
joining & point A to a lower point B. If the particle is allowed to fall
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under the influence of gravity alone, along which such curve will the
time required for the descent be'least? It is easy to see that the falling
particle will require different lengths of time for different paths. The
straight line by no means affords the quickest journey, nor is the circular
arc or any other elementary curve the answer, Bernoulli boasted of
having a wonderful solution which he would not immediately publish
in order to incite the greatest mathematicians of the time to try their
skill at this new type of mathematical question. In particular, he
challenged his elder brother Jacob, with whom he was at the time en-
gaged in a bitter feud, and whom he publicly described as incompetent,
to solve the problem. Mathematicians immediately recognized the
different character of the brachistochrone problem. While heretofore,
in problems treated by the differential calenlus, the quantity to be mini-
mized depended only on one or more numerieal variables, in this problem
the quantity under consideration, the time of descent, depends on the

Fig. 2 . Tho cysleid,

whole curve, and this makes for an essential difference, taking the problem
out of the reach of the differential caleulus or any other method known
at the time,

The novelty of the problem—-apparently the isoperimetrie property
of the circle was not clearly recognized as of the same nature—fascinated
the contemporary mathematicians all the more when the solution turned
out to be the cycloid, a curve that had just been discovered. (We
recall the definition of the eyeloid: it is the locus of a point on the circum-
ference of a ecircle that rolls without slipping along a straight line, as
shown in Tig. 236.) This curve had been brought into connection with
interesting mechanical problems, especially with the construction of an
ideal pendulum. Huygens had discovered that an ideal mass point
which oscillates without friction under the influence of gravity on a
vertical eycloid has a period of oscillation independent of the amplitude
of the motion. On a circular path, such as is provided by an ordinary

dul this ind d is only i ly true, and this was
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considered a drawback fo the use of pendulums for precision clocks.
The ecycloid was honored by the name of tautochrone; now it acquired
the new title of brachistochrone.

2. The Calculus of Variations. Fermat’s Principle in Optics

Of the different ways in which the solution to the brachistochrone
problem was found by the Bernoullis and others we shall presently ex-
plain one of the most original. The first methods were of a more or less
special character, adapted to the speeific problem. But it did not take
long before Tuler and Lagrange (1736-1813) cvolved more general meth-
ods for solving extremum problerus in which the independent element
was not a single numerical variable or a finite number of such variables,
but a whole curve or function or even a system of functions. The new

P

R

Fig. 237. Reftnction of a light ray.

method for solving such problems was called the ecalculus of
vartations.

Tt is not possible to deseribe here the technical aspects of this branch
of mathematics or to go deeper into the diseussion of specific problems.
The calculus of variations has many applications in physics. It was ob-
served long ago that natural phenomena often follow some pattern of
maxima and minima.  As we have seen, Heron of Alexandria recognized
that the reflection of a light ray in a plane mirror can be deseribed by a
minimum prineiple.  Fermat, in the seventeenth century, took the next
step: he observed that the law of refraction of light can also be stated
in terms of a minimum prineiple. It is well known that the path of
light travelling from one homogeneous medium into another is bent at
the boundary. Thus in Figure 237, a light ray going from P in the
upper medivm where the velocity is v to R in the lower medium where
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the velocity is w will follow a path PQR. The empirical law found by
Snell (1591-1626) states that the path consists of two straight segments,
PQ and QR, forming angles «, o' with the normal determined by the
conditions sin e/sin &’ = v/w. By means of the calculus Fermat proved
that this path is such that the time taken for the light ray to go from P
to R is a minimum, i.e. smaller than it would be along any other con-
necting path. Thus Heron's law of reflection was supplemented sixteen
hundred years later by a similar and equally important law of refraction.

Fermat generalized the statement of this law so as to include curved
surfaces of discontinuity between media, such as the spherical surfaces
used in lenses. In this case the staterment still holds that light follows
a path along which the time taken is a minimum relative to the time
that would be required for the light to describe any other possible path
between the same two points. Finally, Fermat considered any optical
system in which the velocity of light varies in a prescribed way from
point to point, as it does in the atmosphere. He divided the con-
tinuous inhomogeneous medium into thin slabs, in each of which the
velocity of light is approximately constant, and imagined this medium
replaced by another in which the velocity is actually constant in each
slab. Then he could again apply his principle, going from each slab to
the next. By letting the thickness of the slabs tend to zero, he arrived
at the general Fermat principle of geomelrical opties: In an inhomogeneous
medium, a light ray travelling between two points follows a path along
which the time taken is a minimum with respect to all paths joining the
two points. This principle has been of the utmost importance, not only
theoretically, but in practical geometrieal optics. The technique of the
caleulus of variations applied to this principle provides the basis for
caleulating lens systems.

 Minimum principles have also become dominant in other branches of
It was observed that stable equilibrium of a mechanical sys-
attained if the system is arranged in such & way that its “potential
energy’ is a minimum. As an example, let us consider a flexible homo-
geneous chain suspended at its two ends and allowing full play to the
force of gravity. The chain will then assume a form in which its potential
energy is a "nimum. In this case the potential energy is determined
by the hey,  of the center of gravity above some fixed axis. The
curve in which the chain hangs is called a catenary, and resembles super-
ficially a parabola.

Not only the laws of equ'lxbnum but also those of motion, are domi-
nated by i and mi ipl It was Euler who ob-
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tained the first clear ideas about these principles, while philosophically
and mystically inclined speculators, such as Maupertuis (1698-1759),
were not able to separate the mathematical statements from hazy ideas
about “God’s intention to regulate physieal phenomens by a general
principle of highest perfection.” Euler’s variational principles of phys-
ics, rediscovered and extended by the Irish mathematician W. R.
Hamilton (1805-1865), have pmved to be ‘among the most powerful
tools in mechanics, optics, and el i} uulmus, with many 1i

to engineering. Recent devel in phy lativity and quan-
tum theory—are full of examples revealing the power of the caloulus of
variations,

3. Bernoulii’s T of the Brachistoch Problem
The early method developed for the brachistochrone problem by Jacob
Bernoulli can be und d with ively little technical knowl-
A}
A
P
Fig. 28,

edge. We start with the fact, taken from mechanies, that a mass point
falling from rest at A along any curve € will have at any point P a
velocity propox‘tmnal to +/%, where h is the vertical distance from A
to P; that is, v = cv/k, where ¢ is a constani. Now we replace the
given problem by s slightly different one. We dissect the space into
many thin horizontal slabs, each of thickness d, and assume for the
moment that the velocity of the moving particle changes, not continu-
ously, but in little jumps from slab to slab, so that in the first slab
adjacent to A the velocity is ¢4/d, in the second c+/2d, and in the nth
slab c\/nd = ¢+/k, where h is the vertical distance from 4 to P (see
Fig. 238). If this problem is considered, then there are really only a
finite number of variables. In each slab the path must be a straight
segment, no existence problem arises, the solution must be a polygon,
and the only question is how to determine its corners. According to the
minimum principle for the law of simple refraction, in each pair of suc-
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cessive slabs the motion from P to B by way of § must be such that,
with P and R fixed, Q provides the shortest possible time. Hence the
following “refraction law” must hold:

sina  sina’
Vad N+ Dd

R ted lication of this ing yields the ion of liti

N o e

Vd oV ’
where a, is the angle between the polygon in the nth slab and the ver-
tical.

Now Bernoulli imagines the thickness d to become smaller and smalier,
tending to zero, so that the polygon just obtained as the solution of the
approximate problem tends to the desired solution of the original prob-
fem. In this passage to the limit the equalities (1} are not affected, and
therefore Bernoulli concludes that the solution must be a curve € with
the following property: If « is the angle between the tangent and the
vertical at any point P of C, and h is the vertical distance of P from
the horizontal line through 4, then sin o/+/k is constant for all points
Pof C. It can e shown very simply that this property characterizes
the cycloid.

Bernoulli’s “proof” is a typical example of ingenious and valuable
mathematical reasoning which, at the same time, is not at all rigorous.
There are several tacit assumptions in the argument, and their justifi
tion would be more complicated and lengthy than the argument itself.
For example, the existence of a solution C, and the fact that the solution
of the approximate problem approxi the actusl solution, were both
assumed. The question as to the intrinsic value of heuristic considera-
tions of this type certainly deserves discussion, but would lead us too
far astray.

4. Geodesics on a Sphere. Geodesics and Maxi-Minima

In the introduction to this chapter we mentioned the problem of
finding the shaortest arcs joining two given points of a surface. On a
sphere, as is shown in elementary geometry, these ‘geodesics” are ares of
great circles. Let P and @ be two (not diametrically opposite) points
on a sphere, and ¢ the shorter connecting arc of the great circle through
P and Q. Then the question presents itself, what is the longer are ¢/
of the same great circle? Certainly it does not give the minimum
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length, nor can it give the maximum length for curves joining P and @,
since arbitrarily long curves between P and @ can be drawn. The
answer is that ¢ solves a maxi-minimum problem. Consider a point
S on a fixed great circle separati-, P and Q; we ask for the shortest
connection between P and @ on the sphere passing through 8. Of
course, the minimum is given by a curve consisting of two small ares of
great circles PS and 8. Now we seek a position of the point S for
which this smallest distance PSQ becomes as large as possible. The
solution is: .S must be such that PSQ is the longer arc ¢’ of the great

Fig. 239, Geodeaica on & aphera,

circle PQ. We may modify the problem by first seeking the path of
shortest length from P to @ passing through n prescribed points, S;,
82, +++, 8x, on the sphere, and then seeking to determine the points
Sy, o+, 8. so that this minimum lerzth becomes as large as possible,
The solution is given by a path on the great circle joining P and @, but
this path winds around the sphere so often that it passes through the
points diametrically opposite P and Q exactly n times.

This example of a maximum-minimum problem is typical of a wide
class of questions in the calculus of variations that have been studied
with great success by methods developed by Morse and others.

§11. EXPERIMENTAL SOLUTIONS OF MINIMUM PROBLEMS.
SOAP FILM EXPERIMENTS

1. Introduction
It is usually very difficult, and sometimes impossible, to solve varia-
tional problems explicitly in terms of formulas or geometrical construc-
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tions involving known simple elements. Instead, one is often satisfied
with merely proving the existence of a solution under certain conditions
and afterwards investigating properties of the solution. In many cases,
when such an existence proof turns out to be more or less difficult, it is
stimulating to realize the mathematical conditions of the problem by
corresponding physical devices, or rather, to consider the mathematica)
problem as an interpretation of a physical phenomenon. The existence
of the physical phenomenon then represents the solution of the mathe-
matical problem. Of course, this is only a plausibility consideration and
not a mathematical proof, since the question still remains whether the
mathematical interpretation of the physical event is adequate in & strict
sense, or whether it gives only an inadequate image of physical reality.

Sometimes such experiments, even if performcd only in the imagina-
tion, are incing even to i In the ni h eentury
many of the fundamental theorems of function theory were discovered
by Ricmann by thinking of simple experiments concerning the flow
of eleetricity in thin metallic sheots.

In this section we wish to discuss, on the basis of experimental demon-
strations, one of the deeper problems of the caleulus of variations, This
problem has been called Plateau’s problem, because Plateau (1801-1883),
a Belgian physicist, made interesting experiments on this subject. The
problem itself is much older and goes back to the initial phases of the
caleulus of variations. In its simplest form it is the following: to find
the surface of smallest area bounded by a given closed contour in space.
We shall also diseuss experiments connected with some related ques-
tions, and it will turn out that much light can thus be thrown on some
of our previous results as well as on certain mathematical problems of a.
new type.

2. Soap Film Experiments

Mathematically, Plateau’s problem is connected with the solution of
a “partial differential equation,” or a system of such equations. Euler
showed that all (non-plane) minimal surfaces must be saddle-shaped and
that the mean curvaturet at every point must be zero. The solution
was shown to exist for many specia) cases during the last century, but

+ The mean curvature of o surface at a point P is defined in the following way
Consider the perpendicular to the surface at P, and all planes containing it. These
planes will interseet the surface in curves which i+ oral have different curva-
tures at . Now consider the curves of minimuiz and maximum curvature
respectively. (In general, the planes containing these curves will be perpen-
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the existence of the solution for the general case was proved only
recently, hy J. Douglas and by T. Radeo.

Platean’s experiments immediately yield physical sclutions for very
general contours. If one dips any closed contour made of wire into a
liquid of low surface tension and then withdraws it, a film in the form
of a minimal surface of least area will span the contour. (We assume
that we may neglect gravity and other forces which interfere with the
tendency of the film to assume a position of stable equilibrium by
attaining the smallest possible area and thus the least possible value of
the potential energy due to surface tension.) A good recipe for such a
liquid is the following: Dissolve 10 grams of pure dry sodium oleate in

Fig, 240. Cubic frame spanaing & soap film system of 13 nearly piane surfases.

500 grams of distilled water, and mix 15 cubie units of the solution with
11 cubic units of glycerin. Films obtained with this solution and with
frames of brass wire are relatively stable. The frames should not
exceed five or six inches in diameter.

With this method it is very easy to “solve” Plateau's problem simply
by shaping the wire into the desired form. Beautiful models are ob-
tained in polygonal wire frames formed by a sequence of edges of a
regular polyhedron. In particular, it is interesting to dip the whole
frame of a cube into such a solution. The result is first a system of
different surfaces meeting each other at angles of 120° along lines of
intersection.  (If the cube is withdrawn carefully, there will be thirteen
nearly plane surfaces.) Then.we may pierce and destroy enough of

dieular to each other.) One-half the sum of these two curvatures is the mean
curvatore of the surface at P.
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these different surfaces so that only one surface bounded by a closed
polygon remains. Several beautiful surfaces may be formed in this
way. The same experiment can also be performed with a tetrahedron.

3. New Experiments on Plateau’s Problem

The scope of soap film experiments with minimal surfaces is wider
than these original demonstrations by Plateau. In recent years the
problem of minimal surfaces has been studied when not only one but
any number of contours is prescribed, and when, in addition, the
topologieal structure of the surface is more complicated. For example,
the surface might be one-sided or of genus different from zero. These
more general problems produce an amaszing variety of geometrical

\

Fig. 241, One-sided suriace (Mosbius strip). Fig. 2. Two-sided surfaco,

phenomena that can be exhibited by soap film experiments. In this
connection it is very useful to make the wire frames flexible, and to
study the effect of deformations of the prescribed boundaries on the
solution.

We shall describe several examples:

1) If the contour is a circle we obtain a plane circular disk. If we
continuously deform the boundary circle we might expect that the
minimal surface would always retain the topological character of a disk.
This is not the case. If the boundary is deformed into the shape
indicated by Figure 241, we obtain a minimal surface that is no longer
simply connected, like the disk, but is a one-sided Moebius strip. Con-
versely, we might start with this frame and with a soap film in the shape
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of a Moebius strip. We may deform the wire frame by pulling handles
soldered to it (Fig. 241). In this process we shall reach a moment when
suddenly the topological character of the film changes, so that the sur~
face is again of the type of a simply connected disk (Fig. 242). Re-
versing the deformation we again obtain a Moebius strip. In this
alternating deformation process the mutation of the simply connected
surface into the Moebius strip takes place at a later stage. This shows
that there must be a range of shapes of the contour for which both the
Muebius strip and the simply connected surface are stable, i.e. furnish
relative minima. But when the Moebius strip has a much smaller ares
than the other surfuce, the latter is too unstable to be formed.

2) We may span a minimal surface of revolution between two circles.
After the withdrawal of the wire frames from the solution we find, not
one simple surface, but a structure of three
surfaces meeting at angles of 120° one of
which is & simple cireular disk paralle! to the
preseribed houndary eircles (Figure 243).
By destroying this intermediate surface the
classical catenoid is produced (the catenoid
is the surface obtained by revolving the cat-
enary of page 382 about a line perpendicular
to its axis of symmetry). If the two bound-
ary circles are pulled apart, there is a mo-
ment when the doubly connected minimal
surface (the catenoid) becomes unstable. At
this moment the catenoid jumps discontinu-
ously into two separated disks. This process is, of course, not reversible,

3) Another significant example is provided by the frame of Figures
244-6 in which can be spanned three different minimal surfaces. Bach
is bounded by the same simple closed curve; one (Figure 244) has the
genus 1, while the other two are simply connected, and in a way sym-
metrical to each other. The latter have the same area if the contour is
completely symmetrical. But if this is not the case then only one gives
the absolute minimum of the area while the other will give a relative
minimum, provided that the minimurm is sought among simply connected
surfaces. The possibility of the solution of genus 1 depends on the fact
that by admitting surfaces of genus 1 one may obtain a smaller area
than by requiring that the surface be simply convected. By deforming
the frame we must, if the deformation is radieal enough, come to a point
where this is no longer true. At that moment the surface of genus 1

Fig. 242. System of thres surfaces.
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becomes more and more unstable and suddenly jumps discontinuously
into the simply connected stable sclution represented by Figure 245 or
246. If we start with one of these simply connected solutions, such as
Figure 246, we may deform it in such a way that the other simply
connected solution of Figure 245 becomes much more stable. The
consequence is that at a certain moment a discontinuous transition
{rom one to the other will take place. By slowly reversing the deforma~

&4

Fig. 245. Fig. 240,
Frame spanning three different aurfaces of genus 0 and 1,

Fig. 47.
One-sided minima? surface of higher topological structure in a single contour.

tion, we return to the initial position of the frame, but now with the
other solutioninit. We can repeat the process in the opposite direction,
and in this way swing back and forth by discontinuous transitions
between the two types. By careful handling, one may also transform
discontinuously either one of the simply connected solutions into that of
genus 1. For this purpose we have to bring the disk-like parts very close



NEW EXPERIMENTS ON PLATEAU'S PROBLEM 391

to each other, so that the surface of genus 1 becomes markedly more
stable. Sometimes in this process intermediate pieces of film appear
first and have to be destroyed before the surface of genus 1 is obtained.

‘This example shows not only the possibility of different solutions of
the same topological type, but also of another and different type in
one and the same frame; moreover, it czain illustrates the possibility of
discontinuous transitions from one solution to another while the condi-
tions of the problem are changed continuously, It is easy to construct
more complicated models of the same sort and to study their behavior
experimentally.

An interesting phenomenon is the appearance of minimal surfaces
bounded by two or mare interlocked closed curves. For two circles
we obtain the surface shown in Figure 248. If, in this example, the
cireles are perpendicular to each other and the
line of intersection of their planes is a dia-
meter of both circles, there will be two sym-
metrically opposite forms of this surface with
equal area. If the circles are now moved
slightly with respect to each other, the form //
will be altered continuously, although for each
position only one form is an absolute mini- y
mum, and the other one a relative minimum. <=
1f the circles are moved so that the relative
minimum is formed, it will jump over into Fig. 248, Taterlocked
the absolute minimum at some point. Here
both of the possible minimal surfaces have the same topological cha .
as do the surfaces of Fiires 245-6 one of which ean be made to jump
into the other by a slight deformation of the frame.

4. Experi ] ions of Other Math ical Problems
Owing to the action of «lnf;u e tension, a film of lxquxd is in stable equi-
librium only if its area is a This is an 1 ible source of

Hy signifi experiments. If parts of the boundary of a
film are left free to move on given surfaces such as planes, then on these
boundaries the film will be perpendicular to the prescribed surface.

We can use this fact for striking demonstrations of Steiner’s problem
and its generalizations (see §5). Two parallel glass or transparent
plastic plates are joined by three or more perpendicular bars. If we
immerse this object in a soap solution and withdraw it, the film forms a
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system of vertical planes between the plates and joining the fixed bars.
The projection appearing on the glass plates is the solution of the prob-
lem discussed on page 359,

Fig. 260. Shortest connoction between § pointa.

If the plates are not parallel, the bars not perpendicular to them, or
the plates eurved, then the curves formed by the flm on the plates will
not be straight, but will illustrate new variational problems,
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The appearance of lines where three sheets of a minimal surface meet
at angles of 120° may be regarded ss the generalization to more dimen-
sions of the phenomena connected with Steiner’'s problem. This
becomes clear e.g. if we join two points 4, B in space by three curves,
and study the corresponding stable system of soap films. As the sim-
plest case we take for one curve the straight segment 4B, and for the

Fig. 252. Three broken lines joining two points.

others two congruent eircular arcs. The result is shown in Figure 251.
H the planes of the ares form an angle of less than 120°, we obtain three
surfaces meeting at angles of 120°; if we turn the two arcs, increasing
the included angle, the solution changes continuously into two plane
circular segmenta.
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Now let us join A and B by three more complicated curves. As an
example we may take three broken lines each consisting of three edges
of the same cube that join two diagonally opposite vertices: we ob-
tain three congruent surfaces meeting in the diagonal of the cube. (We
obtain this system of surfaces from that depicted in Fig. 240 by destroy-
ing the films adjacent to three properly selected edges.) If we make the
three broken lines joining A and B movable, we can see the line of
threefold intersection become curved. The angles of 120° will be
preserved (Fig. 252).

All the phenomena where three minimal surfaces meet in certain lines
are fundamentally of a similar nature. They are generalizations of the
plane problem of joining = points by the shortest system of lines,

Fig. 263, Doronstration that the circle haa least perimeter for a given area.

Finally, a word about soap bubbles. The spherical soap bubble shows
that among all closed surfaces including a given volume (defined by
the amount of air inside), the sphere has the least area. If we consider
soap bubbles of given volume which tend to contract to a minireum
area but which are restricted by certain conditions, then the resulting
surfaces will be not spheres, but surfaces of constant mean curvature, of
which spheres and cireular cylinders are special examples.

For example, we blow a soap bubble between two parallel glass plates
which have previously been wetted by the soap solution. When the
bubble touches one plate, it suddenly assumes the shape of a hemisphere;
as soon as it also touches the other plate, it jumps into the shape of 2
circular cylinder. thus demonstrating the isoperimetric property of the
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circle in a most striking way. The fact that the soap film adjusts itself
vertically to the bounding surface is the key to this experiment. By
blowing soap bubbles between two plates with perpendicular connecting
rods, we can illustrate the problems discussed on pp. 378-9.

‘We can study the behavior of the solution of the isoperimetric problem
by increasing or decreasing the amount of air in the bubble, using a tube
with a fine point. By suckinz out air, however, we do not obtain the
figures of page 378 consisting of cireular arcs tangent to cach other. As
the volume of air included decreases, the angles of the cireular triangle
will (theoretically) not decrease below 120°; we obtain the shapes shown
in Figures 254-5, which again tend to straight segments as in Figure 235
as the area tends to zero. The mathematical reason for the failure of

P

Figs. 254-5. lsoperimetric figures with boundsey restrictions.

soap films to form tangent ares is the fact that as soon as the bubble
separates from the vertiees, the connecting lines must no longer be
counted twice. The corresponding experiments are illustrated by
Figures 256 and 257,

FEzercise: Study the corresponding mathematical problem acircular trizngle
is to be found including a given aren and such that its perimeter plus three seg-
ments joining the vertices to the given points has a minimum Jength.

A cubic frame inside of which we blow a bubble will provide surfaces
of constant mean curvature with a quadratie base, if the bubble bulges
out of the frame.  As we remove air from the bubble by sucking through
a straw, we obtain a sequence of beautiful structures which result in
ihat of Figure 258. The phenomena of stability and transition between
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different states of equilibria are a source of experiments that are very
illuminating from the mathematical point of view. The experiments
illustrate the theory of stationary values, since the transitions can be
made to take place so as to lead through an unstable equilibrium which
is & “stationary state.”

Fro. 256

Fra. 257

For example, the cubical structure of Figure 240 exhibits asymmetry
insofar as & vertical plane in the center conneets the twelve surfaces
issuing from the edges. Hence there must be at least two other positions
of equilibrium, one with a vertical and one with a horizontal central
square. As a matter of fact, by blowing through a fine tube against
the edges of this square, onc can force the structure into a position
where the square reduces to a point, the center of the cube; this position
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of unstable equilibrium will immediately go inte one of the other stable
positions obtained from the original by a rotation through 90°.

A similar experiment can be performed on the soap film that demon-
strates Steiner’s problem for four points forming a square (Figs. 219-20),

If we want to obtain the solutions of such problems as limiting cases
of isoperimetric problems—for example, if we want to obtain Figure 240
from Figure 258—we must suck the air cut of the bubble. Now Figure
258 is completely symmetric, and its Hmit for vanishing content of the
bubble would be a symmetric system of 12 planes meeting at the center.

This can really be observed. But the position obtained as a limit is
not in stable equilibrium; instead, it will change over into one of the
positions of Figure 240. B; g a somewhat more viscous liquid than
that described above the whole phenomenon can be observed very
easily. It exemplifies the fact that even in physical problems the solu-
tion of a problem need not depend continuously on the data; for in the
limiting case for volume zero the solution, given by Figure 240, is not
the limit of the solution, given by Figure 238, for volume ¢ as ¢ tends to
2e10,




CHAPTER VIII
THE CALCULUS

INTRODUCTION

With an absurd oversimplification, the “invention™ of the calculus is
sometimes ascribed to two men, Newton and Leibniz. In reality, the
calculus is the product of a long evolution that was neither initisted
nor terminated by Newton and Leibniz, but in which both played a
decisive part.  Scattered over seventeenth century Europe, for the most
part outside the schools, was a group of spirited scientists who strove
to continue the mathematical work of Galileo and Kepler. By corre-
spondence and travel these men maintained close contact. Two central
preblemns held their attention. First, the problem of tangents: to deter-
mine the tangent lines to a given curve, the fundamental problem of the
differential ealculus. Second, the problem of quadrature: to determine
the area within a given curve, the fundamental problem of the integral
caleulus. Newton’s and Leibniz’ great merit is to have clearly recog-
nized the intimate connection between these two problems. In their hands
the new unified methods became powerful instruments of science, Much
of the success was due to the marvelous symbolic notation invented by
Leibniz.  His achi t is in no way diminished by the fact that it
was linked with hazy and untenable ideas which are apt to perpetuate
a lack of precise understanding in minds that prefer mysticism to clarity.
Newton, by far the greater scientist, appears to have been mainly in-
spired by Barrow (1630-1677), his teacher and predecessor at Cambridge.
Leibniz was more of an outsider. A brilliant lawyer, diplomat, and
philosopher, one of the most active and versatile minds of his century,
he learned the new mathematics in an ineredibly short time from the
physicist Huygens while visiting Paris on a diplomatic mission. Soon
afterwards he published results that contain the nucleus of the modern
caleutus. Newton, whose discoveries had been made much earlier, was
averse to publication. Moreover, although he had originally found
many of the results in his masterpiece, the Principia, by the methods
of the caleulus, he preferred a presentation in the style of classical
geometry, and almost no trace of the calculus appears explicitly in the

398
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Principia. Only later were his papers on the method of “fuxions”
published. Soon his admirers started a bitter feud over priority with
the friends of Leibniz. They accused the latter of plagiarism, although
in an h d with the el of a new theory, nothing
is more natural than simultaneous and independent discevery. The
resulting quarrel over priority in the “mvent)ou of the caleulus set an
unfortunate example for the on ti of !
and claims to intellectual property that is apt to poison the atmosphere
of natural scientific contact.

In the mathematical analysis of the seventeenth and most of the
eighteenth centuries, the Greek ideal of clear and rigorous reasoning
seemed to have been discarded. “Intuition” and “instinct” replaced
resson in many important inst This enly d an itical
belief in the superhuman power of the new methods. It was generally
thought that a clear presentation of the results of the calculus was not
only unnecessary but impossible. Had not the new science been in the
hands of & small group of extremely competent men, serious errors and
even debacle might have resulted. These pioneers were guided by a
strong instinctive feeling that kept them from going far astray. But
when the French Revolution opened the way to an immense extension
of higher [earmng, when increasingly large numbers of men wished to
participate in scientific activity, the critical revision of the new ann!ysls
could no longer be postponed. This challenge was successfully met in
the nineteenth century, and today the calculus can be taught without
a trace of mystery and with complete rigor. There is no longer any
reason why this basic instrument of the sciences should not be under-
stood by every educated person.

This chapter is intended to serve as an elementary introduction in

which the hasis is on und ding the basic pts rather than
on formal ipulation. Intuitive L will be used through
but always in a manner istent with precise ts and clear

procedure.

§1. THE INTEGRAL

1. Area as a Limit
Tn order to calculate the area of a plane figure we choose as the unat
of area a square whose sides are of unit length. If the unit of lergth is
the inch, the corresponding unit of area will be the square inch; i.e. the
square whose sides are of length one inch.  On the basis of this definition
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it s very easy to caloulate the area of a rectangle. If p and ¢ are the
lengths of two adjacent sides measured in terms of the unit of length,
then the ares of the rectangle is pg square units, or, briefly, the area is
equal to the product pg. This is true for arbitrary p and g, rational
or not. For rational p and ¢ we obtain this result by writir., p = m/n,
g = m'/n, with integers m, n, m’, n'. Then we find the common
measure 1/N = 1/nn’ of the two edges, so that p = mn'.1/N, ¢ =
nn'-1/N. Finally, we subdivide the rectangle into small squares of
side 1/N and area 1/N°. The number of such squares is nm’.mn’ and
the totel area is nm'mn'-1/N* = nm'mn’/r’n" = m/n.m//n' = pq.
If p and g are irrational, the same result is obtained by first replacing p
and ¢ by approximate rational numbers p, and ¢. respectively, and then
letting p, and ¢, tend to p and ¢.

It is geometrically obvious that the area of a triangle is equal to half
the area of a rectangle with the same base b and altitude k; hence the
area of & triangle is given by the familiar expression 4bh. Any domain
in the plane bounded by one or more polygonal lines can be decomposed
into triangles; its area, therefore, can be obtained as the sum of the areas
of these triangles.

The need for a more general method of computing areas arises when
we ask for the area of a figure bounded, not by polygons, but by curves.
How shall we determine, for example, the area of a cireular disk or of a
segment of & parabola? This crucial question, which is at the base of
the integral calculus, was treated as early as the third century B.C. by
Arch medes, who calculated such areas by a process of “exhaustion.”
With Archimedes and the great mathematicians until the time of Guss,
we may take the “‘naive” attitude that curvilinear areas are intuitively
given entities, and that the question is not to define, but to compute
them (see, however, the discussion on p. 464). We inscribe in the
domain an approximating domain with a polygonal boundary and a
well defined area. By choosing another polygonal domain which in-
cludes the former we obtain a better approximation to the given domain.
Proceeding in this way, we can gradually “exhaust” the whole area, and
we obtain the area of the given domain as the limit of the areas of a
properly chosen sequence of inscribed polygonal domains with an in-
creasing number of sides. The area of & circle of radius 1 may be com-
puted in this way; its numerical value is denoted by the symbal =.

Archimedes carried out this general scheme for the circle and for the
parabolic segment. During the seventeenth century many more cases
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were successfully treated. In each case, the actual calculation of the
limit was made to depend on an ingenious device specially suited to the
particular problem. One of the main achievements of the calculus
was to replace these special and icted d for the calcul

of areas by a general and powerful method.

2. The Integral

The first basic concept of the caleulus is that of integral. In this
article we shall understand the integral as an expression of the area
under a curve by means of a limit. If a positive continuous function
y = f(z) is given, e.g. ¥y = 2* ory = 1 + cos z, then we consider the
domain bounded below by the segment on the z-axis from a coérdinate
a to a greater codrdinate b, on the sides by the perpendiculars to the
z-axis at these points, and above by the curve y = f(z). Our aim is to
calculate the area A of this domain.

0 ] ]

Fix. 250. The integral & a5 a.

Since such & domain cannot, in general, be decomposed into rectangles
or triangles, no immediate expression of this area A is available for
explicit caleulation. But we can find an approximate value for 4, and
thus represent A as a limit, in the following way: We subdivide the
interval from z = a to z = b into a number of small subintervals, erect
perpendiculars at each point of subdivision, and replace each strip of
the domain under the curve by a rectangle whose height is chosen
somewhere between the greatest and the least height of the curve in that
strip. The sum S of the areas of these rectangles gives an approximate
value for the actual area A under the curve. The accuracy of this ap-
proximation will be better the larger the number of rectangles and the
smaller the width of each individual rectangle. Thus we can charac-
terize the exact area as a limit: If we form a sequence,
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) iy 82, 8pyven,
of rectangular approximations to the area under the curve in such a
manner that the width of the widest rectangle in S. tends to 0 as n
then the (1) app hes the limit 4,
2) Sy 4,
and this limit 4, the area under the curve, is independent of the particu-
lar way in which the sequence (1) is chosen, so long as the widths of the
approximating rectangles tend to zero. (For example, S, can arise
from S,.; by adding one or more new points of subdivision to those
defining Sax, or the choice of points of subdivision for S, can be en-
tirely independent of the choice for S,.i.) The area 4 of the domain,
expressed by this limiting process, we call by definition the integral of
the function f(x) from a tob. 'With a special symbol, the “integral sign,”
it is written

o) a=] ) do.

The symbol f, the “dz,” and the name “integral” were introduced
by Leibniz in order to suggest the way in which the limit is obtained.
To explain this notation we shall repeat in more detail the process of
approximation to the area A. At the same time the analytic formula-
tion of the limiting process will make it possible to discard the restrictive
assumptions f(z) > 0 and b > q, and finally to eliminate the prior in-
tuitive concept of area as the basis of our definition of integral (the latter
will be done in the supplement, §1).

Let us subdivide the interval from a to b into » small subintervals,
which, for simplicity only, we shall assume to be of equal width,
(b ~ a)/n. We denote the points of subdivision by

b-a

o = @, Ty == @

-—a+2<b~a) rery En

We introduce for the quantity (b — a)/n, the difference between consecu-
tive z-values, the notation Az (read, “delta z),

where the symbol 4 means simply “difference” (it is an “operator”
symbol, and must not be mistaken for a number.) We may choose as
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Fig. 260. Arse approximated by sl rectangles.

the heizht of each approximating rectangle the value of y = f(2) at the
right-hand endpoint of the subinterval. Then the sum of the areas
of these rectangles will be

6] S, = f(z)- 8z + f(xs)- bz + oo A flza)- A2,
which is abbreviated as
® S = 3 fla)-a.

=

Here the symbol Y, (read “sigma from j = 1 to #””) means the sum of
1wl

all the expressions obtained by letting j assume in turn the values
1,2,3, ., n

The use of the symbol 3, to express in concise form the result of a summation
may be illustrated by the following examples:

.
2+3+4+~--+10=?:jv

1+2+3+~--+n=;':'
=

ag +agt + o0 bagn = ) agh,

at @b d) a2 b oo+ o) = 3 (ot ).
~

Now we form a of such appr tions 8, in which 7 in
indefinitely, so that the number of terms in each swn (5) in-
creases, while each single term f{x;) Az approaches 0 because of the factor
Az = (b — a)/n. Asn increases, this sum tends to the area 4,
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®) 4 = lim 35 flapoz = [ e

Leibniz symbolized this passage to the limit from the approximating
sum S, to 4 by replacing the summation sign 3, by [ and the dif-
ference symbol A by the symbol d. (The summation symbol 2 was
usually written S in Leibniz’ time, and the symbol [ is merely a stylized
8.) While Leibniz' symbolism is very suggestive of the manner in
which the integral is obtained as the limit of a finite sum, one must be
careful not to attach too much significance to what is, after all, a pure
convention as to how the limit shall be denoted. In the early days of
the caleulus, when the concept of limit was not clearly understood and
certainly not always kept in mind, one explained the meaning of the
integral by saying that “the finite difference Az is replaced by the in-
finitely small quantity dr, and the integral itself is the sum of infinitely
many infinitely small quantities f(z) dz.” Although the infinitely
small has a certain attraction for speculative souls, it has no place in
modern mathematics. No useful purpose is served by surrounding the
clear notion of the integral with a fog of meaningless phrases. But
even Leibniz was sometimes carried away by the suggestive power of his
symbols; they work as if they denote a sum of “infinitely small” quanti-
ties with which one can nevertheless operate to & certain extent as with
ordinary quantities. In fact, the word integral was coined to indi-
cate that the whole or integral area A is composed of the “infinitesi-
mal” parts f(z) dz. At any rate, it was almost a hundred years after
Newton and Leibniz before it was clearly recognized that the limit
concept and nothing else is the true basis for the definition of the
integral. By firmly staying on this basis we may avoid all the haze,
all the difficulties, and all the nonsense so disturbing in the early de-
velopment of the calculus.

3. General Remarks on the Integral Concept. General Definition

In our geometrical definition of the integral as an area we assumed
explicitly that f(x) is never negative throughout the interval [a, b] of
integration, i.e. that no portion of the graph Jies below the z-axis, But
in our analytic definition of the integral as the limit of & sequence of
sums S, this assumption is superfluous. We simply take the small
quantities f(z,)- Az, form their sum, and pass to the limit; this procedure
remains perfectly meaningful if some or all of the values f{z,) are nega-
tive. Interpreting this geometrically by means of aress (Fig. 261), we
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Tig. 261, Positive and negative areas.

find the integral of f(z} to be the algebraic sum of the areas bounded by
the graph and the z-axis, where areas lying below the z-axis are counted
as negative and the others positive.

3
1t may happen that in applications we are led to inmgmis[ flx)ydz

where b is less than a, so that (b — a)/n = Az is 2 negative number.
In our analytic definition we have f(z,)- Az negative if f(z;) is positive
and Ar negative, etc. In other words, the value of the integral will be
the negative of the value of the integral from b to a. Thus we have
the simple rule

fff/(:)d: = —'/:f(x) .

We must emphasize that the value of the integral remains the same
even if we do not restrict ourselves to equidistant points x; of sub-
division, or, what is the same, to equal z-differences Az = z;4 — %;.
We may choose the z; in other ways, so that the differences
AZ; = Z;; — %; are not equal (and must accordingly be distinguished
by subscripts). Even then the sums

8n = fla)Azo + fr2)dzs + « oo+ f(20)ATun
and also the sums
84 = flr)az + fE)an + « oo + (@01} dTua
.
will tend to the same limit, the value of the imep;mlf f(z)dz, if only

care is taken that with increasing n all the differences Az, = ;.4 — z;
tend to zero in such a way that the largest such difference for a given
value of n approaches zero as n increases.

Accordingly, the final definition of the infegrel is given by

(6a) f ) de = tim 2‘ f()az;
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as n— », In this limit v; may denote any point of the interval
%y € v; € 2341, and the only restriction for the subdivision is that the
longest interval Az; = ;1 — x; must tend to zero as » increases.

b
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Fig. 262 Arbiteary subdivision in the geners] definition of integral.

The existence of the limit (6a) does not need a proof if we take for
granted the concept of the area under a curve and the possibility of
approximating this area by sums of rectangles. However, as will ap-
pear in a later discussion (p. 464), a closer analysis shows that it is de-
sirable and even necessary for a logically complete presentation of the
notion of integral to prave the existence of the limit for any continuous
function f(z) without reference to a prior geometrical concept of area,

4. E les of I i ion of x°

Until now our discussion of the integral has been merely theoretical.
The erucial question is whether the general pattern of forming a sum S,
and then passing to the limit actually leads to tangible results in con-
erete cases. Of course, this will require some additional reasoning
adapted to the specific function f(z) for which the integral is to be found.
When Archimedes two: thousand years ago found the area of the para-
bolic segment, he performed what we now call the integration of the
function f(z) = z° by a very ingenious device; in the seventeenth century
the forerunners of the modern calculus succeeded in solving problems of
integration for simple functions such as z", again by special devices.
Only after much experience with specific cases was a general approach
to the problem of integration found in the systematic methods of the
caleulus, and thus the seope of solvsble individual problems was greatly
widened. 1In the present article we shall discuss a few of the instructive
special problers belonging to the “pre-calculus” stage, for nothing can
better illustrate integration as a limiting process.

a) We start with & quite trivial example. If y = f(z) is a constant,
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b
for example f(z) = 2, then obviously the integral f 2dzx, understood as
a

an ares, is 2(b — a), since the area of a rectangle is equal to base times
altitude. We shall compare this result with the definition of the in-
tegral (6) as a limit: If we substitute in (5) f(z;) = 2 for all values of
7, we find that

8, = ?:/<x,)Ax = ?:_“{zu = 272:;&0 = 2(b — a)
for every n, since
L+ )+
FEn—za) =T B =b -
b) Almost as simple is the integration of f{x) = z. Here fxdz is
the aree of a trapezoid (Fig. 263), and this, by elementary geometry, is
®—a) h«;J = bif—é.

This result again agrees with the definition (6) of the integral, as is seen
by an actual passage to the limit without making use of the geometrical
figure: If we substitute f(z) = z in (5), then the sum S, becomes
8, = 2 mAx = 2, (a + jAr)az
= fixt

= (na + Az + 25z + 3A7 + ... + nAz)Az

= napz + (AL + 2+ 3+ ... +n).
Using the formula (1) on page 12- for the arithmetical series
1+ 2+ 3+ ...+ n we have

8, = nadr + M;»—l) {Az)’
. b~—a .. .

Since Ax= " this is equal to

Su=alb ~ @) + 36~ @ + o - )
If now we let n tend to infinity, the last term tends to zero, and we
obtain

lim 8 = szd:c = alb — @) + 30 - o) = §b — o),
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in conformity with the geometrical interpretation of the integral as an
&area.

¢) Less trivial is the integration of the function f(z) = z®. Archi-
medes used geometrical methods to solve the equivalent problem of
finding the area of & segment of the parabola y = z*. We shall proceed
analytically on the basis of the definition (6a). To simplify the formal
calculation we choose 0 as the “lower limit” a of the integral; then

%)

K 0
Fig. 268. Are .ol | trapesoid. Flig. 284. Area under & parabola.
Az = b/n. Since z; = j.Az and flx;} = 7(4Az)’, we obtain for S, the
expression
s

8a = 2 fjA)AZ = [1.(Az)! + 2 (82) + .« + K(Ax)] Az

=
=+ 2+ -+ ) as)
Now we can actually caleulate the limit. Using the formula

P g = "(!Ltl)é%"jrl)

established on page 14, and making the substitution 4z = b/n, we
obtain
3 3
g, =Mrt D+ U (1 + I,) 2+ l)
[ w6 7, n
This preliminary transformation makes the passage to the limit an
easy madtter, since 1/n tends to zero as n increases indefinitely. Thus

3 3
we obtain as limit simply% 1.2 = % , and thereby the result

.
f 2 ds = b/,
A
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Applying this result to the area from 0 to @ we have
“
[ade = a3
4
and by subtraction of the areas,

f:z’dx=

Ezercise: Prove in the same way, using formula (5} on page 15 that

b B at
jz‘dzx 2N

4

By developing general formulas for the sum 1¥ + 2% + -+ + n# of the kth
powers of the integers from } to n, one can abtain the result

5 P~
o f sap = T2 kany positive integer.

* lustead of proceeding in this way, we ¢an obtain more simply an even more
general result by \mlmng our previous remark Lhat we may caleulate the integral
by meana of points of division. We shall establish formuia
{7) not only for any positive integer & but for an arbitrary positive or negative
rational number

k= u/v,

where w is & positive integer and v in & positive or negative intoger. Only the
value k = —1, for which formula (7) becomes meaningless, is excluded. We
shall also suppose that § < a < b.

"Po abtain the integra! formula (7), we form S, by choosing the points of sub-
/b

division zo = @, 51, @1, -+ , ¥n = b in geometrical progression. We sct =q

3
s0 thath/a = gn and define 2o = a, 7y = ag, %, = ag’, ..., Zn = ag* By this
device, as we shall sec, the pass.ge to the limit beoomes very easy. For the
“rectangle sum” Sa we find, since f(z;) = 2} = a¥g® and Az; = Zi — 3 =

ag’*t - ag,

8. = atag ~ o) + a*g(ag? — og) + atg™(ag® — ogh)
4 oo+ g iagn — o),
Bince esch term contains the factor a*lag ~ @), we may write
Sp = attig — DL g gIED o gDy,

Substituting ¢ for ¢+ we see that the expression in braces is the geometricaiseries
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14 £ 54 o + 1, whose sum, as shown on page 13, is But i =

t
t—1"
NI,
T (—) =2 Henee
a) ~a

® Sam (g~ 1) {bh

where

4
[
g—1
Thus far n has been & fixed number. Now we shall let n increase, and determine

the limit of N. Asn increases, the nth root VE = qwill tend to ! (see p. 323),

a
and therefore both numerator and denominator of N will tend to zero, which
makes caution necessary. Suppose first that k is a positive integer; then
the division by ¢ — 1 can be carried out, and we obtain (see p. 13) N
G4+ i+ o+ g+ L 1f now n increases, g tends to 1 and hence g, g%, -+ , ¢*
will also tend to I, so that N approaches k -+ 1. But this shows that S, tends to
P gt

W
“—, a8 was to be proved.

Ezercise: Prove that for any rational & # ~1 the same limit formula, N -»
k- 1, and therofore the result (7), remains valid. First give the proof, according
40 our model, for negative integers k. Then, if k = wu/v, write ¢/¢ = s and

If n increases, both s and ¢ tend to 1, and therefore the two quotients on the

L
v

right hand side tend to « + v and v respectively, which yields again

for the limit of .

In §5 we shall see how this lengthy and somewhat artificial discussion may be
replaced by the simpler <nd more powerful methads of the calculus,

Ewercises: 1) Check the praceding integration of z* for the cases & = §, —3,
2, ~2,3, ~3.

2) Find the values of the integruls:

" ﬂ s " .
.)f ds. b)f 2de. o f sz, a)f 2ds. e)f cdz.
L L . L .

3) Find the values of the integrals:
- s " -
8) [ z#*dz. b) [ Peos zdz. ¢ [ 2 cos? 1 gind zdz, d) [ tan xdz
. N N

(Hint: Consider the graphs of the functions under the integral sign, take into
aocount theis symmetry with respect to z = 0, and interpret the integrals as nreas.)

*4) Integrate sin 2 and cos z from 0 to b by substituting Az = & and using the
formulas of pege 488.
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5) Integrate f(z) = z and f(z) = * from 0 to b by subdividing into equal parts
and by using in (6a) the values vy = }(z; + 2532).

*6) Using the result (7) and the definition of the integral with equal values
of Az prove the limiting relation:

, .

(Hing: Set.> = Ax and show that the limit is equal to f 2dx.)
0

*7) Prove for n - =

1 1 YN orss
+,"+\/2+nfm+\/" ) 22 - 1).

1
VI\V1 Fn
(Hint: Write this sum so that its limit appears as an integral.)
8) Caleulate the area of a parabolic segment bounded by an arc P,Ps and the
chord P3P of a parabola y = az* in terms of the codrdinates 2, and 2, of the two
points.

5. Rules for the “Integral Calcuius”

An important step in the development of the caleulus was taken when
certain general rules were formulated by means of which more involved
problems could be reduced to simpler ones and thereby be solved by an
almost mechanical procedure. This algorithmic feature is particularly
emphasized by Leibniz’ notation. Still, too much coneentration on the
mechanics of problem solving can degrade the teaching of the caleulus
into an empty drill.

Some simple rules for integrals follow at once either from the defini~
tion (6) or from the geometrical interpretation of integrals as areas.

The inlegral of the sum of two functions is equal to the sum of the integrals
of the two functions. T'he integral of a constant ¢ times a function {(x)
s ¢ times the integral of £(x). These two rules combined are expressed
in the formula

. .
® fb ) + dgtaildo = o [ f@ dz +a [ o(o) dn.

The proof follows immediately from the definition of the integral as the
limit of the finite sum (5), since the corresponding formula for a sum
85 is obviously true. The rule extends immediately to sums of more
than two functions.

As an example of the use of this rule we consider a polynomial,

f@) = an+ aw + a2’ + -+ + az”,
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where the coefficients as, ay, -+ -, a, are constants. To form the in-
tegral of f{z) from a to b, we proceed termwise, according to the rule.
Using formula (7) we find
L]
Lt ta

.
[r@ae=at -0 +al5%+ 4ol oe

Another rule, obvious both from the analytic definition and the geometric
interpretation, is given by the formula:

10 [ra+ [rwa= [ 1w

Furthermore, it is clear that the integral becomes zero if b is equal to a.
The rule of page 405,

ay [twa= [ r0a,

is in agreement with the last two rules, since it corresponds to (10) for
c=a

Sometimes it is convenient to use the fact that the value of the in-
tegral in no way depends upon the particular name z chosen for the
independent variable in f(z); for example

[@ae = [ orau= [ 0 a et

For a mere change in the name of the coordinates in the system to which
the graph of the function refers does not alter the ares under the curve.
The same remark applies even if we make certain changes in the co-
ordinate system itself. For example, let us shift the origin to the right
by one unit from O to ¢, as in Figure 265, so that z is replaced by a

¥) AV

i
i
l
3
|
(
|
|
[}

s —1

o B
|
I Sy

Fig, 265 Shiftiox of v-asis.
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new coiirdinate z’ such that 2 = 1 4 2/, A curve with the equat.mn
y = f(z) will have in the new coérdi system the

y=f1+2) (Egy=1/z=1/(14+2)) Agivenarea 4 under this
curve, say between z = 1 and 2 = b, is, in the new codrdinate system,
the area under the arch between 2’ = Qand 2’ = b — 1. Thus we have

b b1
[1@a= [ s0+2)aw,
\ \

or, changing the name z’ to u,

b b=-1
(12) /1 fl@ydz = l J 4+ ) du.
For example,
sy sty
(12s) ./;5'“’.{ itu
and for the function f(z) = z*,
b a-t
" &
(125) [#a= [ a+ura
Similarly,
b b1
(120) [#a=[ a+ u)' du (& = 0).
4] 1
Since the left side of {12¢) is equal to k i we obtain
bt pEH
* =
(29 [ avwrans o

Exercises: 1) Caleulate the integral of 1 4 2 4 22 + <+ 42" from 0 to b,
2) For n > 0 prove that the integral of (1 4 2)* from —1 to z is equal to
1+ 2
(n+1)
3) Show that the integral from 0 to 1 of 2" gin z is smaller than 1/(n + 1)«
(Hint: The latter value is the integral of z#).
4) Prove directly and by use of the binomial theorem that the integral from
QG2 @42
P resaT

—1 to z of ————

Finally we mention two important rules which have the form of
inequalities. These rules permit rough, but useful, appraisals of the
values of integrals.
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We suppose that b > @ and that the values of f(z) in the interval
nowhere exceed those of another function g(z). Then we have

. N
) [0 053 [ o) as,

as is immediately clear either from Figure 266 or from the analytic defini-

TFig, 260. Comparizon of integrals.
tion of the integral. In particular, if g(z) M is a conatant not ex-
ceeded by the values of f(z), we have f glz)ds = f Mds = M(b ~ a).
It follows that
(14) /d'"f(z) dz < M — a).

If f(z) is not negative, then f(z) = |f(z)|. I f(x) < 0, then
| f@@) | > f(z). Hence, setting g(x) = | f(z) ] in (13), we obtain the
useful formula

a® [iwas|
Since | ~f{z) | = | f(z) |, we also have

<[ 1@ <[ 15600,
which, together with (15), yields the somewhat stronger inequality
a6 [ 10z [ 11 1=

(2) | dz.

§2. THE DERIVATIVE
1. The Derivative as a Slope

While the concept of integral has its roots in antiquity, the other
basic concept of the calculus, the derivative, was formulated only in
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the seventeenth century by Fermat and others. It was the discovery
by Newton and Leibniz of the organic interrelation between these two
seemingly quite diverse pts that i an Heled
development of mathematical science,

Fermat was interested in determining the maxima and minima of a
function y = f(z). Inagraph of the function, a maximum corresponds
to a summit higher than all other neighboring points, while a minimum
corresponds to the bottom of a valley lower than all neighboring points.
In Figure 191 on page 342 the point B is a maximum and the point C a
minimum. To characterize the points of maximum and minimum
it is natural to use the notion of tangent of a curve. We assume that
the graph has no sharp corners or other singularities, and that at every
point it possesses & definite direction given by & tangent line. At
maximum or minimum points the tangent of the graph y = f(z) must
be parallel to the z-axis, since otherwise the curve would be rising or
falling at these points. This remark suggests the idea of considering
quite generally, at any point P of the graph y = f(z), the direction of
the tangent to the curve.

To characterize the direction of a straight line in the z, y-plane it
is customary to give its slope, which is the trigonometrical tangent of
the angle o from the direction of the positive z-axis to the line. If P
is any point of the line L, we proceed to the right to a point B and then

up or down to the point @ on the line; then slope of L = tan a = %IQf,

The length PR is taken as positive, while R is taken as positive or nega-
tive according as the direction from R to Q is up or down, so that the
slope gives the rise or fall per unit length along the horizontal when we
proceed along the line from left to right. In Figure 267 the slope of
the first line is 24, while the slope of the second line is 1.

y

Fig. 267, Slopes of lines,
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By the slope of a curve at a point P we mean the slope of the tangent
to the curve at P. As long as we accept the tangent of a curve as an
intuitively given mathematical concept there remsins only the problem
of finding a procedure for calculating the slope. For the moment we shall
accept this point of view, postponing to the supplement a closer analysis
of the problems involved.

2. The Derivative as a Limit
The slope of a curve y = f(z) at the point P (x, 4} cannot be calculated
by referring to the curve at the point P alone. Instead, one must
resort to a limiting proecess much like that involved in the caleulation
of the area under a curve. This limiting process is the basis of the
differential caleulus. We consider on the curve another point P,
near P, with céordinates z;, y. The straight line joining P to Py

¥

Fig. 368. The derivative 58 5 limit.

we call ¢ ; it is a secant of the curve, which approximates to the tan-
gent at P when Py is near P. The angle from the z-axis to ¢; we call & .
Now if we let z; approach z, then Py will move along the curve toward
P, and the secant ; will approach as a limiting position the tangent {
to the curve at P. If « denotes the angle from the z-axis to ¢, then, as
2 — ot
Hh—y, P,- P, 1, and a — a.

t Our notation here is slightly different from that in Chapter VI inasmuch
as there we have z - z;, the latter value being fixed. No confusion should
arise from thia interchenge of symbols.
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The tangent is the limit of the secant, and the slope of the tangent is the
bmit of the slope of the secant.
Although we have no explicit expression for the slope of the tangent
t itself, the slope of the secant ¢ is given by the formula
n-y_fa) - @

slopecitl=—;—_z= o=z !

or, if we again denote the operation of forming a difference by the

symbal 4,

-4y 4@
Az~ Az

The slope of the secant # is a “diff ient”—the diff Ay

of the function values, divided by the dxﬁ‘erence Az of the values of the

independent variable. Moreover,

slope of {;

slope of ¢ = limit of slope of £; = lim

@) — flz) _ ]imﬂl,

n—z Az
where the limits are evaluated as 2y — z,ie. as &x = 2, — 2> 0. The
slope of the tangent t to the curve is the limit of the difference quotient
Ay/dx a3 Ax = xy — X approaches zero.

The original function f(z) gave the height of the curve y = f(z) for
the value 2. We may now consider the slope of the curve for a variable
point P with the codrdinates z and y [= f(z)] as a new function of z
which we denote by f'(z) and call the derivative of the function f(z).
The limiting process by which it is obtained is called differentiation of
f(z). This process is an operation which attaches to a given function
1(x) another function f'(z) according to s definite rule, just as the func-
tion f(z) isdefined by a rule which attaches to any value of the variable
z the value f(z):

f{x) = height of curve y = f(z) at the point z,

f'(z) = slope of curve y = f(z) at the point z.
The word “differentiation” comes from the fact that f'(x) is the limit of
the difference f(z\) — f(z) divided hy the difference 7, — z:
(1) @) = “mf(:n) [(z) O

Another notation, often useful, is

J'(@) = Df(),
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the “D" simply abbreviating “derivative of”’; still different is Leibniz’
notation for the derivative of y = f(z),

dy df(z)

& T &
which we shall discuss in §4 and which indicates the character of the
derivative as limit of the difference quotient Ay/Az or Af(z)/Az.

If we describe the curve y = f(x) in the direction of increasing values
of z, then a positive derivative, f/(z) > 0, at a point means ascending curve
(increasing values of y), a negative derivative, f'(x) < 0, means descending
curve, while f'(z) = 0 means a horizontal direction of the curve for the
value 2. At a maximum or minimum, the slope must be zero (Fig. 269).

Fig. 269, The si... of the derivative,

Hence, by solving the equation

f(zy =0
for z we may find the positions of the maxima and minima, as was
first done by Fermat,

3. Examples

The considerations leading to the definition (1) might seem to be
without practical value. One problem has been replaced by another:
instead of being asked to find the slope of the tangent to a curve y = f(x)
at & point, we are asked to evaluate a limit, (1), which at first sight
appears equally difficult. But as soon as we leave the domain of gen-
eralities and consider specific funetions f(z) we shall obtain tangible
resnlts.

The simplest such function is f(z} = ¢, where ¢ is a constant. The
graph of the function y = f(z) = ¢ is a horizontal line coinciding with
all its tangents, und it is obvious that

Fla) =0
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for all values of z. This also follows from the definition (1), for

sy _f@)
Az o

so that, trivially,

=0 as z;-z.

/@)~ 1)
T -z

Next we consider the simple function y = f(z) = z, whose graph is
s straight line through the origin bisecting the first quadrant. Geomet-
rically it is clear that

Sz} =

for all values of z, and the analytic definition (1) again yields

s0 that
fim f—(i’z *Lr) =1

T -z

as I -> 2.

The simplest non-trivial example is the differentiation of the function
y = fl2) = o,
which amounts to finding the slope of a parabola. This is the simplest
case that teaches us how to carry out the passage to the limit when the
result is not obvious from the outset. We have
@) - f@ _ai-2

Ax T Tm—z m-—z
If we should try to pass to the Limit directly in numerator and de-
nowminator we should obtam the mexmmgless expresslon 0/0. But we can
avoid this impasse by g the d q and 1l
before passing to the limit, the dxsturbmg factor zy — . (In evaluating
the limit of the difference quotient we consider only values z, # z, so
that this is permissible; see p. 307.) Thus we obtain the expression:

N C)IE
T =

Now, after the cancellation, there is no longer any difficulty with the
limit as z, — 2. The limit is obtained “by substitution’; for the new
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form z; + z of the d tient is 4 and the limit of
& continuous function as , —+x is simply the value of the function for
Z; = z, in our case z + z = 2z, so that

fiz) =2z for f(z) =2
In & similar way we can prove that for f(z) = &' we have f'(z) = 32"
For the difference quotient,
fo) —f&) _ -2

Az n—z n—zx'

can be simplified by the formuls 2} ~ 2* = (2 — 2){(z} + =iz + ©°);
the denominator Az = z; — z cancels out, and we obtain the continuous
expression

Ay =af 4 2z + 2

Now if we let z; app h z, this ion simply
2* 4 & + 2%, and we obtain as limit f'(z) = 3z°
In general, for

f(z) =
where 7 is any positive integer, we obtain the derivative
Sy =
Ezercise: Prove this result. (Use the algebraic formula
o (- ) A 2 4 T e b a4 2

As a further example of simple devices that permit explicit determina-
tion of the derivative we consider the funetion

1
y=f@)=_.
We have
v _mey (L 1) 1 -z 1
Az X o xf n— nr Hn -

Again we may cancel, and we find 2—: = —;Lx, which is continuous at
1

z; = z; hence we have in the limit

1

rE@=-%
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Of course, neither the derivative nor the funection itself is defined for
z = 0.

Esercites: Prove in @ sivilar manner that for 1) = 5, 7te) =~ for

) = ’—,f’(z) = ——gifor fz) = (1 + )% f1@) = n(l + o)1,

z..m

We shall now carry out the differentiation of

y = f@@) = vz
For the difference quotient we obtain
~YE-Vz
11 -z 2 -z

By the formula 2 — z = (/7 — v/Z){+/%; + 4/Z) we can cancel
a factor and get the continuous expression

wn-y 1
w2 n+ Az
Passing to the limit yields
fz) = \/~-
Exercises: Prove that for f(z) = ~=, [z} = ~ > for “m) = /2,

2(v/2)

z) = vT/':-,fm' 1@ = V=B, o) = for f(z) = V7, f'(2) =
—1_‘.
eyt

4. Derivatives of Tri Funeti

We now treat the very important question of the differentiation of
trigonometrical functions. Here radian measure of angles will be used
exclusively.

To differentiate the function y = f(z) = sin z we set 7, — z = h,
80 that 2, = z + h and f(z,) = sin z; = sin (z 4+ &). By the trigono-
metrical formula for sin (4 + B),

f(z) = sin (z + k) = sin z cos b + cos z sin k.
Hence

fe) —f@) _sinc+h) —sinz
A

(2) n—z
(sm h) . (cosh ——l\
= €08 % +sinz —5
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If now we let 2. tend to x, then % tends to 0, sin & to 0, and cos & to 1.
Moreover, by the results of page 308,

. sink
llmT =1

and

Hence the right side of (2) approaches cos z, giving the result:
The function f(x) = sin x has the derivative {'(x) = cos x, or briefly,
Dsinz = cosz.
Egzercise: Prave that D cos x = ~sin z.
. N N sin z
To differentiate the function f(z) = tan z, we write tan £ = sz’
and obtain
fo B =g _(inth snz))
h cos(z+ ') cosx/h
_ sin (@ + ) cosz — cos (& + h)sinz 1
h cos {(z + h) cosx

sinh 1

h cos £+ h)cosz’
{The last equality follows from the formula sin (4 — B) = sin 4 cos B —
cos 4 sin B, with 4 = x 4 hand B = L) I now we let h approach

zero, - b —ll approaches 1, cos (x -+ k) approaches cos z, and we infer:

The derivative of the function {(x) = tan x 4s '(x) = col{;‘ or
1
Dtang = o .
CO8* T
Ezercise: Prove that D cot z = ~ —a
et

*5. Differentiation and Continuity
The differentiability of a function implies its continuity. For, if the
Limit of Ay/Az exists as Az tends to zero, then it is easy to see that the
change Ay of the function f(z) must become arbitrarily small as the
difference Az ténds to zero. Hence whenever we can differentiate a
function, its continuity is automatieally assured; we shall therefore dis-
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pense with explicitly mentioning or proving the centinuity of the differ-
entiable functions oceurring in this chapter unless there is a particular

reason for it.

6. Derivative and Velocity. Second Derivative and Acceleration

The ding di ion of the derivative was carried out in connec-
tion Mth the geomebncal concept of the graph of a funetion, But the
significance of the derivative concept is by no means limited to the
problem of finding the slope of the tangent to a curve. Even more im-
portant in the natural sciences is the problem of calculating the rate of
change of some quantity f(t) which varies with the time ¢, It was from
this angle that Newton made his approach to the differential caleulus.
Newton wished in particular to analyze the phenomenon of velocity,
where the time and the position of a moving particle are considered as
the variable elements, or, as Newton expressed it, as the “Ruent
quantities.”

If a particle moves along » straight line, the z-axis, its motion is
completely described by giving the position z at any time £ as a function
z = f(t). A “uniform motion” with constant velocity b along the z-axis
is defined by a linear function z = a + bt, where a is the cosrdinate
of the particle at the time ¢ = 0.

In a plane the motion of a particle is described by two functions,

z=ft),  y=gW).

characterizing the two codrdinates as functions of the time. In par-
ticular, a uniform motion corresponds to a pair of linear functions,

z=a-+ b, y=c+d,

where b and d are the two “components™ of the constant, velacity, and
a and ¢ the codrdinates of the particle at the moment ¢ = 0; the path of
the particle is a straight line with the equation (z — a)d — (y — ¢)b = 0,
obtained by eliminating the time ¢ from the two relations above.

If & particle moves in the vertieal z, y-plane urder the influence of
gravity alone, then, as shown in elementary physics, the motion is de-
seribed by two equations,

T=a+bt, y=c-+dt— gt

where a, b, ¢, d are constants depending on the initial state of the particle
and g the acceleration due to gravity, approximately equal to 32 if time
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is measured in seconds and distance in feet. The trajectory of the
particle, obtained by eliminating ¢ from the two equations, is now a
parabola,

ll-c+~(::—-a)-—§0(z_a)

if b ## 0; otherwise it is & part of the vertical axis.

If a particle is confined to move along a given curve in the plane
(like a train along a track), then its motion may be described by giving
the arc length s, measured along the curve from » fixed initial point Py
to the position P of the particle at the time ¢, as a function of ¢; s = f(6),
For example, on the unit cirele 2° + 3* = 1 the function s = ct describes
a uniform rotation with the velocity ¢ along the circle.

Ezercisea: *Draw the trajectories of the plane motion described by
1) z=gint,y=cosl. 2) z=sinl, y=sindt. 3)z=sin, y=2sin3t
4) In the parsholic motion described above, suppose the particle at the origin
fort = 0, and b > 0, d > 0. Find the codrdinates of the highest point of the
trajectory. Find the time ¢ and the value of z for the second intersection of the
trajectory with the z-axis.

Newton’s first aim was to determine the veloeity of a non-uniform
motion. For simplicity let us consider the motion of a particle along a
straight line given by a function z = f(¢). If the motion were uniform,
with constant velocity, then the velocity could be found by taking two
values ¢ and & of the time, with corresponding values = = f(t) and

= f(t) of the position, and forming the quotient

- distance 2, — z f(tn) - f(t)
v = velocity = “Hme = ot = H=t
For example, if ¢ is measured in hours and z in miles, then, for, — ¢ =1,
zy — z will be the number of miles covered in 1 hour and v will be the
velocity in miles per hour. The statement that the velocity of the
motion is constant simply means that the difference quotient

(t) — @&

)] =

is the same for all values of £ and &, . But when the motion is not uni-
form, as in the case of a freely falling body whose velocity increases as
it falls, then the quotient (3) does not give the velocity atf the instant 1,
but merely the average velocity during the time interval from ¢ to & .
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To obtain the velocity at the exact instant ¢ we must take the limit of
the average velocity as # approaches t. Thus we define with Newton
) velocity at the nstant ¢ = im {4 =70 — 7).

In other words, the velocity is the derivative of the distance cosrdinate
with respect to the time, or the “instantaneous rate of change” of the
distance with respect to the time (as distinguished from the average rate
of change given by (3)).

"The rate of change of the velocity itself is called the acceleration. Itis
simply the derivative of the derivative, usually denoted by f”(8), and
called the second derivative of f(t).

Tt was observed by Galileo that for a freely falling body the vertical
distance z through which the body falls during the time ¢ is given by the
formula

®) @ = f(t) = }gt’,

where ¢ is the gravitational constant. It follows by differentiating (5)
that the veloeity. v of the body at the time t is given by

® o= ) = gt
and the acceleration « by
a = f(t) =g,
which is constant.
Suppose it is required to find the velocity of the body 2 seconds after it
has been released. The average velocity during the time interval from
= 2tot=211is

2 2
%”(2721) ;g(2) 16( A0 _ 65.6 (feet per second).

But substituting ¢ = 2 in (6) we find the instantaneous velocity at the
end of two seconds to bev = 64.

Ezercise: What is the average velocity of the body during the time interval
from ¢ = 2 tot = 2017 from £ = 2 to ¢ = 2.0017

For motion in the plane the-two derivatives f'(t) and ¢’(?) of the func-
tions z = f() and y = g(¢) define the components of the velocity. For
mation along a fixed curve the velocity will be defined by the derivative
of the funetion s = f(¢), where s is the arc length.
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7. Geometrical Meaning of the Second Derivative

The second derivative is also important in analysis and geometry, for
1"'(x), expressing the rate of change of the slope f'(z) of the curve
y = f(z), gives an indication of the way the curve is bent. If f”(z) is
positive in an interval then the rate of change of f'(z) is positive. A
positive rate of change of & function means that the values of the func-
tion increase as x increases. Therefore f(z) > 0 means that the slope
J'(x) increases as x increases, so that the curve becomes steeper where it
has a positive slope and less steep where it has a negative slope. We
say that the curve is concave upward (Fig. 270).

J@i<o
£1@>0

Fig. 270, Fig. 271,

Similarly, if /() < 0, the curve y = f(z) is concave downward
(Fig. 271).

The parabola y = f(z) = 2’ is concave upward everywhere because
f"(z) = 2 is always positive. The curve y = f(z) = z° is concave
upward for z > 0 and concave downward for z < 0 (Fig. 153) because
f"(z) = 6z, as the reader can easily prove. Incidentally, for z = 0
we have f/(z) = 3z = 0 (but no maximum or minimumt); also
f"(x) = Oforz = 0. This point is called a point of inflection. At such
a point the tangent, in this case the z-axis, crosses the eurve.

If s denotes the arc-length along the curve, and « the slope-angle,
then @ = k(s) will be a function of 5. As we travel along the curve
a = h(s) will change. The rate of change A'(s) is called the curvature
of the curve at the point where the arc lengthis s.  We mention without
proof that the curvature x can be expressed in terms of the first and
second derivatives of the function y = f(z) defining the curv

©= @) /(LA (f ).

8. Maxima and Minima

We can find the maxima and minima of a given function f(z) by first
forming f’(z), then finding the values for which this derivative vanishes,
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and finally investigating which of these values furnish maxima and
which minima. The latter question can be decided if we form the second
derivative, f(z), whose sign indicates the convex or concave shape of
the graph and whose vanishing usually indicates a point of inflection
at which no exttemum oceurs. By observing the signs of f'(z) and f'(z)
we can not only determine the extrema but also find the shape of the
graph of the function. This method gives us the values of 2 for which
extrema oceur; to find the corresponding values of y = f(x) itself we
have to substitute these values of = in f(x).

As an example we eonsider the polynomial

flz) = 22° — 92* 4 122 + 1,
and obtain
f@) = 6" — 18z + 12,  f'(z) = 12z — 18.

The roots of the quadratic equation f'(z) = O arez; = 1, 22 = 2, and
we have f"(z;) = —6 < 0, f(z2) = 6 > 0. Hence f(z) has a maximum,
f(x;) = 6, and a minimum, f(zxs) = 5.

Exercises: 1) Sketch the graph of the funct”  considered above.

2) Discuss and sketch the graph of f(z) =  — 1)(2? — 4).

8) Find the minimum of z +4 1/%, of z + a/z, of pz + ¢/, where p and ¢ are

positive. Have these functions maxima?
4) Find the maxima and minima of sin z and sin (z).

§3. THE TECHNIQUE OF DIFFERENTIATION

Until now our efforts have been devoted to differentiating a variety
of specific functions by transforming the difference quotients in prepara~
tion for passage to the limit. It was a decisive step when, through the
work of Leibniz, Newton, and their successors, these individual devices
were replaced by powerful general methods. By these methods one can
differentiate almost automatically any function that normally occurs in
mathematics, provided one has mastered a few simple rules and can
recognize their applicability. Thus differentiation has actuired the
character of an “algorithm” of caleulation, and it is this aspect of the
theory that is expressed by the term “caleulus.”

We cannot go fav into the details of this technique. Only a few
simple rules will be mentioned.

(a) Differentiation of @ sum. 1f a and b are constants and the func-
tion k(z) is given by

k@) = af(z) + bg(a),
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then, as the reader can easily verify,
K(z) = of (z) + bg'(2).
A similar rule holds for any number of terms.
(b} Differentiation of a product. For a product,
pz) = f2)g(e),
the derivative is
P} = @)y (=) + g)f (2)-

This is easily proved by the following device: we write, adding and sub-
tracting the same term,
plx 4+ h) — plz} = flz + Bgle + b) ~ fz)g(x)

= fl@ + gl + h) — flx + hg(z) + f(z + hg(z) — f(z)g(z),
and obtain, by combining the first two and the second two terms,

P + 11’2:717(15) =+ fEt h’i LRSS h; —f&

Now we let & approach zero; since f(x -+ h) approaches f(z), the state-
ment to be proved follows immediately.

Ezercise: Prove that the function p{x) = z" has the derivative p'(2) = nat,

(Hint: Write 78 = z.2°7% and use muthematical induction.}

Using rules (a) and (b) we can differentiate any polynomial

f2) = a0+ @z + -0+ ez’
the derivative is
f1(z) = a1 -+ 2000 + 3452’ + o+ naz"

As an application we may prove the binomial theorem {(compare p.

17.  This theorem concerns the expansion of {1 + )" as a polynomial:

@) @)=+ 2" =1+ ac+ ez + az’ + o0+ a.z”
and states that the coefficient g, is given by the formula

=Dk 1)
= o kA,

(2)

Of course, a, = 1.
We have seen (Exercise, p. 421) that the left side of (1) differentiated
yields n(1 + 2)"”. Thus by the preceding paragraph we obtain

@) nl + )" =+ 2+ Se’ + oo+ ma™
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In this formula we now set x = 0 and find that n = a, which is (2}
for k = 1. 'Then we di iate (3) again, obtaining
an = {1 4 2)"7 = 20y + 3205z + -+ + n{n — Da.z""
Bubstituting z = 0, we find n(n — 1) = 2a in agreement with (2) for

k=2

Ezercise: Prove (2) for k = 3, 4, and for general k by mathersatioal induction

(¢) Differentiation of a quotient. If

then
gy — 9@ (@) — f(z)g'(z)
&=

‘The proof is left as an exercise. (Of course, we must assume g(z) = 0.)
Exercise: Derive by this rule the formulas of page 422 for the derivatives of
tan z and cot z from those for sin x and cos z. Prove that the derivatives of
#ec z = 1/cos z and cosec = = 1/sin z are sin z/cos? z snd ~cos 2/8i respec-
tively.
We are now able to differentiate any function that can be written as
the quotient of two polynomials. For example,

1—z
o) = 1+z
has the derivative
_—4D-(-2_ 2
A - i (e

Ezercise: Differentiate
1
f(#) = = = zm,
-
where m is a positive integer. ‘The result is
J(@) = —mamr,
(d) Differentiation of inverse functions. If
y = J&) and z =g(y)
are inverse functions (e.g. ¥ = z° and # = /%), then their derivatives
are reciprocal:
1

g = @ Dy(y)-Dfz) = 1.
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This fact is eusily proved by going back to the reciprocal difference
quotlents and —y respectively; it can also be seen from the geo-
metrical mterpmta.tmn of the inverse function given on page 281, if

we tefer the slope of the tangent to the y-axis instead of to the z-axis,
As an example we differentiate the function

y=f@)=Yr=
inverse to z = y™. (See also the more direct treatment for m = } on
p. 421 ) Since the latter function has as its derivative the expression
my™™, we have

r 11 1
) = my=t T omyn T m

timy o 1 11
D(z'’™) mz

As 2 further example we diff iate the tnverse tri i¢ function

(see page 281):
y = erc tan z, which means the same as z = tan 3.

Here the variable y, denoting the radian measure, is restricted to the
interval ~}r < y < #x s0 as to insure a unique definition of the inverse
function.

Since we have (see page 422) D tan y = 1/cos v and since 1/cos’ y =
(sin’ y + cos’ y)/cos’ y = 1 + tan’ y = 1 + 2%, we find:

1
Darctang = TaE
In the same way the reader may derive the following formulas:
1
Darceot z = ~ T
Darcsinz = L
e

1

D arc cos z = —~

Finally, we come to the important rule for
(e) Diffe of pound fi i Such fi i are com-
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pounded from two (or more) simpler ones (see p. 282). For example,

2z = gin (/) is compounded from z = sin y and y = +/z; the function
z = 4/ + /7 is compounded from z = y -+ y' and y = /Z; 2 =

TaVavili
S AV R VA

yrsinge

y-oinfE)

Fig. 212 Fig. 273
. . . .
sin (%) is a compound of z = siny and y = «*;z = sin LB compound

ofz=gnyandy = };
If two funetions
2= g(y) and y = f(z)

are given, and if the latter function is substituted in the former, we
obtain the compound function

z = &(z) = glf(x)}
We assert that
@) k(@) = ') (=).
For if we write

Mo ~ ka) _a-em—y
- w—y o -z
where ¥ = f{z.) and 21 = g(y) = &(2:), and then let 2, approach z,
the left side approaches k'(z) and the two factors on the right hand
side approach ¢'(y) and f'(z) respectively, thus proving (4).

In this proof the condition y; ~ y # 0 was necessary. For we divided
by &y = y — y, and we cannot use values z; for which ¢, ~ y = 0.
But the formula (4) remains valid even if Ay = 0 in an interval around z;
y is then constant, f(z) = 0, k(z) = g(y) is constant with respect to ¢
(since y does not change with z), and hence &'(z) = 0, aa (4) states in
this case.
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The reader should verify the following examples:

kz)=sinv7, k() = {eos/T)

1

2v/7’

Ko) = Vi+VE K@ =1+ 5 2“1"«/5
k(z) = sin (z%),  ¥(z) = cos (). 21,

Mo =ainl, K = —oos(1) 1

o) = v/T=2, K@) =

i

22 =
24/1 - 22 V1

Ezercise: Combining the results of p 420 and 430, shiow that the function

1@) = w2

bas the derivative

& - ";:5

1t shouid be noted that all our formulas concerning powers of z can
now be combined into a single one:

If v s any positive or negative rational number, then the function

Jz) =
has the derivative
fiz) =

Ezercises: 1) Carry out the differentiations of the exercises on page 421 by

using the rules of this section.

1
2) Diferentiste the following funetions: @ sia 7, ; e R R S

\/1-1’

. L1 . 1
2 1 L a7, 2t are sin (cos a2, tan | t=
1

14a8"

,are mn
z

3) Find the second derivatives of some of the preceding functions and of

x .
=, are taa 7, sin? 2, tan 7.
z

4) Differentiate e1(z — 71)! + ¥} + co(z — 25)¢ + y}, *and prove the minimum
properties of the light ray by reflection and by refraction stated in Chapter
VIL, pp. 330 and 382. The reflection or refraction is to be in the z-axis, and the
codrdinates of tbe endpoints of the path may bez: , y1 and 2, » Yo rempectively.
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(Remark: The function possesses only one point with vanishing derivative;
therefore, since & minimum but obviously no maximum occurs, there ie no need
to study the second derivative.)

More Problems on Mazima and Minima: 5) Find the extrema of the following
funetions, sketch their graphs, determine the intervals of increase, decrease,
convexity, and concavity:

2% — 67 + 2, 2/(1 + ), 2*/(1 + 2%), cos® .

6) Study the maxima and minim., of the function = + 3az + 1 in their de-
pendence on 2.

7) Which point of the hyperbola 2y* — z* = 2 is ncarest to the point z =
y =3

8) Of all rectangles with given area find the one with the shortest diagonal.

9) Inscribe the rectangle of greatest area in the ellipse 2%/a? + /bt = 1.

10) Of alt cireular cylinders with given volume find the one with the least
area.

§4. LEIBNIZ’ NOTATION AND THE “INFINITELY SMALL"

Newton and Leibniz knew how to obtain the integral and the deriva-
tive as limits. But the very foundations of the calculus were long
obscured by an unwillingness to recognize the exclusive right of the
limit concept as the source of the new methods. Neither Newton nor
Leibniz could bring himself to such a clear-cut attitude, simple as it
appears to us now that the limit concept has been completely clarified.
Their example dominated more than a century of mathematical develop-
ment during which the subject was shrouded by talk of “infinitely small
quantities,” “differentials,” “ultimate ratios,” ete. The reluctance with
which these concepts were finally abandoned was deeply rooted in the
philosophical attitude of the time and in the very nature of the human
mind. One might have argued: “Of course integral and derivative can
be and are calculated as limits. But what, after all, are these objects
in themselves, irrespective of the particular way they are described by
limiting processes? It seems obvious that intuitive concepts such as
area or slope of a curve have an absolute meaning in themselves without
any need for the auxiliary concepts of inscribed polygons or secants and
their limits.” Indeed, it is psychologically natural to search for ade-
quate definitions of area and slope as “things in themseives.” But to
renounce this desire and rather to see in limiting processes their only
scientifically relevant definitions, is in line with the mature attitude
that has so often cleared the way for progress. In the seventeenth
century there was no intellectual tradition to permit such philosophical
radicalism.
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Leibniz’ attempt to “explain” the derivative started in a perfectly

correct way with the difference quotient of a function y = f(z),
Ay _ flz) ~ f(z)
8= T mTa
For the limit, the derivative, which we called f"(z} (following the usage
introduced later by Lagrange), Leibniz wrote
dy
P

replacing the difference symbol A by the “differential symbol” d.  Pro-
vided we understand that this symbol is solely an indication that the
limiting process Az — 0 and consequently Ay — 0 is to be carried out,
there is no difficulty and no mystery. Before passing to the limit, the
denominator Az in the quotient Ay/Az is cancelled out or transformed
in such a way that the limiting process can be completed smoothly.
This is always the crucial point in the actual process of differentiation.
Had we tried to pass to the limit without such a previous reduction, we
should have obtained the meaningless relation Ay/Ax = 0/0, in which
we are not at all interested. Mystery and confusion only enter if we
follow Leibniz and many of his successors by saying something like this:

“Ar does not approach zero. Instead, the ‘last value’ of Az is not
zero but an ‘infinitely small quantity,’ a ‘differential’ called dz; and
similarly Ay has a ‘last’ infinitely small value dy. The actual quotient
of these infinitely small differentials is again an ordinary number,
f(z) = dy/de.” Leibniz accordingly called thederivative the “differential
guotient.”  Such infinitely smell quantities were considered a new kind
of number, not zero but smaller than any positive number of the reat
number system. Only those with a real mathematical sense could
grasp this concept, and the caleulus was thought to be genuinely diffi-
eult because not everybody has, or can develop, this sense.  In the same
way, the integral was considered to be a sum of infinitely many
“infinitely small quantities” f(z) dz. Such a sum, people seemed to
feel, is the integral or area, while the calculation of its value as the limit
of @ finite sum of ordinary numbers f(z;)Ar was regarded as something
accessory. Today we simply discard the desire for a “direct’” explana-
tion and define the integral as the limit of a finite sum. In this way the
difficulties are dispelled and everything of value in the calculus is secured
on & sound basis.

In spite of this later development Leibniz’ notation, dy/dz for f'(x)
and [ f(z) dz for the intgral, was retained and has proved extremely
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useful. There is no harm in it if we consider the symbols d only as
symbols for a passage to the limit. Leibniz’ notation has the advantage
that limits of quotients and sums can in some ways be handled “as if”
they were actual quotients or sums. The suggestive power of this
symbolism has always tempted people to impute to these symbols some
entirely unmathematical meaning. If we resist this temptation, then
Leibniz' notation is at least -1 excellent abbreviation for the more
eumbersome explicit notation of the limit process; as a matter of fact,
it is almost indispensable in the more advanced parts of the theory.

For example, rule (d) of page 429 for differentiating the inverse func-
tion z = g(y) of ¥ = f{z) was that ¢'(y)f'(z) = 1. In Leibniz’ notation
it reads simply

dedy
dy dz !
“ag if” the “diff ials’”’ may be Hled out from hing like an

ordinary fraction. Likewise, rule (e) of page 431 for differentiating a
compound funetion z = k(z), where

z=g@), y=J@),
now reads

de _ dz dy
i dy'dr’

Leibniz’ notation has the further advantage of emphasizing the
quantities x, y, z rather than their explicit functional connection. The
Iatter expresses a procedure, an operation producing one quantity y from
another z, e.g. the function y = f(z) = z* produces a quantity y equal
to the square of the quantlty . The opemtmn (squarmg) is the object
of the math But physi and are on
the whole primarily mterested in the quantities themselves. Hence the
emphasis on quantities in Leibniz’ notation has a particular appeal to
people engaged in applied mathematies.

Another remark may be added. While “differentials” as infinitely
small quantities are now definitely and dishonorably discarded, the
same word “differential” has slipped in again through the back door—
this time to denote a perfectly legitimate and useful concept. It now
means simply a difference Az when Az is small in relation to the other
quantities occurring. We cannot here go into a discussion of the value
of this coneept for approximate caleulations. Nor can we discuss other
legitimate mathematical notions for which the name “differential” has
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been adopted, some of which have proved quite useful in the caloulus
and in its applications to geometry,

§5. THE FUNDAMENTAL THEOREM OF THE CALCULUS
1. The Fundawental Theorem

The notion of integration, and to some extent that of differentiation,
had been fairly well developed before the work of Newton and Leibniz.
To start the tremendous evolution of the new mathematical analysis
but one more simple discovery was needed.  The two apparently uneon-
neeted limiting processes involved in the differentiation and integration
of a function are intimately related. They are, in fact, inverse to one
another, like the operations of addition and subtraction, or multiplica-
tion and division. There is no separate differential ealeulus and integral
caleulus, but only one caleulus.

It was the great achievement of Leibniz and Newton to have first
clearly ized and exploited this fund L theorem of the calculus.
Of course, their discovery lay on the straight path of scientific develop-
ment and it is only natural that several men should have arrived at &
clear understanding of the situation independently and at almost the
same time.

To formulate the fundamental theorem we consider the integral of &
function y = f(z) from the fixed lower limit a to the variable upper
it z. To avoid confusion between the upper limit of integration x
and the variable z that appears in the symbol f(z), we write this
integral in the form (sce p. 412)

® Fix) = f " flu) du,

indicating that we wish to study the integral as a function F(z) of the
upper limit x {Fig. 274). This function (z) is the area under the curve

Fig. 274. The integral se function of upper fignit.
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¥ = f(u) from the paint # = a to the point ¥ = z. Sometimes the
integral F(z) with a variable upper limit is called an “indefinite”
integral.

Now the fundamental theorem of the calculus is:

The derivative of the indefinile integral (1) as a function of x 1s equal
to the value of f(u) af the point x:

Fi(z) = f(z).

In other words, the process of tntegration, leading from the function f(x)
to T (x), is undone, inverted, by the process of differentiation, applied to F(x).

On an intuitive basis the proof is very easy. It depends on the inter-
pretation of the integral F(z) as an area, and would be obscured if one
tried to represent F(z) by a graph and the derivative ¥'(z) by its slope.
Instead of this original geometrical interpretation of the derivative we
retain the geometrical explanation of the integral F(z) but proceed in an
analytical way with the differentiation of F(z). The difference

F(zy) — F(z)
is simply the area between x and z; in Figure 275, and we see that this

¥

Fig. 375. Proof of the undamental theorem.

area lies between the values (z — z)m and (z; — 2)M,
(@ = 2)m £ Fm) - F(2) < (@ ~ )M,

where M and m are respectively the greatest and least values of f(u)
in the interval between x and z, . For these two products ave the areas
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of rectangles includiz.; the curved ares and included in it, respectively.
Therefore

<o) —F&@) oy
I —-x
We shall assume that the function f(u) is continuous, so that if =y
approaches z, then M and m both approach f(z). Hence we have

@ Fiz) = M) 12,

as stated. Intuitively, this expresses the faet that the rate of change
of the area under the curve y = f(z) as z increases is equal to the height
of the curve at the point z.

In certain texthooks the salient point in the fundamental theorem
is obscured by poorly chosen nomenclature. Many authors first intro-
duce the derivative and then define the “indefinite integral” simply as
the inverse of the derivative, saying that G(z) is an indefinite integral
of f(z) i

F(@) = flz).

Thus their procedure immediately combines differentiation with the
word “integral”” Only later is the notion of the “definite mtegml” as
an area or as the lmit of & sum intreduced, without h that
the word “integral” now means something totally different. In this
way the main fact of the theory is smuggled in by the back door, and
the student is seriously impeded in his efforts to attain real under-
standing. We prefer to call functions G(z) for which G'(z) = f(z) not
“indefinite integrals” but primitive functions of f(x). The fundamenta}
theorem then simply states:

F(x), the integral of f{u) with fived lower limil and a variable upper
bLmil x, is a primitive function of £(x).

We say “a” primitive function and not “the’” primitive function, for
it is immediately clear that if G(z) is & primitive function of f(x), then

H(z) = Gz) + ¢ {c any constant})

is also a primitive function, since H'(z) = (x). The converse is also
true.  Two primitive functions, G(x) and H(x), can differ only by a con-
stant. For the difference U(z) = G(z) ~ H(z) has the derivative
U'lz) = @'(z) — H'(x) = f(z) — f(z) = 0, and is therofore constant,
since & function represented by an everywhere horizontal graph must be
eonstant.
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This leads to a most import-nt rule for finding the value of an integral
between @ and b, provided we know a primitive function G(z) of r(z).
According to our main theorem,

Flz) = [ * fu) du

is also a primitive function of f(a:) Hence F(z) = G(z) + c, where ¢
isa tant. The cisd d if we ber that F(a) =

f S(u)du = 0. This gives 0 = G{a) + ¢, 2o that¢ = —G(a). Then
the definite integral between the limits ¢ and z will be F(z)
/ f(u) du = G(z) ~ G(a), or, if we write b instead of =z,

b
® [ ferdu = 66) - 6o,

irrespective of what particular primitive function G(z) we have chosen.
In other words,

To evaluate the definite integral f £(x) dx we need only find a function
G(x) such that G'(x) = £(x), and then form the difference G(b) — G(a).

2. First Applications. Integration of x", cos x, sin x. Arctanx

It i not possible here to give an adequate idea of the scope of the
fundamental theorem, but the following illustrations may give some
indication. In actual bl d in hanics, physies, or
pure mathematics, it is very often a definite integ-al whose value is
wanted. The direct attempt to find the integral as the limit of a sum
may be difficult. On the other hand, as we saw in §3, it is compara-
tively easy to perform any kind of differentiation and to accumulate a
great wealth of information in this field. Each differentiation formula,
@'(z) = f(z), can be read inversely as providing a primitive function
G{(z) for f(z). By means of the formula (3), this can be exploited for
eslculating the integral of f(z) between any two limits,

For example, if we want to find the integral of z* or 2* or 2" we can
now proceed much more simply than in §1. We know from our differ-
entiation formula for z* that the derivative of z” is nz™™, so that the
derivative of

G(z) = (n = ~1)

xz
1
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Therefore z**'/(n + 1) is a primitive function of f(z) = 2", and hence
we have immediately

f» i = G ~ @ P gt

 #de = 60 = 6la) = —
This process is rouch simpler than the laborious procedure of finding the
integral directly as the limit of & sum.

More generally, we found in §3 that for any rational s, positive or
negative, the function z* has the derivative sz, and therefore, for
8 = r + 1, the function

b e
G(z) = Pt
has the derivative f(z) = G’(2) = z". (Weassumer » —1,1i.e. 85 0.)
Hence "*'/(r + 1) is a primitive function or “indefinite integral” of 2”,
and we have (for ¢, b positive and r ¢ —1)

.
_ 1 e
® fur'dx-m(b &,

In (4) we suppose that in the interval of integration the integrand z* is defined
and continuous, which excludes » = 0if r <0, We therefore make the assump-
tion that in this case ¢ and b are positive.

For G(z) = —cos z we have G'(z) = sin z, hence
[sin zdr = ~(cosa — cos0) = 1 — cos a.

Likewise, since for G(x) = sin & we have G'(z) = cos z, it follows
that

.L cos zdz = sin @ — sin 0 = sin a.

A particularly interesting result, is obtained from the formula for the
Jifferentiation of the inverse tangent, D arc tan = = 1/(1 + o). It
follows that the function arc tan z is a primitive function of 1/(1 + z%),
and we obtain from formula (3) the result

1

1+22d24

b
arctan b ~ arctan 0 = £




FIRST APPLICATIONS 441

Now we have arc tan 8 = 0 because to the value 0 of the tangent the
value 0 of the angle is attached. Hence we find
b
1
(5) are tan b = j; e dz.

If in particular b = 1, then arc tan b will be equal to r/4, because to
the value 1 of the tangent corresponds an angle of 45° or in radian
measure 7/4. Thus we obtain the remarkable formula

t

1

® = [ e
This shows that the area under the graph of the function y = 1/(1 + z%)
from z = 0 to z = 1 is one-fourth of the area of & circle of radius 1.

v

0! 1
Fig. 9. w/4 an ares undor y = 1/(4 + 3) from 0 to 1.
3. Leibniz’ Formula for »
The last result leads to one of the most beautiful mathematical dis-
coveries of the seventeenth century--Leibniz’ alternating series for w,
(4]

By the symbol + ... we mean that the sequence of finite “partial
sums”, formed by breaking off the expression on the right after n
terms, converges to the limit x/4 as n increases.

To prove this famous formula, we have only to recall the finite geo~

1 1 1 1 1
sivatyrateTat o

metrical series iw;;q« el gt g or
1 N et »
o=ttt ket g

In this algebraic identity we substitute ¢ = —a2° and ubtain

®)

g lm g DT R
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where the “remainder” R, is

Bo= (=10 1 + iFz
Equation (8) can now be integrated between the limits 0 and 1. By
rule (a} of §3, we have to take on the right the sum of the integrals of

the single terms. Since, by (4), f Z"dp = (™ -~ a™)/(m + 1),

1
we find f z"dz = 1/(m + 1), and therefore
o

;
[ -1——+1 e

© wo 14t 3 7

1+ T

where T = (~1)" f i__ dz, According to (5), the left side of (9)
is equal to x/4. 'The difference between x/4 and the partial sum

_y_1 1 (=1~
8y =1 5+ +~--+2_1—
igm/4 — = T What remains is to show that T, approaches zero

#s n inereases. Now
2n

Fase
b b
Recalling formula (13) of §1, which states that / flxydz < / g(z) dzx
if f(z) < g(z) and @ < b, we see that

Lo e
ITai= [ (2 a g [aman

since the right side is equal to 1/(2n + 1), as we saw before (formula
(4)), we find | T | < 1/(2n + 1). Hence

e _ 1

I3 S"’ SmFT
But this shows that S, tends with increasing # to /4, since 1/(2z + 1)
tends to zero. Thus Leibniz’ formula is proved.
§6. THE EXPONENTIAL FUNCTION AND, THE LOGARITHM

The basie concepts of the caleulus furnish & much more adequate
theory ~f the logarithm and the exponential function than does the “ele-
wentary” procedure that underlies the usual instruction in school.

e fo0 <z <1
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There one usually begins with the integral powers a” of & positive number
a, and then defines @™ = {/a, thus obtaining the value of o’ for every
rational r = u/m The value of o* for any irrational z is next defined
80 as to make a® a contmuous function of z, a delicate point which is
omitted in el 'y i Finally, the I ithm of y to the
base a,

z = log.y,
is defined as the inverse function of y = @,
In the following theory of these functions on the basis of the calou-
lus the order in which they are considered is reversed. We begin
with the Jogarithm and then obtain the exponential function.

1. Definition and Properties of the Logarithm. Euler’s Number e

We define the logarithm, or more specifically the “natural lu arithm,”
F(x) = log x (its relation to the ordinary logarithm to the base 10 will
be showa in Article 2), as the area under the curve y = 1/ufromu = 1
to u = z, or, what amounts to the same thing, as the integral

1) F(z):logz=]}“£du

(see ¥ig. 5, p. 29). The variable © may be any positive number. Zero
is excluded because the integrand 1/u becomes infinite as u tends to 0.

It is quite natural to study the function F{z). For we know that
the primitive function of any power 2" is a function z"7'/(n + 1) of the
same type, except for n» = —1. In the latter case the denominator
n + 1 would vanish and formula (4), p. 440 would be meaningless.
Thus we might expect that the integration of 1/x or 1/« would lead
to some new --and interesting—type of function.

Although we consider (1} the definition of the function log z, we do
not “know”” the function until we have derived its properties and have
found means for its numerical computation. It is quite typical of the
modern approach that we start with general concepts such as area and
integral, establish definitions such as (1) on this basis, then deduce
properties of the objects defined and, only at the very end, arrive at
explicit expressions for numerical calculation,

The first important property of log z is an immediate consequence of
the fundamental theorem of §5. This theorem yields the equation

@ F(z) = 1/x.
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From (2} it follows that the derivative is always positive, which con-
firms the obvious fact that function log x is & monotone increasing
function as we travel in the direction of increasing values of .
The principal property of the logarithm is expressed by the formula
3) log a + log b = log (ab).
The importance of this formula in the practical application of logarithms
to numerical computations is well known. Intuitively, formula (3)
could be obtained by looking at the areas defining the three quantities
log a, log b, and log (ab). But we prefer to derive it by a reasoning
typical of the calcutus: Together with the function F(z) = log z we
consider the second function
k(z) = log (az) = log w = F(w),
setting w = f(z) = az, where a is any positive constant. We can easily
differentiate k(z) by rule (e) of §3: ¥'(z) = F'(w)f'(z). By (2), and
gince f'(x) = a, this becomes
K(x) = o/w = a/ox = 1/z.
Therefore k(z) has the same derivative as F(z); hence, according to
page 438, we have
log (az) = k(z) = F(z) + ¢,

where ¢ i8 a constant not depending on the particular value of 2. The

¢ is d i by the simple dure of substituting for z
the specific number 1. We know from the definition (1) that

F(1) = log1 =0,

because the defining integral has for z = 1 equal upper and lower limits.
Hence we obtain

k(1) = log (a-1) = loga = logl + ¢ = ¢,
which gives ¢ = log a, and therefore for every z the formula
{3a) log (az) = log a + log z.

Setting z = b we obtain the desired formula (3).
In particular (for a = z), we now find in succession
log (&%) = 2log 2
log (&%) = 3 log z.

) Iog (") = n log z.
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Equation (4) shows that for increasing values of z the values of log 2
tend to infinity. For the logarithm is a monotone incre:r :3 function
and we have, for example

Tog 2" = nlog 2,
which tends to infinity with n. Furthermore we have

1 1
0=1log1l _log<x»;)»logx+[og£,

s0 that
1
5 .
(5) log H log z.
Finally,
©) log 2" = rlogx

. m -~ . r
for any rational number r = —. For, setting 2" = u, we have
n

nlogu = logu” = log o = log 2" = mlog z,
s0 that
logz® = " log r.
n
Sinee log = is & continuous menoctone function of z, having the value 0
for ¢ = 1 and tending to infinity as z increases, there must be some
number greater than 1 such that for this value we have log & = 1.

z=E{y)

{0 v
Fig. 211, Fig. 278.

Following Euler, we call this number e. (The equivalence with the
definition of p. 298 will be shown later.) Thus e is defined by the
equation

@ loge = 1.
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‘We have introduced the number e by an intrinsic property which assures
its existence. Presently we shall carry our analysis further, obtaining
28 a consequence explicit formulas giving arbitrarily exact approximations
to the numerical value of e,

2. The Exponential Funetion
Summarizing our previous results, we see that the function F(z) =
log = has the value zero for z = I, increases monotonically to infinity
but with decreasing slope 1/z, and for positive values of z less than 1 is
given by the negative of log 1/z, so that log = becomes negatively in-
finite as x — Q.
Because of the monotone character of ¥ = log = we may consider the
inverse function
z = E(y),
whose graph (Fig. 278) is obtained in the usual way from that of
y = log z (Fig. 277), and which is defined for all values of y between
= and 4. Asytends to — « the value E(y) tends to zero, and as
y tends to -+« E(y) tends to + .
The E-function has the following fundamental property:
8) E(a)-E(b) = E{a +b)
for any pair of values @ and b. This law is merely another form of the
law (3) for the logarithm. For if we set
EQ) = 2, E@) =z (ie. b = logz, a = log 2),
we have
logzz = loga + logz = b -+ a,
and therefore
E® -+ a) = 22 = B(a)-E®),
which was to be proved,
Since by definition log ¢ = 1, we have

E(1) =,
and it follows from (8) that ¢* = E(1)E(1) = E(2), ete. In general,
E(n) = ¢

1
for any integer n. Likewise E(1/n) = e*, so that E(p/q) = E(1/q)
1
<+ B(1/q) = [e%] ; hence, setting p/g = r, we have
E(r) =¢
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for any rational r. Therefore it is appropriate to define the operation
of raising the number e to an irrational power by setting

& = By}
for any real number y, since the E-function is continuous for all values
of y, and identical with the value of ¢ for rational y. We can now
express the fundamental law (8) of the E-function, or exponential func-
tion, as it is called, by the equation
(9) gﬂgb = el+b,
which is thereby established for arbitrary rational or irrational a and b,

In all these discussions we have been referring the logarithm and ex-

ponential function to the number ¢ as a "“base,” the “natural base” for
the logarithm. The transition from the base e to any other positive
number is easily made. We begin by considering the (natural) loga-
rithm

« = loga,
60 that

a=¢" = %"
Now we define a” by the compound expression
10) 2 =0 =™ = 100
For example,
107 = gF log 10

We call the inverse function of o* the logarithm fo the base &, and we see
immediately that the natural logarithm of # is z times «; in other words,
the logarithm of a number 2z to the base a is obtained by dividing the
natural logarithm of z by the fixed natural logarithm of a. For a = 10
this is (to four significant figures)

log 10 = 2.303.

3. Formulas for Differentiation of e , 8%, x*
Since we have defined the exponential function E(y) as the inverse
of y = log z, it follows from the rule concerning differentiation of in-
verse functions (§3) that
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ie.
an E'(y) = E(y).
The natural exponential function is identical with its derivative.

This is really the source of all the properties of the exponential func-
tion and the basic reason for its importance in applications, as will
become apparent in subsequent sections. Using the notation intro-
duced in Section 2 we may write (11) as follows:

d

(11a) & & = ¢,
More lly, di iating the d funetion
f(z) = €™,

we obtain by the rule of §3
J'(@) = ae®™ = af(z).
Hence, for « = log a, we find that the function
f@) = o
has the derivative
f(@) = a” loga.
We may now define the funetion

f@) = 2
for any real exponent s and positive variable z by setting

e

Again applying the rule for di iation of the d f
Ja) = o2 = log a, we find /() = se*:L = L and therefore
fiz) = s

in accordance with our previous result for rational s.

4. Explicit Expressions for e, e*, and log x as Limits
To find explicit formulas for these functions we shall expleit the differ-
entiation formulas for the exponential funection and the logarithm.
Since the derivative of the function log z is 1/z, by the definition of
the derivative we obtain the relation
lim log 7, — log
Ty - X

1
- = as T~ 2.
z
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If we set z; = z + h and let A tend to zero by running through the
sequence
Bo=1/2,1/3, 14, or  1/n, -ee,
then, on applying the rules of logarithms, we find
1og(:v+ )*logz x+% AN
- g —»znlng7—:log[(l+ﬁ)]4i.
By writing z = 1/z and using again the laws for the logarithm we obtain

=limlog[(l+£)] a8 n > o0,
In terms of the exponential function,
a2) & = lim (1 + :) as w0

Here we have the famous formula defining the exponential function as
a simple limit. In particular, for z = 1 we find

(13) e = lim (1 + 1/5)",
and for z = —1,
(130) % =lim {1 — i/n)"

These expressions lead at once to expansions in the form of infinite
series. By the binomial theorem we find that

(1+ ) =14nZ I VN (R VGt | K

2w 3! nt n

(=) =150 -D 5009 -
0053075

It is plausible and not difficult to justify completely (the details are
omitted here) that we can perform the passage to the Hmit as n —» o

by rep]acing% by 0 in each term. 'This gives the famous infinite series
for €%,

- z &
(19 Cmlt Tt
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and in particular the series for e,
=14 = + + + +

v hich establishes the ldennty ofe wlth the number defined on page 298,
Forz = —1 we obtain the series
1 i 1 1 1
ctammtaogt o
which gives an Hent ical approximation with very few terms,
the total error involved in breaking off the series at the nth term being
less than the magnitude of the (n -+ 1)st term.
By exploiting the differentiation formula for the exponential function
we can obtain an interesting expression for the logarithm. We ' ave

as h tends to 0, because this limit is the derivative of ¢ for y = 0, and
this is equal to ¢ = 1. In this formula we substitute for h the values
z/n, where z is sn arbitrary number and n ranges over the sequence of
positive integers. This gives

ik B 1,
z
or
n{{fe ~ 1) -z
as n tends to infinity. Writing z = log ¢ or € = z, we finally obtain
(15) logz = imn({/z—-1) as n-— =,

Since {/x —+ 1 a8 n ~» = (see p. 323), this represents the logarithm as
the limit of a product, one of whose factors tends to zero and the other
to infinity.

AMiseellaneous Ezamples and Exercises. By including the exponentisl function
and the logarithm we now master a large class of functions and have access to
many applications.

Differentiate: 1) zllog = 1), 2) log (g 2). 3) log (z + VT T 2. 4
tog {z + T 6 e (s compound function o® with z = e2). 7)
z* (Hint: 2% = e='°«')A &} lﬁg tan z. 9) log sin r; log cos r. 10) 2/log z.

Find the maxima and minima of 11) 22, 12) 2972, 13) ze~+s.

*14) Find the Jocus of the maximum point of the eurve y = rese* a8« varies.

15) Show that all the suceessive derivatives of 2" have the form ¢ multiplied
by a polynomial in z.

ﬁ

=)
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*18) Show that the nth derivative of e==" has the form = 1 /z moltiplied
by a polynomial of degree 2n — 2.
*17) Logarithmic differentiation. By using the fundemental property of the
! the of producta can be effected in a simpli
manner. We have for a product of the form
PLz) = filz)fa(z) -+« fule),
Dlog p(=)) = D(iog f1(2)} + D(log fo(2)) + -+ + D(log fu(2)},
and hence, by the rule for differentiating compound functions,
PE A e 1@
2@ "R @ T
Use this for differentiating
a) 2@ + 1z + 2) - (z + ), b) et
5. Infinite Series for the L ith N ical Calculati

It is not formula (15) that serves as the basis for numerical calculation
of the logarithm. A quite different and more useful explicit expression
of great theoretical importance is far better suited to this purpose. We
shall obtain this expression by the method used on page 441 for finding
#, exploiting the definition of the Jogarithm by formula (1). One small
preparatory step is needed; instead of aiming at log z, we shall try to
express ¥ = log (1 + z), composed of the functions ¥ = log 2 and
pmlta Wehwol =% &1, iy Heneelog(1+2)
ig & primitive function of 1/(1 4+ z), and we infer by the fundamental
theorem that the integral of 1/(1 + ) from 0 to z is equal to
log (1 4 2) — log 1 = log (1 + 2); in symbols,

(16) log (1 +7) = j; i_%_—;du.

{Of course, this formula could just as well have been obtained intuitively
from the geometrical interpretation of the logarithm as an area. Com-
pare p. 413.)

In formula (16) we insert, as on page 442, the geometrical series for
{1 + w7, writing

L = - ) w1 n—l —1n
fﬂ_l w4 (1) + ( 1)1+u
where, cautiously, we choose to write down not an infinite series, but
rather a finite series with the remainder
»
Ro= (—1)"
SR vt
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Substituting this series in (16) we may use the rule that such a (finite)
sum can be integrated term by term. The integral of «* from 0 to x
41

yields

;:_ i and thus we obtain immediately
2 2 2"
lg+a)=z—m+ ~Z+. +(D PRy
where the remainder 7', is given by
: .
T, = (=1 | e
We shall now show that T, tends to zero for increasing n provided that

z is chosen greater than ~1 and not greater than +1, in other words,
for

-l1<z<1,
where it is to be noted that z = +1 is included, while z = —1 is not.
According to our assumption, in the interval of integration u is greater
than a number —«, which may be near to —1 but is at any rate greater
than —1, so that 0 < 1 — a < 1 + w. Hence in the interval from 0
to x we have

and therefore
| Tul _—‘f v du‘,
or
1 =™ 1 1
Wl € e < e .

[Tl < ~an+l " i—antl
Since 1 — a is a fixed factor, we see that for increasing n this expression
tends to 0 so that from

) fog Q4o -fe-F4T byt g Ll

we obtain the infinite series
(18) log (1 + ) =

which is valid for —1 < z £ 1

EA
“gtzogtes
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i, in particular, we choose = 1, we obtain the interssting result
1,1 1
ay) log?-—l—-é-}-ﬁ—z'i----.

This formula has a structure similar to that of the series for »/4.

The series (18) is not & very practical means for finding numerical
values for the logarithm, since its range is limited to values of 1 + z
between 0 and 2, and since its convergence is so slow that one must
include many terms before obtaining a b, te result.
By the following device we can obtain & more convenient expression.
Replacing z by —z in (18) we find

2
(20) log (1 =) = 2 = % = 2~ 2 = e .

Subtracting (20) from (18) and using the fact that log ¢ — Jogb = log @
+ log (1/b) = log (a/b}, we obtain

1+z
-

(21) log ~2(2+t§'+£‘;+...)‘

Not only does this series converge much faster, but now the left side
can express the logarithm of any positive number z, since 1{:; =
always has a solution x between —1 and -+1. Thus, if we want to
caleulate log 3 we set £ = } and obtain

o ( RIS )
10;371(»; =y =2 2+3'21+5.26+ .

a6 we find the value

log 3 = 1.0986,
which is accurate to five digits.

§7. DIFFERENTIAL EQUATIONS
1. Definition

The dominating réle of the exponential and trigonometrical functions
i mathematical analysis and its applications to physical probl is
rooted in the fact that these functions solve the simplest “differential
equations.”

A differential equation for an unknown function w = f(z) with deriva-

With only 6 terms, up to
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tive u’ = f/(z}—the notation u' is a very useful abbreviation for (=)
as long as the quantity  and its dependence on x as the function f(z)
need not be sharply distinguished—is an equation involving u, «', and
possibly the independent variable 2, as for example
' = u 4 sin (zu)
or
W+ Bu =

More generally, a differential equation may involve the second deriva~
tive, u” = f"(x), or higher derivatives, as in the example

u' 4 2u' — 3u = 0.
In any case the problem is to find & funcnon u = f(r) that satisfies
the given equation. Solving a di ion is a wide i3
tion of the problem of integration in the sense of finding the primitive
function of a given function ¢(z), which amounts to solving the simple
differential equation

w = glz).
For example, the solutions of the di inl
W =2

are the functions u = z°/3 4 ¢, where ¢ is any constant,

2. The Di ial Equation of the E: ial Function. Radi
Disintegration. Law of Growth. Compound Interest

The differential equation
[¢3] =

has as a solution the exponential function u = ¢, since the exponentml
function is its own derivative, More generally, che function u = ce¥,
where ¢ is any constant, is & solution of (1). Similerly, the function

2) u = ¢,
where ¢ and k are any two constants, is a solution of the differential
equation
3) u = ku,

Conversely, oy function u = f(z) satisfying cquation (3) must be
of the form 2¢**, For if x = h(u) is the inverse function of u = J@),
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then according to the rule for finding the derivative of an inverse func-
tion we have

1 1
b= il
But > log is a primitive function of IT’ 80 that z = A(u) = log L3S b,
where b is some constant. Hence
log u = kx ~ bk,
and
=

Setting ¢~ (which is & constant) equal to ¢, we have
u = o,
as was to be proved.

The great signifi of the di ial ion (3) lies in the fact
that it governs physical processes in which & quantity u of some sub-
stance is a funetion of the time ¢,

u = f(t),
and in which the quantity u is changing at each instant at a rate pro-
portional to the value of u at that instant. In such a case, the rate of
change at the instant ¢,

is equal to ku, where k is & constant, & bemg posxtlve if u ig increasing
and negative if u is decreasing. In either case,  satisfies the differential
equation (3); hence

u = e,
The constant ¢ is determined if we know the amount uo which was

Fig. 9. Exponential /iy, u = usst!, k < 0.
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present at the time ¢ = 0. We must obtain this amount if we set
t =0,
uy = ce’ = ¢,

80 that
4) w = e,
Note that we start with a knowledge of the rate of change of u and deduce
the law (4) which gives the actual amount of w at any time f. This is
just the inverse of the problem of finding the derivative of a function.

A typieal example is that of radioactive disintegration. Let v = f(1)
be the amount of some radioactive substance at the time ¢; then on the
hypothesis that each individual particle of the substance has a certain
probability of disintegrating in a given time, and that the probability
is unaffected by the presence of other such particles, the rate at which
u is disintegrating at a given time ¢ will be proportional t.o u, L.e. to the
total amount present at that time. Hence u will ¢ {3) with a
negative constant & that measures the speed of the disintegration proc-
ess, and therefore

u = up

1t follows that the fraction of v which disintegrates in two equal time
intervals is the same; for if %, is the amount present at time & and w
the amount present at some later time #, then

*lha~tp)
AL

which depends only on &y ~ ¢ . To find out how long it will take for
& given amount of the substance to disintegrate until only half of it is
ieft, we must determine s = f — t; so that

Uy ke
fuc g ¢
U 4

)

from which we find
(5) ks=log} s={—log/k, or k= (~log2}/s
For any radioactive substance, the value of s is called the half-life
period, and s or some similer value (such as the value r for which
we/uy = 999/1000) can be found by experiment. For radium, the half-
life period is about 1550 years, and

tog 3

k= 58 = —0.0000447.




DIFFERENTIAL EQUATION OF EXPONENTIAL FUNCTION 457

1t follows that

—o0.0000847¢

U = Upe€ B
An example of a law of growth that is approximately exponential
i8 provided by the ph of d interest. A given amount

. of money, u dollars, is placed at 3% compound interest, which is to be
- compounded yearly. After I year, the amount of money will be

= uo(1 + 0.03),
after 2 years it will be
ur = w(l + 0.03) = u(l + 0.03)",
and after ¢ years it will he
6) = uofl + 0.03)%
Now if, instead of being compounded at yearly intervals, the interest is

compounded after each month or after each nth part of a year, then
after ¢ years the amount will be

o 2 =+ 2]

If 7 is taken very large, so that the interest is compounded every day
or even every hour, then as n tends to infinity the guantity in the
brackets, according to §6, approaches ¢*, and in the limit the
amount after ¢ years would be

1) g,
which ds to a continuous process of ding interest.
We may also calculate the time s taken for the original capital to double

at 3% continuous compound interest. We have = 2, 5o that

s = 129 log 2 = 23.10. Thus the money will have doubled after about
twenty-three years.

Instead of following this step-by-step procedure and then passing to
the limit, we could have derived the formula (7) simply by saying that
the rate of increase u’ of the capital is proportional to u with the factor
k = .03, so that

W o= ku,  where k= .03.

The formula (7) then follows from the general result (4).
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3. Other Examples. Simplest Vibrations
The exponential function often occurs in more complicated combina-
tions. For example, the function
8) U =g
where k is a positive constant, is a solution of the differential equation

k2t
’

' = —2kru.

The function (8) is of fund 1 importance in y and sta-
tistics, since it defines the “normal” frequency distributions.

The trigonometric functions u = cos ¢, v = sin { aiso satisfy a very
simple differential equation. We have first
‘

o —ginf = ~y,

o = cosl = u

which is a “system of two dil i i for two f
By differentiating again, we find

tiona !

W= -

p eyl = —y,

so that both functions u and v of the time variable ¢ can be considered
as solutions of the same differential equation

® S tz=0,

which is a very simple differential equation of the “second order,” i.e.
involving the second derivative of 2. This equation and its generaliza-
tion with a positive constant i,

(10) 2+ Kz =0,
for which z = cos &t and z = sin k? are solutions, occur in the study of
vibrations. This is why the oscillating curves u = sin k¢ and u = cos &t

YA

Rt

2usin2t st 3t

Fig. 200.
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(Fig. 280) form the backbone of the theory of vibrating mechanisms.
It should be stated that the differential equation (10) represents the
ideal case, where there is no friction or resistance. Resistance is ex-

pressed in the di ial ion of vibrating hani by another
term rz’,
[¢5)) 2" 412t 4 k2 =0,

and the solutions now are “damped” vibrations, mathematically ex-
pressed by the fermula

i g ;
€7 cos wt, ¢ sin wf; @ = B (%)
'

and graphically represented by Figure 281. (As an exercise the reader

2=¢ % sin wt

Fig. 261 Damped vibrations.

may verify these solutions by performing the differentiations.)’ The
oscillations here are of the same type as those of the pure sine or cosine,
but they are cut down in their intensity by an exponential factor, de-
creasing more or less rapidly according to the size of the friction co-
efficient .
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4. Newton’s Law of Dynamics

Althourh a more detailed analysis of these facts is beyond our scope,
we wish to bring them under the general aspect of the fundamental
concepts with which Newton revelutionized mechanics and physics.
He considered the motion of a particle with mass m and space co-
ordinates x(f), y{£), z(f) which are functions of the time £, so that the
components of the acceleration are the second derivatives, z”(t), y"(1),
2'"(t). The allimportant step was Newton’s realization that the quan-
tities mz'!, my”, mz"" can be considered as the components of force
acting on the particle. At first sight this might appear to be only a
formal definition of the word “force” in physics. But Newton’s great
achievement was to have shaped this definition in accordance with the
actual phenomena of nature, inasmuch as nature very often provides
a field of such forces which are known to us in advance without our
knowing anything about the particular motion we want to study.
Newton's greatest triumph in dynamics, the justification of Kepler's
law for the motion of the planets, shows clearly the harmony between
his mathematical concept and nature. Newton first assumed that the
attraction of gravity is inversely proportional to the square of the dis-
tance. If we put the sun at the origin of the codrdinate system, and
if a given planet has the codrdinates z, y, z, then it follows that the
components of the force in the z, y, 2 directions are equal, respectively, to

itational constant not depending on the time, and
s the distance from the sun to the planet. These
expressions dctcrmme the local field of force, itrespective of the motion
of a particle in the field. Now this knowledge of the field of forces is
combined with Newton’s general lnw of dynamics (Le. his expression
for the force in terms of the motion); equating the two different expres-
sions yields the equations

= EE

.
S e
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a system of three differential equations for three unknown.functions
z(f), y(B), 2(t). This system can be solved, and it turns out that, in
accordance with Kepler’s empirical observations, the orbit of the planet
is a conic section with the sun at one focus, the areas swept out by a
line joining the sun to the planet are equal for equal time intervals, and
the squarcs of the periods of complets revolution for two plansts are
praportional to the cubes of their distances from the sun. We must
omit the proof.

The problem of vibrations provides a more elementary illustration of
Newton’s method. Suppose that we have & particle moving along a
straight line, the z-axis, and tied to the origin by an elastic foree, such
as a spring or a rubber band. If the particle is removed from its posi-
tion of equilibrivm at the origin to a position given by the codrdinate x,
the force will pull it back with an intensity that we assume propor-
tional to the extension z; since the force is directed towards the origin,
it will be represented by —k'z, where —&" is a negative factor of pro-
portionality expressing the strength of the elastic spriny or rubber band.
Furthermore, we assume that there is friction retarding the motion,
and that this friction is proportional to the velocity =’ of the particle,
with a factor of proportionality —r. Then the total force at any moment
will be given by —k’z — r2’, and according to Newton’s general prin-
ciple we find mz"” = — k'z — rz’ or

mz” + rr’ + k'z = 0.
This is exactly the differential equation (11) of damped vibrations
mentioned above.

This simple example is of great importance, since many types of
vibrating mechanical and electrical systems can be described mathe-
matically by exactly this differential equation. Here we have a typical
instance where an abstract mathematical formulation bares with one
stroke the innermost structure of many apparently quite different and

d individual ph . This abstraction from the par-
ticular nature of a given phenomenon to a formulation of the general
law which governs the whole class of phenomena is one of the charac-
teristic features of the mathematical treatment of physical problems.




SUPPLEMENT TO CHAPTER VIII
§1. MATTERS OF PRINCIPLE
1. Differentiability
We have linked the concept of derivative of a function y = f(x) with
the intuitive idea of tangent to the graph of the function. Since the
general concept of function is so wide, it is necessary in the interests of
logical completeness to do away with this dependence on geometrical
intuition. For we have no guarantee that the intuitive facts familiar
from the consideration of simple curves such as circles and ellipses will
necessarily subsist for the graphs of more complicated functions. Con-
sider, for example, the function in Figure 282, whose graph has a corner.

¥
iy ¥
g g P
Fig. 282 ymzt) sl Fig. 380, y = ||, Fig. 384, u-z+[ 1+
G +]z~1]

‘This function is defined by the equation y = # -+ |z |, where |z} is
the absolute value of z, i.e.

y=zxz+2=2c for 220

y=z—2z=0 for z<0.
Another such example is the function ¥ = [z }; still another is the
functiony = z + 2| + (# — 1) 4+ |z — 1| The graphs of these
functions fail to have a definite tangent or direction at certain points;
this means that the functions do not possess derivatives for the corre-
sponding values of z.

Ezercises: 1) Form the function f(z) whose graph is one-half of & regular

hexagon.
2) Where are the corners of the graph of

J@ = GE+lzD+HEz-H+iz-il+HeE-D+iz- U

What are the discontinuities of //(z)?
42
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For another simple example of non-differentiability, we consider the
function
.1
=f&) = zsinZ,

which is obtained from the function sin 1/z (see p. 283) by multiplica-
tion by the factor z; we define f(2) to be zero forz = 0. 'Th's function,
whose graph for positive values of z is shown in Figure 285, is con-

<

Nm.v-:ﬁni‘

tinuous everywhere. The graph oscillates infinitely often in the neigh-
borhood of z = 0, the “waves” becoming very small as we approach
z = 0. The slope of these waves is given by

filx) = sinl - 1 cosl

(the reader may verify thls ag an exercme), as x tends to O this slope
il between ing positive and negative bounds. For

z = 0 we may try to find the derivative as the limit for & — 0 of the

difference quotient

hsin 3
10+ 1 = 50 _ _
13 R

e
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But as b — 0 this difference quotient oscillates between ~1 and +1
and dees not approach a limit; hence the function cannot be differenti-
ated at z = 0.

These examples indicate a difficulty inherent in the subject. Weier-
strass has most strikingly illustrated the situation by constructing a
continuous function whose graph does not have a tangent at any point.
While differentiability implies continuity, this shows that continuity
does not imply differentiability, since Weierstrass’' function is con-
tinuous and nowhere differentiable. In practice such difficulties wilt
not arise. Except perhaps for isolated points, curves will be smooth
and differentiation will not only be possible but will yield a continuous
derivative. Why, then, should we not simply stipulate that “patho-
logical” phenomena are to be absent in problems under consideration?
“This is exactly what one does in the caleulus, where only differentiable
functions are considered. In Chapter VIII we carried out the differ-
entiation of a large class of functions and thereby proved their differen-
tiability.

Since the differentiability of a function is not a logical matter of
course, it must either be assumed or proved. The concept of tangent
or direction of a curve, originally the basis for the concept of deriva-
tive, is then derived from the purely analytical definition of derivative:
H the finetion y = f(x) posessses a derivative, ie. if the difference

o+ k) —
=

quotient f@) has a single limit f'(z) as & tends to 0 from

either side, then the corresponding curve is said to have a tangent with
the slope f’(z). Thus the naive attitude of Fermat, Leibniz, and New-
ton is reversed in the interests of logical cogency.

Egercises: 1) Show that the continuous funetion defined by 2? sin (1/z) has
& derivative at z = 0.

2) Show that the function arc tan (1/z) is discontinuous for z = 0, that
z are tan (1/x} is continuous there but has no derivative, snd that 22 arc tan (1/z)
hay a derivative at z = 0.

2. The Integral

The situation is similar with respect to the integral of a continuous
function f(z). Instead of considering the “area under the ecurve”
= f(z) as a quantity which obviously exists and which can be ex-
pressed e posterior? as the limit of a sum, we define the integral by this
limit, and consider the concept of integral as the primary basis from
which the general concept of area is afterward derived. This attitude
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is forced upon us by a realization of the vagueness of geometrical intui-
tion when applied to analytical concepts as general as that of continuous
function. We start by forming a sum

W 80 = 3100 = 2 = 3 fodasy

where 2o = @, 7y, + -+, &, = b is a subdivision of the interval of integra~
tion, Az; = z; — z; is the z-difference or length of the jth subinterval,
and v; is an arbitrary value of z in this subinterval, ie. 2,4, < »; < 2;.
(We may take, for example, v; = z;or v; = z;4.) Now we form a
sequence of such sums in which the number # of subintervals increases
and at the same time the maximum length of the subintervals decreases
to zero. Then the main fact is: The sum S, for a given continuous
function f(z} tends to a definite limit 4, which is independent of the
specific way in which the subintervals and points v; are chosen. By

definition, this limit is the integral 4 = f F(@) dz. Of course, the exist-

ence of this limit requires analytical proof if we do not wish to rely on
an intuitive geometrical notion of area. This proof is given in every
rigorous textbook on the ealeulus.

Comparmg dlﬁ'erentlatlon and integration, we are confronted with
the f ituati Diff iability is definitely a re-
strictive condluon on a continuous function, but the actual carrying out
of the differentiation, i.e. the algorithm of the differential calculus, is in
practice a straightforward procedure based on a few simple rules. On
the other hand, every continuous function without exception possesses
an integral between any two given limits. But the explicit calculation
of such integrals, even for quite simple functions, is in general a very
difficult task. At this point the fundamental theorem of the caleulus
becomes in many cases the decisive instrument for carrying out the
integration. However, for most functions, even for very clementary
ones, integration does not yield simple explicit expressions, and the
numerical computation of integrals requires advanced methods.

3. Other Applications of the Concept of Integral. Work. Length

Dissociating the analytical notion of integral from its original geome-
trical interpretation, we meet a number of other, equally important,
interpretations and applications. For example, the integral can be
interpreted in mechanies as expressing the concept of work. The fol-
lowing simplest case will suffice for our explanation. Suppose a mass



468 THE CALCULUB (VI

moves along the z-axis under the influence of a force directed along
the axis. This mass is thought of as concentrated at the point with
the codrdinate z, and the foree is given as a function f(z) of the position,
the sign of f(x) indicating whether it points in the positive or negative
z-direction. If the force is constant and moves the mass from a to b,
then the work done is given by the produet, (b — @), of the intensity J
of the force and the distance traversed by the mass. But if the in-
tensity varies with z, we shall have to define the amount of work done
by & limiting process (as we defined velocity). To this end we divide
the interval from a to b as before into small subintervals by the points
Zo = @, Ly, ++-, Zn = b; then we imagine that in each subinterval the
force is constant and equal, say, to f{z,), the actual value at the end-
point, and calculate the work that would ecorrespond to this stepwise
varying force:

8= 3 f(w)az,
&

If we now refine the subdivision as before and let n incresse, we see that
the sum tends to the integral

j:f(z)dx.

Thus the work done by & continuously varying force is defined by an
integral.

As an example let us consider a mass m fastened by an elastic spring
to the origin z = 0. The force f(z) will, in line with the discussion on
page 461, be proportional to z,

fla) = —K'z,
where &* is a positive constant. Then the work done by this force if
the mass moves from the origin to the position z = b will be

v b
]; - ke de = -k 5

and the work we must do against this force, if we want to pull out the
2
spring to this position, is+ k’% .

A second application of the general notion of integral is to the voncept
of arc length of & curve. Let us suppose that the portion of the curve
under consideration is represented by a function y = f{(z) whose deriva-

tive f'(z) = % is also a continuous function. To define length we vro-
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ceed exactly as though we had to measure a curve for practical purposes
with a straight yardstick. We inseribe in the arc 4B a polygon with
n small edges, measure the total length L, of this polygon, and consider
the ler.zh L, as an approximation; letting n increase and the maximum
length of the edges of the polygon decresse toward zero, we define
L = lim L.

as the length of the arc AB. (In Chapter VI the length of a ecircle
was obtained in this way as the limit of the perimeters of inscribed
regular n-gons.) It can be shown that for sufficiently smooth curves
this limit exists and is independent of the specific way in which the se-~
quence of inseribed polygons is chosen. Curves for which this holds
are said to be rectifiable. Any “‘reasonable” curve that arises in theory
or applications will be rectifiable, and we shall not dwell on the investi-
gation of pathological cases. It will suffice to show that the arc AB,
for a function y = f(z) with a continuous derivative f’(z), has a length
L in this sense, and that I can be expressed by an integral.

To this end, let us denote the z-cotrdinates of 4 and B by ¢ and b
respectively, then subdivide the z-interval from a to b as before by the
points 2o = @, #y, -+« ,%;, ++» , %y = b, with the differences Az; =
Z; = &1, and consider the polygon with the vertices z;, y; = f(z;)
above these points of subdivision. A single edge of the polygon will

ox

5

3 N
Fig. 280, Aro length.

have the length /(z; — 2.0)° + (7 — via)® = VA7 + &y =
,‘/1 + (31/:) . Hence we have for the total ler " of the polygor

Z 5 1+ (BwY
_72_31 1+(A—z,) Az;.

1f now n tends to infinity, the difference quotients 2%’ will tend to the
4
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derivative Z—Z = f'(z) and we obtain for the length L the integral

expression
-
@ L= [ VIFTERe

Without going into further details of this theoretical discussion we
make two supplementary remarks. First, if B is considered as a variable
point on the curve with the cotidinate z, then L = L(z) becomes a
function of z, and we have by the fundamental theorem,

L) == VIFTFEPE

a frequently used formula. Second, while formula (2) gives the
“general” solution of the problem, it hardly yields an explicit expression
for arc length in particular cases. For this we have to substitute the
specific function f(z), or rather f’(z), in (2), and then to undertake the
actual integration of the expression obtained. Here the difficulty is
in general insurmountable if we restrict ourselves to the realm of the
elementary functions considered in this book. We shall mention & few
cases in which the integration is possible. The function

y=J@) = VI=7

z
represents the unit circle; we have f'(z) = dy - T = = whence

1
Vit @)= T 50 that the axc length of a circular are is given
by the integral

fo

e V1

For the parabola y = z° we have f'(z) = 2z and the arc length from
=0toz =bis

= arc sin b - are sin a.

s
j: Vit addz,

For the curve y = log sin £ we have f’(z) = cot  and the arc length
is expressed by

b
f VIF ot zdz.,
s
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‘We shall be content with merely writing down these integral expres-
sions. They could be evaluated with a little more technique than we
have at our commiand, but we shall go no farther in this direction.

§2. ORDERS OF MAGNITUDE

1. The Exponential Function and Powers of x

themati

Frequently in we a, which tend
to infinity. Often we need to compare such a sequence with another
sequence, b, , also tending to infinity, but perhaps “faster” than a..
To make this concept precise, we shall say that b, tends to infinity
faster than a., or has a higher order of magnitude than ., if the
ratio an/ba (numeralor and denominator of which both Lend to infinity)
tends to zero as n increases. Thus the sequence b, = 7’ tends to in-
finity faster than the sequence @, = n, and the latter in turn faster
than ¢, = /7, for

9:-:,"21‘,,0 o Vi _ 1
[ Vn
It is clear that n' tends to_infinity faster (han n" whenever ¢ > r > 0,
since then n'/n' = 1/n*™ — 0.

If the ratio a,/b. approaches a finite constant ¢, different from zero,
we say that the two sequences ~, and b, approach infinity at the same
rate or have the same ordi of magnitude. Thus a, = 7’ and

= 2n 4 n have the same order of magnitude, since

—0.

G 11

by 24 2+ 12
n

One might think that with the powers of n as a yardstick one could
measure the different degrees of becoming infinite for any sequence a,
that tends to infinity. To do this one would have to find a suitable
power n' with the same order of magnitude as a, ; Le. such that o./n"
tends to a finite constant different from zero. It is a remarkable fact
that this is by no means always possible, since the exponential function
8° with a > 1 (e.g. e) fends fo infinily faster than any power n°, however
large we choose s, while log n tends to infinity slower than any power n°,
however small the positive exponent s. In other words, we have the rela-
tions

e

[6) a—"—vO
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and
logn

(2) - 0
a8 n — . The exponent s here need not be an integer, but may be
any fixed positive number.

To prove (1) we first simplify the statement by taking the sth root
of the ratio; if the root tends to zero, the original ratio does also. Hence
we need only prove that

n—>
P

0
a5 n increases. Let b = a'"; since a is assumed to be greater than
1, b and also 4/ = &' will be greater than 1. We may write
B=1-4g
where g is positive. Now by the inequality (6) on page 185,
B = (14 Q" 2 1+ ng > mg,

80 that

" =" > g
and

noon 1

ah " onig T agt
Since the latter quantity tends to zero as n increases, the proof is

complete.
As a matter of fact, the relation
2

@ =0
holds when x becomes infinite in any manner by running through a
sequence I, Zz,---, which need not coincide with the sequence
1, 2,3, ... of positive integers. Forif n ~ I < z < n, then

. . .

T P2 a™ o

FriarT=1 @

This remark may be used to prove (2). Setting x = log n and
e’ = g,s0that n = ¢" and n* = ('), the ratio in (2) becomes
z
=

which is the special case of (3) for s = 1.
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Exercises: 1) Frove that for 2 — = the function log log z tends to infinity
more slowly than log . 2) The derivative of z/log z is 1/log z — 1/(log #)%
Prove that for large z it is “asymptotically” equivalent to tho first term,
1/log z, i.e. that their ratio tends to 1 as z > .

2. Order of Magnitude of log (nl)

In many applications, e.g. in the theory of probability, it is important
to know the order of magnitude or “asymptotic behavior” of n! for large
values of n. We shall here be content with studying the logarithm of
nl, ie. the expression

P,=log2+ log3 -+ log4 4+ .- + logn:
‘We shall show that the “asymptotic value” of P, is given by n log n;
ie. that
log(n
nlogn
asn — o,

The proof is typical of & much used method of comparing a sum with

an integral. In Figure 287 the sum P, is equal to the sum of the areas
y

‘ | 2 al n el
Fig. 287. Estimation of log (nl}.

of the rectangles whose tops are marked by solid lines, and which
together do not exceed the area

[Togste =t DmEG D~ t D +1

under the logarithmic curve from 1 to n + 1 (see p. 450, Exercise 1)).
But the sum P, is likewise equal to the total area of the rectangles whose
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tops are marked by broken lines and which together exceed the area
under the curve from 1 to n, given by

f logzdz = nlogn —n + 1.
1
Thus we have

nlogn —n+1 <P, <'(n+1)log{n+1) ~n,
and dividing by » log n,

1 1 P, logn+ 1) 1
B e e A )
_ logn+log(1+1/m) = 1
=@+ 1/m == log n fogn'

Obviously the two bounds tend to 1 as n tends to infinity, and our
statement is proved.

Ezercise: Prove that the two bounds are greater than 1 ~ 1/n and less than

1 + 1/n respectively.
§3. INFINITE SERIES AND PRODUCTS
1. Infinite Series of Functions

As we have already stated, expressing a quantity s as an infinite series,
1} s=bFbtbt+...,
is nothing but a convenient symbolism for the statement that s is the
limit, as n increases, of the sequence of finite “partial sums”,

By, 82,8, 00,

where
@) Wm=btbet ot bas
Thus the equation (1) is equivalent to the limiting relation
3) Hm s, = s a8 n—eo,
where s, is defined by (2). When the limit (3) exists we say that the
series (1) conerges to the value s, while if the limit (3) does not exist,

we say that the series diverges.
Thus, the series

T-d+i-%+-
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converges to the value x/4, and the series
EE RS Rk
converges to the value log 2; on the other hand, the series
1=t 41 =14
diverzes (since the partial sums alternate between 1 and 0}, and the
series
1+1+141+.

diverges because the partisl sums tend to infinity.

We have already encountered series whose terms b; are functions of
z of the form

by = ez,
with constant factors ¢;. Such series are called power series; they are
limits of polynomials representing the partial sums
S = 0o+ et + 0 + e ozt
(the addition of the constant term ¢, requires an unessential change in
the notation (2)). An expansion
J@) =4 oz o+ .o
of a funcmm J(z) in a power semes 1s thus & way of expressing an ap-
fon of f(z) by pol , the simplest functions. Sum-

marizing and supplementing prekus results, we list the following
power series expansions:

@ i_i_zﬂ_zq.z%-zw,.., validfor ~1 <z < 41
(5 tan“z:z—%+€—..., vatidfor —1 2  +1
(6) log(l+z§=z—§ §~-<-, validfor -1 <z < +1
&2} $logg + ~x+§+§+--., valid for -1 < z < +1

2

. z Ea .
(8) e—1+x+m+3~1+n+-~-, valid for all z.

To this collection we now add the following important expansions:
2 2

(9) sin z = g — + BT valid for all z,



474 THE CALCULUS fvimy

PR
(1) R O T valid for all z.
The proof is & simple consequence of the formulas {see p. 440)

.
(a) 'L. sinudu = 1~ cosz,

.
(b) L’ cos udu = sin .

We start with the inequality

cosz < 1.
Integrating from 0 to z, where z is any fixed positive number, we find
{see formula (13), p. 414)

sinzx < z;
integrating this again,

2
1—cosz & %,

which is the same thing as

x
>1-%.
cosz > 1 3

Integrating once more; we obtain

1} :
. T £
25— =2 -
Bl 21r 23 z 31
Proceeding indefinitely in this manner, we get the two sets of inequalities
sinz <z cosz <1
3 2
sinz2z-5 sz 21—
k] L} 2 4
. z x z x
sinz Lz :T!+5‘I “’”51"'2'1"'2{'!
2 & i R
ne>z_2a® _ T _r e r
ginz >2 + kil cosx > 1 !+4I il

fixed integer m such that z/m < 4, and write ¢ = z"/m! For any
integer n > m let us set » = m + r; then

z z z z "
O = mTimEs  myr <
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and 8s n — w, r also — o and hence ¢(})" — 0. It follows that

JE IR

Sinz=z—;7!+%—%+..,
2 4 L}

{ T )

{cosr=1—2—!+-4—g-m+~-~.

Since the terms. of the series are of alternating sign and decreasing
magnitude (at least for [z | < 1), it follows that the error commitied by
breaking off either series at any term will not exceed in magnitude the value
of the first term dropped.

Remarks. 'These series can be used for the computation of tables.
Example: What is sin 1°?7 1° is #/180 in radian measure; hence

i o= T E(L)’+ .
180 ~ 180 ~ 6 \i80, -
. . . I EAY
The error committed by breaking off here is not greater than T‘Zo(f%) ,

which is less than 0.000 000 000 02.  Hence sin 1° = 0.017 452 406 4, to
10 places of decimals.

Finally, we mention without proof the ‘‘binomial series”
(1) A+ 2)" =1+ ax+ 32’ + Cia* + -+,
where C} is the “binomial coefficient”

oterDe-2.la-s+ D
3 o .

If a = n is & positive integer, then we have C5 = 1, and for s > n
all the coefficients C3 in (11) are zero, so that we simply retain the finite
formula of the ordinary binomial theorem. It was one of Newton’s
great discoveries, made at the beginning of his career, that the element-
ary binomial theorem can be extended from positive integral exponents
n to arbitvary positive or negative, rational or irrational exponents a.
When @ is not an integer the right side of (11) yields an infinite series,
valid for =1 < 2 < +1. For |z | > 1 the series (11) is divergent and
thus the equality sign is meaningless.

In particular, we find, by substituting a = } in (11), the expansion
1 1.3 » 1.3.5 4
o et Tt

Like the other math icians of the eigh h century, Newton did
not give a real proof for the validity of his formula. A satisfactory

(12) Vidz=1+3~ e
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analysis of the convergence and range of validity of such infinite series
was not given until the nineteenth century.

Exercise: Write the power sevies for /1= 2% and for 1/4/1 = z.

The expansions (4) — (I11) are special cases of the general formula of
Brook Taylor (1685-1731), which aims at expanding any one of a large
class of functions f(z) in the form of a power series,

(13) @) = oo+ o + o’ + e’ + oo,

by finding a Jaw that expresses the coefficients ¢: in terms of the func-
tion f and its derivatives. It is not possible here to give a premse proof
of Taylor's formula by f lating and blishing the for
its validity. But the following plausibili iderations will illumi

the interconnections of the relevant mathematical facts.

Let us tentatively assume that an expansion (13) is possible. Let us
further assume that f(z) can be differentiated, that f’(z) can be dif-
ferentiated, and so on, so that the unending succession of derivatives

F@ @), - S0,
nctuall) exists. Finally, we take as granted that an infinite power
series may be dxﬁ'crentxated term by term just like a finite polynomial.
Under these wo can d ine the coeffici ¢a from a
knowledge of the behavior of f(z) in the neighborhood of z = 0. First,
by substituting z = 0 in (13), we find
a = f(0),
since all terms of the series containing z disappear. Now we differentiate
(13) and obtain
(139 @)=+ 2z + 3’ + o0+ nc2™ + .
Again substituting z = 0, but this time in (13") and not in (13), we find
a = f'(0).
By differentiating (13) we obtain
(183") f"(z) = 22 + 2-3ecst + -+ + (n = Demecaz™ + o0
then substituting z = 0 in (13”), we see that
2l e = f7(0).
Similarly, diff rentiating (13"} and then substituting z = 0,
3t =10,
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and by continuing this procedure, we get the general formula
o 1w
=510,

where f(0) is the value of the nth derivative of f(z) at # = 0. The
result is the Taylor series

(14) J) = f(0) + 2f'(0) + /”(0) + f"’(O) +

As an exercige in differentiation the reader may verify that, in examples
(4)-(11), the law of formation of the coefficients of a Taylor series is
satisfied.

2. Euler’s Formula, cos x -+ i sin x = ¢

One of the most fascinating results of Euler’s formalistic manipula-
tions is an intimate connection in_the domain of complex numbers
between the sine and cosine functions on the one hand, and the ex-
ponential funection on the other. It should be stated in advance that
Euler's “proof” and our subsequent argument have in no sense & rigorous
character; they are typically eighteenth eentury examples of formal ma-
nipulation.

Let us start with De Moivre’s formula proved in Chapter I,

(cos np + i sin ng) = (cos ¢ + 4 sin )",
In this we substitute ¢ = z/n, obtaining the formula

(cosz + fsinz) = (cosf+ isinf) .
n n,
Now if z is given, then cos :—i will differ but slightly from cos 0 = 1
for large n; moreover, since

Lz

sin= -

—r 1 s 20
7

E3TY

z
(see p. 307), we see that sin - is asymptotieally equal io ;, We

may therefore find it plausible to proceed to the limit formula

(14) cosz + fsinz = lim (1+"§) asn o @,
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Comparing the right side of this equation with the formula (p. 449)
e = Iim(1+z—) asn — ®,
n,
we have
(15) cosx + isinz = e,
which is Euler’s result.

We may obtain the same result in another formalistic way from the
expansion of €,

z 72
L

by substituting in it z = 7z, = being a real number. If we recall that
the successive powers of ¢ are ¢, — I, —¢, +1, and so on periodieally, then
by collecting real and imaginary parts we find

. 2 g . O )
e = (1—i+zv!—6—l+ -~-)+t(z—3-!+5~1—7—!+ ),
comparing the right hand side with the series for sin z and cos 2 we

again obtain Euler’s formula.
Such reasoning is by no means an actual proof of the relation (15).
he objection to our second is that the series expansion for
¢ was derived under the assumption that z is a real number; therefore

the substitution z = 2z requires justification. Likewise the validity of
the first argument is destroyed by she fact that the formula

e =lim{(1+z/n)asn— o

was derived for real values of z only.

To remove Euler’s formula from the sphere of mere formalism to that
of rigorous mathematical truth required the development of the theory
of functions of a complex variable, one of the great mathematical
achievements of the nineteenth century. Many other problems stimu-
lated this far-reaching development. We have seen, for example, that
the expansions of funetions in power series converge for different z-inter-
vals, Why do some expansions converge always, i.e. for all z, while
others become meaningless for |z | > 1?

Consider, for example, the geometrical series (4), page 473, which con-
verges for | z| < 1. The left side of this equation is perfectly mean~
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i P
141
right behaves most strangely, becoming

1=141~14....
This series does not converge, since its partial sums oscillate between 1
and 0. This indicates that functions may give rise to divergent series
even when the functions themselves do not show any irregularity. Of

ingful when z = 1, taking the value %, while the series on the

course, the function r_%_} becomes infinite when z — ~1. Since it
can easily be shown that convergence of a power series for z = a > 0
always implies convergence for ~a < z < a, we might find an “explana-
tion” of the queer behavior of the expansion in the discontinuity of

. 1 N
- forz = —1. But the function e may be expanded into

the series
1
e R A A SO
by substituting »*for z in (4). This series will also convergefor [z | < 1,
while for # = 1 it again leads to the divergent series 1 ~ 1 + 1 —
14 ..., and for [z > 1 it diverges explosively, although the func-
tion itself is everywhere regular.

It has turned out that a pl 37 ion of such pt is
possible only when the functions are studied for compler values of the
1
1+
must diverge for z = { because the denominator of the fraction becomes
zero, It follows that the series must also diverge for all z such that
| > [i[ = 1, since it can be shown that its convel, nce for any
such z would imply its convergence for z = 4. Thus the question of
the convergence of series, completely neglected in the early period of
the calculus, beeame one of the main factors in the creation of the

theory of functions of a complex variable.

3. The Harmonic Series and the Zeta Function. Euler’s Product for
the Sine

Series whose terms are simple combinations of the integers are par-

ticularly interesting. As an example we consider the “harmonic serieg’”

variable z, as well as for real values. For example, the series for

B 1i,1,1 1
(16 Lbgdgtgd ottt
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which differs from that for log 2 by the signs of the even-numbered
terms only.
To ask whether this series converges is to ask whether the sequence
81,88, 8,000,
where
1

1,1
an e B T

tends to a finite limit. Although the terms of the series (16) approach
0 as we go out farther and farther, it is easy to see that the series does
not converge. For by taking enough terms we can exceed any positive
number whatever, so that s, increases without limit and hence the
series (16) “diverges to infinity.” To see this we observe that
=144

s=ut G+ >a+t@FD=1+4

s=a+@G+ D>t GF P =Eat >4,

and in general
(18 > 145

Thus, for example, the partial sums s;» exceed 100 as soon as m 2 200,
Although the harmonic series does not converge, the series

i 1 1 1
19) Thgtgtgto ot

may be shown to converge for any value of s grezter than 1, and defines
for all s > 1 the so-called zeta function,

©0) ;<s>=um(1+21,+§;+%+--~+ni,)am_ﬁm,

as a function of the variable s. There is an important relation between
the zeta-function and the prime numbers, which we may derive by using
our knowledge of the geometrical series. Letp = 2,3,5,7, --- be any
prime; then for 5 > 1,
1
0< #< 1,

50 that

1 1
I VI S R
P P P
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Let us multiply together these expressions for all the primes
p =23, 57, ... without concerning ourselves with the validity of
such an operation. On the left we obtain the infinite “product™

(=) (= (=)

o 1 1
= limit a8 n — « of e e e
1-1/p = 1/p.

while on the other side we obtain the series
1 1
gt =10,

by virtue of the fact that every integer greater than 1 can be expressed
uniquely as the product of powers of distinet primes. Thus we have
represented the zeta-function as a product:

(21) te) = (1%/2)(1":117§>(ﬁ) o

If there were but a finite number of distinct primes, say p, ps,
P1,+++, Pr, then the product on the right side of (21) would be an
ordinary finite product and would therefore have a finite value, even
for s = 1, But as we have seen, the zeta series for s = 1
W =1+1+3+-.

diverges to infinity. This argument, which can easily bemade into a rigor-
ous proof, shows that there are infinitely many primes. Of course, this
is mueh more involved and sophisticated than the proof given by Euclid
(seep.22). But it has the fascination of a difficult ascent of a mountain
peak which could be reached from the other side by a comfortable road.

Infinite products such as (21) are sometimes just as useful as infinite
series for representing functions. Another infinite product, whose dis-
covery was one more of Euler’s achi ts, the tri i
function sin z. To understand this formula we start with a remark on
polynomials. If f(2) = a -+ @ 4+ .- + @.2" is a polynomial of
degree n and has n distinct zeros, 2, -+, Z,, then it is known from
algebra that f(z) can be decomposed into linear factors:

f@) = anx = m) (@~ 7)
(see p. 101). By factoring out the product zyzs- - -z, we can write

=22 (-2)
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where C is a constant which, by setting z = 0, is recognized as ¢ = aqg.
Now, if instead of polynomials we consider more complicated functions
f(z), the question arises whether a product decomposition by means of
the zeros of f(x) is still possible. (In general.this cannot be true, as
shown by the example of the exponential function which has no zeros at
all, since ¢* # 0 for every value of z.) Euler discovered that for the
sine function such a decomposition ¢s possible. To write the formula
in the simplest way, we consider not sin z, but sin =z. This function
has the zeros x = 0, %1, =2, +3, ..., since sin #n = 0 for all
integers n and for no other numbers. Euler’s formula now states that

(22) sinwz = 7z (l - —)(1 - 22)(1 - g;)(l —_ %)

This infinite product converges for all values of z, and is one of the most
beautiful formulas in mathematics. For z = } it yields

LT * 1
1= 11 Ao - o

I we write

1o L o@Dty
P n.2n
we obtain Wallis' product,

2
mentioned on page 300.
For proofs of all these facts we must refer the reader to textbooks on
the calculus (see also pp. 509-510).

*&4, THE PRIME NUMBER THEOREM OBTAINED BY
STATISTICAL METHODS

When mathematical methods are applied to the study of natural
phenomena one is usually satisfied with arguments in the course of
which the chain of strict logical reasoning is interrupted by more or less
plausible assumptions. Even in pure mathematics one encounters
reasoning which, while it does not provide a rigorous proof, nevertheless
suggosts the correet solution and points the direction in which a rigorous
proof may be sought. Bernoulli's selution of the brachistochrone
problem (see p. 383) has this character, as does most of the early work
in analysis.

.2
I

o
~je
~jo0
w0

244
'3'3°5
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By a procedure typical of applied mathematies and particularly of
statistical mechanics we shall here present an argument that at least
makes plausible the truth of Gauss’s famous law of the distribution of
the primes. (A related procedure was suggested to one of the authors
by the experimental physicist Gustav Hertz.) This theorem, discussed
empirically in the supplement to Chapter I, states that the number 4 {(n)
of primes not exceeding = is asymptotically equivalent to the quantity
n/log n:

n
A(n) ~ e
By this is meant that the ratio of A(n) to n/log n tends to the limit 1
ag n tends to infinity.
We start by making the assumption that there exists a mathematical
law which describes the distribution of the primes in the following sense:
for large values of n the function A(n) is ~pproximately equal to the

integral f W(z) dr, where W(z) is a function which measures the
2

“density” of the primes. (We choose 2 as lower limit of the integral
because for z < 2 clearly A(z) = 0.) More precisely, let z be a large
number and Ax another large number but such that the order of mag-
nitude of x is greater than that of Az. (For example, we might agree
to set Az = 4/z.) Then we are assuming that the distribution of the
primes is so sinooth that the number of primes in the interval from z
to z 4 Az is approximately equal to W(z).Az, and moreover that

W(z) as a function of z changes so slowly that the integral f Wiz)do
2

may be replaced by a sub 1 pproximation without
changing its asymptotic value. With these preliminary remarks we are
ready to begin the argument.

We have proved {(p. 471) that for large integers log n! is asymptoti-
cally equal to n-log =,

log n! ~ n.log n.

Now we proceed by giving a second formula for log »! involving the
primes and comparing the two expressions. Let us count how often
an arbitrary prime p less than = is contained as a factor in the integer
«n. We shall denote by [a], the largest integer & such
that p* divides a. Since the prime decomposition of every integer is
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unique, it follows that [abl, = [a], + {b], for any two integers a and b,
Hence
(] = [ + (2 + Bl -+ nh
The terms in the sequence 1, 2, 3, -+, n which are divisible by Il
are p, 2, 3p%, -+ ; their number N; for large = is approxlmstely
n/p". The number M;, of these terms which are divisible by p* and
no higher power of p is equal to Ny — Niy . Hence
nll, = My + 2M, + 3Ms + -+

= (N:~ N3} + 2(N: — N3) + 3N — N + -

=N+ No+ Ns +
n

n n n
=24l Py 2
» p’+p‘ p—1

{These equalities are, of course, only approximate.)
It follows that for large n the number n! is given approximately by

the product of all the expressions p?=! for all primes p < n. Thus we
Fave the formula

Tog ! ~ E

Comparing this with our previous asympbotic relation for log n! we find,
writing = instead of n,

Iog P

log p
Yp— 1

The next and decisive step is to obtain an asymptotic expression in
terms of W{z) for the right side of (1). When z is very large we may
subdivide the interval from 2 to z = n into a large number r of large
subintervals by choosing points 2 = &, k2, -+, &, §41 = 2, with cor-
responding increments Af; = fqa — & . In each subinterval there
may be primes, and all the primes in the jth subinterval will have
approximately the value &;. By our assumption on W(z) there are
approximately W (¢;)- A¢; primes in the jth subinterval; hence the sum
on the right side of (1) is approximately equal to

-
P we) 88
= -1

) log & ~ E
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Replacing this finite sum by the integral which it approximates, we have
as & plausible consequence of (1) the relation

@ togz ~ [ W0 1% a.

From this we shall determine the unknown funcf.lon W(z). If we re-
place the sign ~ by ordinary equality and differentiate both sides with
respect to z, then by the fundamental theorem of the calculus

1S logz
FRCF =1

€3]

We assumed at the beginning of our discussion that 4 (z) is approxi-
mately equal to f W(z) dz; hence A(z) is approximately given by the
2
integral
-
@ [2le
. zlogx
In order to evaluate this integral we observe that the function
f(z) = z/log z has the derivative

vy o 11
@ = g ™ Trar
For large values of z the two expressions
1 o1
logz  (log )’ logz =zlogz

are approximately equal, since for large z the second term in both cases
will be much smaller than the first. Hence the integral (4) will be
asymptotically equal to the integral
2
g £

[r@ve =10 -y - 2 - 2,
since the integrands will be almost equal over most of the range of in-
tegration. The term 2/log 2 can be neglected for large = since it is a
constant, and thus we obtain the final result

Alm) ~ logz

which is the prime number theorem.
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We cannot pretend that the preceding argument has more than a
suggestive value, But on closer analysis the following fact emerges.
1t is not difficult to give a complete justification for all the steps that
we have so boldly made; in particular, for equation (1), for the asymp-
totic equivalence between this sum and the integral in (2), and for the
step leading from (2) to (3). It isfar more difficult to prove the existence
of a smooth density function W(z), which we assumed at the beginring.
Once we accept this, the evaluation of the function is a comparatively
simple matter; from this point of view the proof of the existence of
such a function is the central difficulty of the prime number problem.



CHAPTER IX
RECENT DEVELOPMENTS
§1. A FORMULA FOR PRIMES

(see page 25)

Many different polynomials that produce primes are now known.
They add little to our knowledge of prime numbers; instead, they dem-
onstrate that polynomials can have very strange properties.

In his celebrated address to the 1900 International Congress of Math-
ematicians, David Hilbert posed 23 problems whose solution he felt
would be of the highest importance to the advancement of mathematics.
Hilbert’s tenth problem is to find out whether there exists a general
method—what we would now call an algorithm—for testing whether a
Diophantine equation has a solution. In 1970, following earlier work by
Martin Davis, Hilary Putnam, and Julia Robinson, the Russian mathe-
matician Yuri Matijasevic proved that no such “decision algorithm” ex-
ists, Be(‘ause the method effocmely uses polynomials as a rather
[ " in which to si computer
algorithrs, :he polynomials produced are absolutely enormous. James
Jones discovered an explicit system of polynomial equations for which
no decision algorithm exists: it comprises 18 equations in 33 variables
with maximum degree 5%.

An intriguing by-product of Matijasevic’s proof is that there exists a
(stmilarly complicated) polynomial p(x,, . . . , x,,) in 23 variables, whose
positive values, for integer values of the variables, are precisely the
primes. In 1976 J. P. Jones, D. Sato, H. Wada, and D. Wiens published a
relatively simple polynomial in 26 variables with the same property. Let
the variables be denoted a, b, ¢, ... y, % (it is coincidental, but ty-
pographically helpful, that the alphabet has 26 letters). Then their poly-
nomiat is:

k + 2)( ~[wz + b+ j - g}
Mgk + 2 ks DD+ h—2f - 2n+p+gtz—ef
= [16(k + 1k + 2)(n + 1) + 1~ ]
S [+ 2) (s L= ) - [ - D+ T -

487




488 RECENT DEVELOPMENTS [X}

— [16ryie - 1) + 1 -
- [{(a + w¥® — a)f— 1) (n + 4dy®) + 1 — (x + cuff
malto-yf—{@-DE+1-mF —fai+k+1-1—if
—p+la-n-1)+bCan +2a-n-2m-2)—mP
—lg+yla-p- 1 +sQRop+2a-p-2p-2)-af
=z +plla — p) + t2ap — p* — 1) — pmJ*}.

The positive values of this expression, for integer values of @, ..., 2,
are precisely the primes.

There is an apparent paradox: the expression clearly factorizes. In-
deed it is of the form (k + 2) {1 — M}, However, M is a sum of squares,
50 the expression is positive if and only if M = 0, and its value is then
k + 2. So the polynomial M has to be constructed so that

Mk, other variables) = 0 if and only if & + 2 is prime.

This can be done using Matijasevic's methods,

This result becomes slightly less intriguing when it becomes apparent
that in this context there is nothing very special about the primes. They
can be replaced by any “recursively enwmerable” sequence of num-
bers--—-which means essentially an infinite sequence determined by a
finite system of computable conditions—by devising an appropriate pol-
ynomial. The thrust of the discovery is that the concept of “computa-
bility” can be expressed in the language of polynomials, not that the
theory of primes can be simplified by introducing an algebraic formula.

§2. THE GOLDBACH CONJECTURE AND TWIN PRIMES
(page 30)

Goldbach’s conjecture that every even number greater than 2 is a
sum of two primes, and the closely associated “twin prime conjecture”
that there exist infinitely many primes p for which p + 2 is also prime,
remain open. However, a good deal more is now known about both
qguestions.

One of the most powerful methods for tackling some problems in
number theory is complex analysis, an idea that goes back to Euler and
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was exploited in particular by Riemann in his study of the zeta-function
{(s) (see p. 480). From 1920 onwards Godfrey H. Hardy and John E.
Littlewood developed the application of analytic number theory, as it
came to be called, to sti about the rep: jon of bers as
sums of numbers of special kinds, In 1937 I. M. Vinogradov used their
methods to prove that every sufficiently large odd number is a sum of
three primes. This improved upon his four-primes result, cited by Cour-
ant and Robbins on p. 31, which was proved in 1934 As they state, his
theorem applies only to “sufficiently large” bers greater
than some particular value n,—and his proof does not specify how large
n,, should be. In 1956 K. G. Borodzkin filled this gap by showing that n,
= exp(exp(16.038)) suffices, where exp(x) = ¢*. Several mathematicians
used Vinogradov's method to prove that “almost all” even numbers are
the sum of two primes; that is, the proportion of such numbers up to
some limit % tends to 100% as n tends to infinity.

In 1919 Viggo Brun introduced a different approach, the “sieve
method,” which generalizes the sieve of Eratosthenes (see p. 25). He
used it to prove that every sufficiently large even integer is a sum
of two numbers, each being a product of at most nine primes. A
series of improverents to this theorem, made by a number of peo-
ple, followed. For example, in 1937 G. Ricci proved that every suf-
ficiently large even integer is a sum of two numbers, one being a
product of at most two primes and the other a product of at most
366 primes. P. Kuhn used combinatorial ideas of A. A. Buchstab to
prove that every sufficiently large even integer is a sum of two num-
bers, each being a product of at most four primes. In 1957 Wang
Yuan proved that every sufficiently large even integer is a sum of a
prime and a product of at most three primes, on the assumption that
the Generalized Riemann Hypothesis holds.

The classical Riemann Hypothesis, another of Hitbert’s 23 problems
and stiill arguably the biggest unsolved question in the whole of mathe-
matics, concerns the Riemann zeta function {(s) when the variable s is
complex. Specifically, it states that if {(s) = 0 and s is not real, then
§ = 4 + iy for some real y. The ¢ of proving this
would be spectacular: they would revolutionize number theory and al-
gebraic geometry. Moreover, any method for solving such a problem
would almost certainly extend to other important variants such as the
Generalized Riemann Hypothesis, a considerably stronger statement of
the same general kind. Because the Riemann Hypothesis and its gen-
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eralizations are such a significant obstacle to progress, number theorists
have developed the habit of sending out exploratory tendrils into the
territory that lies hPVOnd by basing some of their work on the explicit
assumption that the E Hyy is, or a generalization, is true.
One justification of this approach is the possibility that it might lead to
a contradiction, thereby exposing the Riemann Hypothesis as false, but
this is mere rationalization. The number theorists are impatient; they
cannot wait to see what lies beyond the Big Obstacle.

Sometimes, once such territory has been explored, new possibilities
open up which allow the assumption to be dispensed with. In 1948,
without assuming the Generalized Riemann Hypothesis, Alfred Rényi
proved that every sufficiently large even integer is a sum of a prime and
a product of at most ¢ primes for some fixed but unknown ¢. In 1961
M. B. Barban showed that ¢ = 9 suffices. In 1962 Pan Cheng Dong re-
duced this to ¢ = 5; shortly afterwards Barban and Pan independently
reduced it to ¢ = 4; and in 1965 Buchstab proved the theorem when
¢ = 3. Finally, in 1966, Chen Jing Run improved the sieve method further
and proved the theorem with ¢ = 2. That is, every sufficiently large even
integer is a sum of a prime and a product of at most two primes—*“prime
plus almost-prime.” This is the closest result to the full Goldbach con-
Jecture that is currently known.

The twin prime conjecture has been approached in a similar spirit.
Brun's 1919 paper also proved that there are infinitely many numbers p
such that both p and p + 2 are a product of at most nine primes. Int line
with improvements to Brun's result on the Goldbach conjecture, there
were similar improvements to his work on the twin prime conjecture.
In 1924 Rademacher reduced Brun's number nine to seven. Buchstab
reduced it further, to six in 1930 and to five in 1938. In a paper of 1957
Wang noted enigmatically that “corresponding results of twin primes
problem have also been obtained,” which in the context amounts to a
claim that there are infinitely many numbers p such that both p and
p + 2 are a product of at mosi, three primes. Assuming the Generalized
Riemann Hypothesis, he showed in 1962 that there exist infinitely many
primes p such that p + 2 is a product of at most three primes. In 1965,
without making this assumption, Buchstab proved that for some fixed
¢ there exist infinitely many primes p such that p + 2 is a product of at
most ¢ primes. Chen's 1973 paper proved that ¢ = 2 suffices, and again
this is the closest known result 1o the twin primes conjecture. It seems
unlikely that current methods can push the result much closer: a gen-
ninely novel idea is needed.
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§3. FERMAT'S LAST THEOREM
(see page 42)
One of the most dramatic developments since Courant and Robbins
wrote What Is Mathemati was the 1994 proof of Fermat's Last The-

orem oy Andrew Wiles of Princeton University. Recall that Fermat con-
Jectured that the equation

[e)] a7y w2t
has no nonzero integer solutions when n > 3. Wiles’s proof is highly
technical and accessible only to experts. However, the general outline
is comprehensible. The attack is highly indirect, and makes heavy use
of the theory of “elliptic curves,” which are defined by Diophantine
equations of the form
] ¥ o= art F bt e+ d
for rational numbers a, b, ¢, d. (The adjective “elliptic” derives from
connections with so-catled elliptic functions, and does not refer to the
curve's shape.) A great deal is known about such equations: they con-
stitute one of the deepest and best understood areas of number theory.
Fermat's equation (1) can be rewritten as (2/2)" + (y/z") = 1, so the
point (X, ¥) = (a/z, y/z) lies on the Fermat curve with equation
3 X+ Y= L
Say that (X, Y) is a rational point if both X and Y are rational numbers.
Then Fermat's Last Theorem is equivalent to the assertion that no ra-
tional point can lie on the Fermat curve (3) when # 2 3. Between 1970
and 1975, Yves Hellegouarch investigated a curious connection between
Fermat curves (3) and elliptic curves (2). Jean-Pierre Serre suggested
trying the converse: to exploit properties of elliptic curves to prove re-
sults on Fermat’s Last Theorem. It 1985 Gerhard Frey made this sug-
gestion precise by introducing what is now called the Frey elliptic curve
associated with a presumptive solution of the Fermat equation. Suppose
that there is a nontrivial solution 4" + B = € of the Fermat equation,
and form the elliptic curve
[€Y) ¥ (e A — B
This is the Frey elliptic curve, and it exists if and only if Fermat’s Last
Theorem is false. So in order to prove Fermat's Last Theorem it is
enough to prove that Frey's curve (4) cannot exist. The way to do this
is to follow the “indirect” method of proof (see p. 86): that is, to assume
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that it does exist and deduce a contradiction. This implies that the Frey
curve does not exist after all, which implies that Fermat’s Last Theorem
is true. Frey found strong evidence that his curve “ought not to exist”
by proving that it has several extremely curious and unlikely sounding
properties. In 1986 Kenneth Ribet pinned the probem down by proving
that Frey's curve cannot exist provided that a big unsolved problem in
number theory, the Taniyama conjecture, is true. He thereby reduced
one major unsolved problem, Fermat's Last Theorem, to another major
unsolved problem. This kind of reduction is often unhelpful, just re-
placing one hard problem by a harder one, but in this case it hit paydirt,
because it provided a context in which to tackle Fermat's Last Theorem.

The Taniyama conjecture is again technical, but it can be explained
with reference to a special case. There is an intimate relationship be-
tween the “Pythagorean equation” @’ + & = ¢, the unit circle, and the
trigonometric functions sin and cos. To find this relationship, observe
that the Pythagorean egquation can be rewritten in the form (a/c)® +
* = |, which iraplies that the point (x,) = (a/e, b/c) lies on the unit
circle, whose eguation is 22 + ¥ = 1. It is well known that the trigo-
nometric functions provide a simple way to represent the unit circle.
Specifically, Pythagoras's Theorem and the geometric definition of sin
and cos imply that the equation

® cos6 + sin® — 1

holds for any angle 8 (see p. 277). If we set x = cos 6, ¥ = sin 8, then
(5) states that the point (x,) lies on the unit circle. To sum up: solving
the Pythagorean equation in integers is equivalent to finding an angle 6
such that both cos 8 and sin € are rational numbers (equal respectively
to a/c and b/c). Because the trigonometric functions have all sorts of
pleasant properties, this idea is the basis of a really fraitful theory of
the Pythagorean equation.

The Taniyama conjecture says that (in a rather technical setting) a
similar kind of idea can be applied to any elliptic curve, but replacing
sin and cos by more sophisticated “modular” functions. So problems
about elliptic curves can be replaced by problems about modular fune-
tions, just as problems about the circle can be replaced by problems
about trigonometric functions.

Wiles realized that Frey's approach can be pushed through to a sat-
isfactory conclusion without using the full force of the Taniyama con-
Jecture. Instead, a particular case suffices, one that applies to a class of
elliptic curves known as “semistable.” In a 100-page paper he marshalled
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enough powerful machinery to prove the semistable case of the Tani-
yama conjecture, leading to the following theorem. Suppose that M and
N are distinct nonzero relatively prime integers such that MN(M - Nj
is divisible by 16. Then the elliptic curve ¥° = x(x + M)(x + N) can be
parametrized by modular functions. Indeed the condition on divisibility
by 16 implies that this curve is semistable, so the semistable Taniyama
conjecture establishes the desired property.

We now apply Wiles's theorem to Frey's curve (4) by letting M = A”,
N=-B"ThenM — N = A"+ B = (", so MN(M ~ N) = ~A"B'C",
and we must show this is a multiple of 16. Now at least one of 4, B, C
must be even—for if A and B are both odd then (" is a sum of two odd
numbers, hence even—which implies that C is even. We may further
assume that r 2 5, because Euler long ago proved Fermat's Last Theo-
= 3. But since the fifth or higher power of an even number is
> 32, the number —A”B"C" is a maltiple of 32, hence
certainly a multiple of 16. Therefore Frey’s curve satisfies the hypothesis
of Wiles’s theorem, implying that it can be parametrized by modular
functions. However, Ribet’s proof that the Taniyama conjecture implies
the nonexistence of Frey's curve works by proving that the Frey curve
cannof be parametrized by modular functions. This is a contradiction,
so Fermat's Last Theorem is true.

This proof is very indirect and requires sophisticated ideas. Moreover,
some difficulties emerged concerning the first version of Wiles's proof,
which added to the sense of drama. He circulated a message by elec-
fronic mail to the mathematical community, acknowledging these diffi-
culties but asserting his confidence that his methods would overcome
them. Repairing the proof took longer than hoped, but on 26 October
1994 Karl Rubin circulated another message: “As most of you know, the
argument described by Wiles . .. turned ont to have a serious gap,
namely the construction of an Euler system. After trying unsuccessfully
to repair that construction, Wiles went back te a different approach,
which he had tried earlier but abandoned in favour of the Euler system
idea. He was then able to complete his proof.”

$4. THE CONTINUUM HYPOTHESIS
(see page 88)
The Hypothesis of the Continuum, now usually known as the Contin-

uute Hypothesis, states that the cardinal of the set of all real numbers
is the smallest infinite cardinal greater than that of the integers. It is
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now known that the Continuum Hypothesis is neither true nor false, but

s . In order to und d what this means, we must briefly
recall the axiomatic method (p. 214). The axiomatic method specifies a
mathematical object by stating an explicit system of conditions, axioms,
that the object is required to satisfy. This focuses attention on the ab-
stract relationships between that object and others, rather than on the
raw materials from which it is “built.” Simple presentations of set theory
assume that notions such as “set” are defined, and described how to
manipulate them. In order to set up a rigorous framework in which to
discuss the Continuum Hypothesis, it is necessary to specify a system
of axioms for set theory.

In 1964 Paul Cohen proved that the truth of the Continuum Hypoth-
esis depends upon which axioms for set theory are chosen. The situation
is similar to that for geometry. The truth or falsity of Euclid’s paralle]
axiom depends upon the type of geometry: there is a “Euclidean” ge-
ometry for which it is true, but there are also “non-Euclidean” geome-
tries for which it is false (see p. 218). Similarly, there are “Cantorian”
set theories in which the Continuum Hypothesis is true and “non-
Cantorian” ones in which it is false. Earlier Kurt Godel had proved that
the Continuum Hypothesis is true in some axiomatizations of set theory.
Using a new technique called “forcing,” Cohen proved that in other ax-
iomatizations it is false. In particular, there is no distinguished choice
of axioms that leads to a unique ‘natural’ theory of sets.

$5. SET-THEORETIC NOTATION
(see page 110)

Mathematical notation follows fashions, and sometimes the fashion
can change. In consequence, Courant and Robbins’s terminology occa-
sionally differs in very minor ways from what is now current, but this
is seldom important enough to mention (e.g., “Hypothesis of the Con-
tinuum” instead of “Continuum Hypothesis™). On this particular ocea-
sion, however, the difference from current practice is too significant to
be ignored.

The terms “logical sum” and “logical produet™ are hardly ever used
nowadays; instead, the alternatives “union” and “intersection” are em-
ployed. The empty set is denotec 3, not O, and there is no longer a
special symbol I for the universe of discourse. The current notations for
the union and intersection of two sets A and B are as follows:
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Union: A U B (in place of Courant and Robbins's A + B)
Intersection: A M B (in place of Courant and Robbins's AB).
The complement A' is often written A”, but 4' is still common. The cur-
rent notation for subsets is either C or ¢. Unlike < and =, the expres-
sion 4 C B does not imply that 4 # B, either today or in Courant and
Robbins’s time. In order to denote inequality in a subset relation, the
cumbersome notation A ¢ B is ased.

The notations A + B, AB, and A" do still survive in coraputer science
and elecironic engineering, where they are used to describe circuits
formed from logic gates.

Ironically, the modern notation obscures the algebraic analogies in
properties (6-17) on p. 110. In view of (10, 11, 13), however, this may
not be entirely a bad thing.

§6. THE FOUR COLOR THEOREM
(see pages 247, 264)

The four color theorem was proved in June 1976 by Kenneth Appel
and Wolfgang Haken. Their proof depends upon showing that some two
thousand specific maps behave in a particular rather complicated way.
Checking ali these cases is immensely tedious, so they used a computer,
which required several thousand hours to complete the checks. The
proof can now be verified in a few hours, thanks to better theoretical
methods and faster computers, but no “pencil and paper” proof has yet
been found. Does a simpler proof exist? Nobody knows, although it has
been shown that no substantially simpler proof can run along similar
lines.

Courant and Robbins’s proof of the Five Color Theorem (p. 264) is
an adaptation of work of Arthur Kempe, an attorney and amateur math-
ematician, who published a purported proof of the Four Color Theorem
in 1879. It employs a variant on the method of mathematical induction
(pp. 9-20), the existence of a so-called “minimal criminal.” The basic
idea is that if the Four Color Theorem is false, then there must exist
maps that require a fifth color. If such “bad” maps exist, they can be
incorporated into bigger maps in all sorts of ways, all of which will need
a fifth color too. Since there is no point in making bad maps bigger, we
go the opposite way and look at the smallest bad maps, colloguially
known as minimal criminals. The existence of a minimal criminal fo-
lows from the principle of the smallest integer (p. 18}, which is equiv-
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alent to the principle of mathematical induction. Minimal eriminals are
distinguished by the following properties: they need five colors, but any
map with a smaller number of countries needs only four. The proof
proceeds to exploit these properties to restrict the structure of a mini-
mal eriminal, until eventually it is shown that no minimal criminal exists.
By contradiction (indirect proof, see p. 86), the theorem must be true.

Kempe’s idea was to take a minimal crinvinal and produce a smatler,
refated map. By minimality of the criminal, this smaller map can be four-
colored. Then he tried to deduce that the original map can also be four-
colored, the required contradiction. Specifically, his idea was to lake a
minimal criminal and shrink some suitable region down to a point. The
resulting map has fewer regions, so it can be four-colored. It may not
be possible to restore the shrunken region and find a color for it without.
changing the colors on the rest of the map, because the region that was
shrunk may abut regions that between them already use up all four
colors. However, if the region that is shrunk is a triangle (a region meet-
ing only three others), there is no problem. If it is a square, then a
cunning technique for swapping colors now called a “Kempe chain” can
change one neighbouring color, which does the trick. If it is a pentagon,
Kempe claimed, a similar argument. works. And he could prove that
every map must contain either a triangle, a sguare, or a pentagon, so
there is always a suitable region to shrink and restore.

In 1890 Percy Heawood found a mistake in Kempe's treatment of
pentagonal regions. Heawood did notice that Kerupe’s method can be
patched up to give a proof that five colors always suffice: one extra color
makes the pentagon easier to restore. This is the proof presented on p.
264. On the other hand, nobody could find a map that actually needed
five colors.

In 1922 Philip Franklin proved that every map with 26 or fewer
regions is four-colorable. His methad laid the foundations for the even-
tugl successful assault, with the idea of a reducible configuration. A
configuration is just a connected set of regions from the map, together
with information on how many regions are adjacent to each around the
outside. To see what reducibility means, consider the example of shrink-
ing and restoring a triangular region. Shrink the triangle to a point, and
suppose that the resulting map, which has one region fewer, can be 4-
coloured. Then so can the original map, because the triangle abuts only
three regions, and that leaves a fourth cofour spare when it is restored
to the map. More generally, a configuration is reducible if the four-
colorability of any map that contains it can be proved provided a smaller
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map is four-colorable. A similar argument proves squares are reducible.
Kempe thought that pentagons were reducible, but he was wrong.

Evidently a minimal criminal cannot contain a reducible configura-
tion. So if we show that every minimal crisninal must contain a reducible
configuration, we have the required contradiction. The most direct way
to do this is to find a set of cible o ions that is i 3
in the sense that any map—not just a minimal criminal—raust contain
a configuration in this set. Kempe effectively tried to do this. He proved,
correctly, that the set {triangle, square, pentagon] is unavoidable, but he
made an error when proving reducibility of the pentagon. Nevertheless,
the basic strategy of his proof—find an unavoidable set of reducible
configurations—was a brilliant idea.

In 1950 Heinrich Heesch became the first mathematician to state pub-
licly that he believed the Four Color Theorem could be proved by finding
an unavoidable set of reducible configurations. However, he realized
that the unavoidable set would have to contain many more configura-
tions than the three in Kempe’s failed attempt, because the pentagon
must be replaced by a whole list of alternatives. In fact, Heesch esti-
mated that about 10,000 configurations would be needed, each of mod-
erate size. Further, he devised a method for proving unavoidability,
based on a loose electrical analogy. Suppose a quantity of electrical
charge is applied to each region, and then allowed to move into neigh-
bouring regions by following various rules. For example, we might insist
that the charge on any pentagon is split into equal parts and transferred
to any of its neighbors, except triangles, squares, and pentagons. By
analysing the general features of charge distributions, it can be shown
that certain specific configurations must occur—otherwise charge
“leaks away.” More complicated recipes lead to more complicated lists
of unavoidable configurations.

In 1970 Wolfgang Haken found improvements to Heesch’s discharg-
ing method and started thinking seriously about solving the Four Color
Problem. The main difficulty was the likely size of configurations in the
unavoidable set. With an estimated 10,000 regions to check for reduci-
bility, the whole computation could easily take a century. And if, at the
end, just one configuration in the unavoidable set turned out not to be
reducible, then the whole calculation would be worthless

Between 1972 and 1974, Haken, together with Kenneth Appel, began
an interactive dialogue with the computer fo try to improve the chances
of success. The first run of their computer program produced much
useful information. They modified the program to overcome various
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flaws and tried again. More subtle problems emerged and were duly
corrected. After some six months of this dialogue, Appel and Haken
became convinced that their method of proving unavoidability had a
good chance of success. In 1975 their research program moved from the
exploratory phase to the final attack. In January 1976 they began con-
struction of an unavoidable set with some 2000 regions, and by June
1976 the work was complete. Then they tested each configuration in this
set for re ibility. Here the ¢ or proved indi 2, duly re-
porting that every one of the 2000 configurations in Appel and Haken's
unavoidable set is reducible. This contradicts the assumed existence of
a ruinimal criminal, so four colors alone suffice to color any planar map.

To what extent can an argument that relies on an enormous com-
putation, which an unaided human brain cannot possibly check, be con-
sidered a proof? Stephen Tymoczko, a philosopher, wrote: “If we accept
the four-color theorem as a theorem, then we are committed to changing
the sense of ‘theorem,” or more to the point, to changing the sense of
the underlying concept of ‘proof” . However, few practicing research
mathematicians agree. One reason is that there exist mathematical
proofs that do not rely on a compuier, yet are so long and complicated
that even after studying them for a decade, nobody could put his hand
on his heart and declare them to be totally unflawed. For example the
so-called “classification theorem for finite simple groups” is at least
10,000 pages long, required the efforts of over a hundred people and can
be followed only by a highly trained specialist. However, mathemati-
cians are generally convinced that the proof is correct. The reason is
that the strategy makes sense, the details hang together, nobody has
found a serious error, and the judgment of the people doing the work
is at least as trustworthy as that of an outsider. That conviction would
of course vanish if anybody—insider or outsider—found a mistake, but
so far nobody has.

"There is nothing in the Appel-Haken proof that is any less convincing
than the classification theorem for finite simple groups. In fact, a com-
puter is much less likely to make an error than a human, provided its
program is correct. Appel and Haken’s proof strategy makes good log-
ical sense; their unavoidable set was in any case obtained by hand; and
there seems little reason to doubt the accuracy of the program used fo
check reducibility. Random “spot tests™ have found nothing amiss. In a
newspaper interview, Haken summed up the consensus view: “Anyone.
anywhere along the line, can fill in the details and check them. The fact
that a computer can run through more details in a few hours than a
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Fig 28, The Mandethor et s ditri s ol ieificetion.
human could ever hope to do in a lifetitee does not change the basic
concept of mathematical proof. What has changed is not the theory but
the practice of mathematics.”

§7. HAUSDORFF DIMENSION AND FRACTALS
248)

Henri Poincaré's 1912 definition of dimension (see p. 249) is topolog-
ical, and—reasonably enough—it always leads to an integer value. A
concept of dimension rather different from Poincaré’s has recently come
to prominence. It was originally invented by Felix Hausdortf in 1919 and
developed by A. 8. Besicovitch in the 1930s, but it then becaroe some-
thing of a mathematical backwater. It has come hack into vogue becanse
of its applications to Benoit Mandelbrot’s theory of fractals—geometric
objects with structure on all seates of magnification, such as the famous
Mandelbrot set (Fig. 288).

‘This sel consists of all complex numbers ¢ {(which can be represented
as points in the plane) such that the sequence ¢, ¢ + ¢, (¢7 + ¢) + ¢,

{see pag
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1 dimension 2 dimensions 3 dimensions
2 copies 4 copiss 8 copies
Fig, 289 The swambes of copies wequised o dunble an ohjects size depends upon its dimension.

. does not tend to infinity. Here each term in the sequence is the square
of the previous term, plus c.

The Hausdorff-Besicovitch dimension of a set, now often called its
Sfractal dimension, has many apphcatmm in different branches of sci-
ence, because it is a precise quantity that can be experi
and compared with theory. Surprisingly, it need not be an integer. This cu-
rious feature, the reason why the number is still reasonably considered as
a dimension, can be understood by thinking about a simpler version
known as scaling dimension, as follows. Some shapes can be assembled
to form larger copies of themselves. For example (see Fig. 289), itrequires
two copies of a line segment (a 1-dimensional object) to make a line seg-
ment twice the size. It requires four copies of a (2-dimensional) square to
make one twice the size, and il requires eight copies of a (3-dimensional)
cube to make one twice the size. In general it requires 2¢ copies of a d-
dimensional hypercube (see p. 230) to make one twice the size, and it re-
quires ¢ = ¢ copies to make one a times the size.

We can solve this equation for ¢ by taking logarithms (see p. 445,
equation (6)):

loge = dloga
s0 that

_loge
log a

(6)

We can now work the other way round and use this equation to define
d, given ¢ and a. The result is called the scaling dimension of the set
concerned. In examples this leads to intriguing conclusions. For
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instance, the Cantor set (see p. 248) can be made three times as big
(a = 3) by assembling two copies (¢ = 2) (see Fig. 200).
According to definition (6) the scaling dimension d of the Cantor set
is therefore
_ B2 eomea
log 3
a real number but not an integer. Similarly the Sierpinski gasket (Fig.
201) can be doubled in size (¢ = 2) by assembling three copies, so its
scaling dimension is
_log3
log 2
This quantity is called a dimension because it takes the same value
as the usual dimension for “nice” sets such as intervals, squares, cubes,
and so on. The fractal dimension agrees with the scaling dimension for
many sets but is defined for sets that cannot be enlarged by assembling
copies of themselves. The fractal dimension of a fractal set is usually
not an integer, although sometimes it can be. For example, in 1991 Mit-
suhiro Shishikura proved that the fractal dimension of the bmmdaxy of
the Mandelbrot set is 2. The true signi € of the fractal di on
is as a measure of “how well the set fills space” or “how rough the set
is.” For example, the Cantor set, with dimension strictly between 0 and
1, fills space better than a point (dimension () but less well than a line
segment. (dimension 1). Thus the fractal dimension resolves the question
whether the Cantor set should have dimension 0 or 1 (see p. 249) ina
very different manner from Poincaré's approach.

§8. KNOTS

= 1.584962. ...

(see puge 255)

‘The theory of knots is carrently the focus of a tremendous amount
of research activity, sparked by the discovery of the Jones Polynomial,
a remarkable new method for distinguishing topologically inequivalent
knols The theory involves links as well as knots, and we begin by mak-
concepts more precise.

k is a set of one or more closed loops in three-dimensional space.
The individual loops are called the components of the link. The loops
can be twisted or knotted, and—as the name suggests—may be linked
together in any way, including not being linked at all in the usual sense.
If there is only one loop, the link s called a knot. The central problem
in link theory is to find efficient ways to tell whether or not two given
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links or knots are topologicaily equivalent—that is, can be deformed
into each other by continuous transformations (see pp. 241-2). In par-
ticular we want to find out whether what looks like a knot is really
unknotted, that is, is equivalent to the unknot (Fig. 292a); and whether
a given n-component link can be unlinked, that is, is equivalent to the
n~component unlink (Fig. 292b).
The way to achieve this is to I'md tapological invariants. These are
or more complic: h ical objects——that do not
change when the link is contmuousiy deformed. It follows that link with

1st copy 2nd copy

combined triple-sized Cantor set

S 200 Twis copies bf & Cantor ser g s size
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different invariants must be topologically inequivalent. However, links
with the same invariants may or may not be equivalent, and the only
way to decide is either to find a topological equivalence or invent a more
sensitive invariant.

The standard knot invariant, in the pre-fones era of knot theory, was
the Alexander polynomial, invented in 1926. This assigns to each knot
a polynomial in a variable t, which can be calculated by following a
standard procedure. The precise procedure need not concern us here,
but fo indicate the kind of results that are obtained, Fig. 293 shows
several simple knots and their Alexander polynomials.

The Alexander polynomial is good enough to distingnish between a
trefoil knot and a reef knot, because these have different Alexander
polynomials. It is not good enough to distinguish between

« a reef knot and a granny knot
« alefi-handed trefoil and a right-handed trefoil

even though it is experimentally “obvious” that these knots are indeed
inequivalent. The problem is, how can we prove this? Between 1926 and
1984, mathematicians expended a great deal of effort on these and sim-
ilar questions. They solved them, but by rather complicated methods.
Knot theory did not exactly grind to a halt, but it was certainly in need
of some new insights.

In 1984 Vaughan Jones, a New Zealander, was working on questions
in analysis, about so-called trace functions on operator algebras, which
had arisen in connection with mathematical physics. D. Hatt and Pierre
de la Harpe noticed that some of his equations looked rather like equa-
tions arising in the theory of braids, which are tangled systems of lines
very closely related to links. Pondering the reasons that might lie behind
such a coincidence, Jones discovered that his trace functions could be
used to define a polynomial invariant for links.

At first it was thought that the Jones polynomial must be just some
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variation on the Alexander polynomial, but it soon became clear that it
was inely new. Sirapler itions, not involving operator algebras,
were found. F‘ne gmups of o) ician ly and

ization which was even better at
distingunishing knots, a two-vanable formula often called the HOMFLY
polynomial—short for its discoverers: Hoste-Ocneanu-Millett-Freyd-
Lickorish-Yetter. Today there are a dozen or more new knot
polynomials. They have solved many outstanding problems, but they
also pose many new puulei of I.h(’lr own, because they do not fit com-
fortably into the of . In a sense,
topologists can calculate them and prove theorems about them, they are
not yet certain what these new polynomial invariants really are. They
appear to have some deep relation to guantum physics.

The original Jones polynomial is a powerful enough invariant to dis-
tinguish a left-handed trefoil from a right-handed one, which the Alex-
ander polynomial could not manage. The HOMFLY polynomial is even
more powerful, and it can distinguish a reef knot from a granny knot.
In fact, denoting the HOMFLY polynomial of a link L by P(L), we have

P(left-handed trefoil) = —22° — o + x¥y?
P(right-handed trefoil) = ~2r% — 2% + & .
Preef) = (-2 — x* + 2%y (20 — 2t + x %),
P(granny) = (=22 — o' + P2y)°

Here 2 and y are the two variables required to define the polynomial.
These results obviously prove not only that the two types of trefoil are
topologically inequivalent, but also that the reef knot and granny knot
are topologically inequivalent.

§9. A PROBLEM IN MECHANICS
(see page 319)

This is the one place where arguably Courant and Robbins made a
mistake, although by adding further conditions it is possible to save their
argument. Paradoxically, the flaw in their proof is most easily detected
if we employ the topological approach to dynamics that their argument
was intended to advocate.

We repeat the statement of the problem. Suppose a train travels be-
tween two railway stations along a straight track. A rod is hinged to the
floor of one of the carriages, able to move without frietion either forward
or backward until it touches the floor (Fig. 175, p. 320}. If it does touch
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the floor, assume it stays there throughout the subsequent motion. Sup-
pose we specify in advance how the train moves. The motion need not
be uniform: the train can speed up, stop suddenly, even go into reverse
for a time. It must start at one station and end at the other.

Courant and Robbins ask whether it is always possible to place the
rod in such a position that it never hits the floor during the journey.
Their solution is to note that the final position of the rod depends con-
tinuously on its initial position. There is a continuous range of starting
angles, from 0° to 180°. Because the final position depends continuously
on the initial position, Bolzano's theorem (p. 312} implies that the range
of final angles is also continuous. If we start with the rod lying down
forwards at 0°, it stays there. If we start with it lying down backwards
at 180°, it stays there. So the range of final angles includes all vatues
between 0° and 180°. In particular, it includes 90°, so we can arrange for
the rod to finish up vertical. Since it stays on the floor when it hits it, it
cannot hit the floor at all.

The difficulty is that the continuity assumption made in the above
discussion is arguably not justified. The problem is not the intricacies
of Newton's laws of motion, but those “absorbing boundary conditions”:
if the rod hits the floor, then it stays there. In order to see why the
boundary conditions cause trouble, we introduce a topological picture
of the possible motions of the system. This approach, known as a phase
porirait, goes back to Poincaré. The idea is to draw a kind of space-
time diagram of the motior, rot just for a single initial position of the
rod, but for many different positions——in principle, all of them. The po-
sition of the rod is an angle between 0° and 360°, and we can graph this
in the horizontal direction (see Fig. 294). Let time run in the vertical
direction. Note that the left and right hand edges of this picture should
be identified because 0° = 360°: conceptually, the rectangle is rolled into
a cylinder.

Now, the path in space and time of the angle that determines the
position of the rod forms some curve that runs up the cylinder—what
Albert Einstein caited a “world-line.” Different initial angles lead to dif-
ferent curves. The laws of dynamit how that these curves vary con-
tinuously as the initial angle varies continuously—provided the
boundary conditions are not enforced. Without those conditions the rod
is free to turn a full 360°~-there is no floor to prevent it turning al) the
way round. A possible history is shown in Fig. 294a, and here the final
position does depend continuously upon the initial position.

However, when the absorbing boundary conditions are put back (Fig.
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294b}, the final position need nof depend continuously on the initial one.
Curves that just graze the left-hand boundary can swing ali the way over
to the right. Indeed, in this particular picture all initial positions end up
on the floor: contrary to what Courant and Robbins claim, there is no
choice that keeps the rod off the floor throughout the motion.

This error in Courant and Robbins's reasoning was first pointed out
by Tim Poston in 1876, but it is still not widely known. The continuity
assumption can be resuscitated by imposing extra contraints on the
motior, for exaraple a perfectly level track, no springs on the train, and
so forth. But it seems more instructive, as an exercise in the application
of topology to dynamics, to understand why the absorbing boundary
conditions destroy continuity. This difficulty is important in advanced
topological dynamics, where it has given rise to the concept of an “iso-
lating block,” which is a region such that no dynamical trajectories are
tangent to its boundary.

§10. STEINER'S PROBLEM
(see page 359)
Steiner's problem (p. 354) concerns a triangle ABC, and it requires

us to find a point P that minimizes the total distance PA + PB + PC.
The answer, at least when the angles of triangle ABC are all less than
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120°, is that F is the unique point such that the lines PA, PB, and PC
meet at 120° to each other (pp. 3556-6). Steiner’s problem can be gen-
eralized to the street network problem, which asks for the shortest net-
work of lines (streets) joining a given set of points (towns) to each other
(p. 359). It has given rise to a fascinating conjecture, only recently
proved.

Suppose we wish to find a network of lines that will connect a set of
towns. One way to do this is to use a so-called spanning network, which
uses only the straight lines joining pairs of towns. Another is to use a
Steiner network, in which extra towns are permitted, such that the lines
running into them meet at 120° angles. Let the length of the shortest
spanning network for a given set of towns be called the spanning length,
and let the length of the shortest Steiner network be the Steiner length.
The problem of finding the Steiner length is discussed by Courant and
Robbins (p. 359) under the title “Street Network Problem.” Obviously
the Steiner length is less than or equal to the spanning length. How much
smaller can it get?

Suppose, for example, that there are three towns at the vertices of
an equilateral triangle of side 1 unit. Fig. 295 shows the shortest Steiner
network and the shortest spanning network. The new point introduced
in the center is called a Steiner point: in general, a Steiner point is one
at which three lines (joining it to other points in the set of towns) meet
at angles of 120°. The spanning length is 2 and the Steiner length is V3.
Inthis case, the ratio between the Steiner length and the spanning length
is V3/2 = 0.866, and the saving in length obtained by using the shortest
Steiner network rather than the shortest spanning network is about.
13.34%.

In 1968, Edgar Gilbert and Henry Poliak conjectured that no matter
how the towns are initially located, the Steiner length never falls short
of the spanning length by more than 13.34%. Equivalently,

Steiner length
spanning length

)

2

for any set of towns. This statement has become known as the Steiner
ratio conjecture. After considerable effort it was finally proved by Ding
Zhu Du and Frank Hwang in 1991 we deseribe their approach once we
have set up the necessary background.

Finding the spanning length is & simple computation, even for a huge
number of towns. It is solved by the greedy algorithm: start with the
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shortest connecting line you can find, and at each stage thereafter add
on the shortest remaining line that does not complete a closed loop,
until every town is included. Finding the Steiner length is nowhere near
as easy. You cannot just take all possible triples of towns, find their
Steiner points, and look for the shortest network that joins the towns
and meets either at towns or at these particular Steiner points. For ex-
ample, suppose there are six towns arranged at the corners of two ad-
Jacent squares, as in Fig. 296 One possible Steiner tree is shown in Fig.
206a: it is found by solving the problem for a square of four towns first,
and then linking in the two remaining towns via their Steiner point with
one that is already hooked in. However, the shortest Steiner tree is that
shown in Fig. 296b. The grey squares are included only to indicate where
the towns are placed.

You cannot build up shortest Steiner trees piecemeal. The correct
generalization of Steiner point to a set of many towns is any point at
which links can meet at 120°. For as simple an example as four towns
at the vertices of a square, these points are not Steiner points of any
subset of three towns (Fig. 297). There are infinitely many points in the
plane, and even though most of them are probably irrelevant, it is not
obvious that any algorithms exist. In fact they do; the first. was invented
by Z. A. Melzak, but in practice his method becomes unwieldy even for
moderate numbers of towns. It has since been improved, but not dra-
matically.
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(a)

(b)

g 206 {a) for & square and an isosceles right triangle. (1) A shorter Steiner frev for the
same sel of towns,

We now know that there are good reasons why these algorithms are
inefficient. The growing use of computers has led to the developraent
of a new branch of mathematics, Algorithmic Complexity ‘Theory. This
studies not just algorithms-—methods for solving problems—hut how
efficient those algorithms are. Given a problem involving some number
n of objects (here towns), how fast does the running time of the solution
grow as n grows? If the running time grows no faster than a constant
muttiple of a fixed power of r, such as 5u* or 10660, then the algorithm
is said to run in polynomial time, and the problem is considered to be
“easy.” Usually this means that the algorithm is practical (but it will not
be if the constant is absotutely huge). If the running time ETOWS noN-
polynomially—{aster than any constant multiple of powers of n, for
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Fig. 207, Steiaer poisas (white) for four towns in a square (black) are different from the Steiner points of 3 subset of
three towns (grey

instance exponentially, like 2" or 10"-—then the problem has non-
polynomial running time and is “hard.” Usually this means that the al-
gorithm is totally impractical. In between polynomial time and
exponential time is a wilderness of “fairly easy” or “moderately hard”
problems, where practicality is more a matter of experience.

For instance, adding two n-digit numbers requires at most 2n one-
digit additions, including carries, so the time taken is bounded by a
constant multiple (namely 2) of the first power of #. Long multiplication
of two such numbers involves about »” one-digit multiplications and no
more than 2r* additions, or 3n® operations on digits, so now the bound
invoives only the second power of n. The opinions of schoolchildren
notwithstanding, these problerns are therefore “easy.” In contrast, con-
sider the Traveling Salesman Problem: find the shortest route that takes
a salesman through a given set of cities. If there are 7 cities then the
number of routes that we have to consider is n! = n{n — 1)(n — 2). ..
3.2.1 which grows faster than any power of n. So case-by-case enumer-
ation is hopelessly inefficient.

Oddly enough, the big problem in Algorithmic Complexity Theory is
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to prove that the subject actually exists. That is, to prove that some
“interesting” problem really is hard. The difficulty is that it is easy to
prove a problem is easy, but hard to prove that it is hard! To show a
problem is easy, you just exhibit an algorithm that solves it in polyno-
mial time. It does not have to be the best or the cleverest: any will do.
But to prove that a problem is hard, it is not enough to exhibit some
algorithm with non-pelynomial running time. Maybe you chose the
wrong algorithny;, maybe there is a better one which dves run in poly-
nomial time. In order to rule that possibility out, you have to find some
mathematical way to consider all possible algorithms for the problem
and show that none of them runs in polynomial time. And that is ex-
tremely difficult.

There are lots of candidates for hard problems—the traveling sales-
man problem, the bin-packing problem (how can you best fit a set of
items of given sizes into a set of sacks of given sizes?), and the knapsack
problem (given a fixed size sack and many objects, does any set of
objects fill the bag exactly?). So far nobody has managed to prove any
of them are hard. However, in 1971 Stephen Cook of the University of
Toronto showed that if you can prove that any one problem in this
candidate group really is hard, then they all are. Roughly speaking, you
can “code” any one of them to become a special case of one of the
others: they sink or swim together. These problems are called NP-
complete, where NP stands for non-polynomial. Everyone believes that
NP-complete problems really are hard, but this has never been proved.

NP-completeness relates 1o the Steiner problem because Ronald Gra-
ham, Michael Garey and David Johnson have proved that the problem
of computing the Steiner length is NP-complete. That is, any efficient
algorithm to find the precise Steiner length for any set of towns would
automatically lead to efficient solutions to all sorts of computational
problems that are widely believed not to possess such solufions.

The Steiner ratio conjecture (7) is therefore important, because it
proves you can replace a hard problem by an easy one without losing
very much, Gilbert and Pollak had quite a lot of positive evidence when
they stated that conjecture. In particular they could prove that some-
thing weaker must be true: the ratio of Steiner length to spanning length
is always at least 0.5. By 1990 various people had performed heroic
calculations to verity the conjecture completely for networks of 4, 5,
and 6 towns. For general arrangements of as many towns as you like,
they also pushed up the limits on the ratio from 0.5 to 0.57, 0.74, and
0.8. Around 1990 Graham and Fang Chung raised it to 0.824, in a com-




SOAP FILMS AND MINIMAL SURFACES 513

putation that they described as “really horrible—it was clear it was the
wrong approach.”

To make further progress possible, the horrible calculations had to
pe simplified. Du and Hwang found an approach that is so much better,
it does away with the horrible calculations completely. The basic ques-
tion is how to get equilaterai triangles in on the act. There is a big gap
between the triangle example in Fig. 295, which sets the bound on the
ratio, and a general system of towns, which is supposed to obey the
same bound. How can this No Man's Land be crossed? There is a kind
of halfway house. Imagine the plane tiled with identical equilateral tri-
angles, in a triangular lattice (Fig. 298). Put towns only at the corners
of the tiles. It turns out that the only Steiner points that need be consid-
ered are the centers of the tiles. In short, you have a lot of control, not
just on computations, but on theoretical analyses.

Of course, not every set of towns conveniently lies on a triangular
lattice. Du and Hwang’s insight is that the crucial ones do. Again the
proof is indirect, by contradiction. Suppose the conjecture is false. Then
there must exist a counterexample: some set of towns for which the
ratio is less than ¥3/2. Du and Hwang show that if a counterexample to
the conjecture exists then there must be one for which ali the towns lie
on a triangular lattice. This introduces an element of regularity into the
problem, and it is then relatively simple to complete the proof.

In order to prove this lattice property they reformulate the conjecture
as a problem in game theory, where players compete and try to limit
the gains made by their opponents. Game theory was invented by John
von Ni and Oskar n in their classic Theory of Games
and Economic Behavior of 1947, In the Du-Hwang version of the Steiner
ratio conjecture, one player selects the general “shape” of the Steiner
tree, and the other picks the shortest one of that shape that they can
find. Du and Hwang deduce the existence of a lattice counterexample
by observing that the payoff for their game has a special “convexity”
property.

§11. SOAP FILMS AND MINIMAL SURFACES
{see page 386)

Chapter VII, §11 mentions several times the observation that when
three soap films meet they appear 1o form angles of 120°, relating this
phenomenon to Steiner's problem (p. 354). There is a similar phenom-
enon when four soap film surfaces meet at a common point, as happens
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in Fig. 240, p. 387: experimentally, the angle formed in the comer of
each surface is close to 109°. This is the angle formed by four planes
meeting at the centroid of a tetrahedron, as in Fig. 299, Incidentally, this
implies that the small central “square” in Fig. 240 is not in fact square,
and that in turn explains why the thirteen surfaces in the cubic frame
are slightly curved.
These general rules about angles were first recorded by Plateau, who
stated three principles about the form of soap films on frames:
1) They consist of a finite number of flat or smoothly curved sur-
faces, smoothly joined together.
2) These surfaces meet in only two ways: either exactly three sur-
faces meet along a smooth curve, or four surfaces meet at a point.
3) When three surfaces meet, the angles between them are 120°, and
when four meet, the angles formed in the corners are approxi-
mately 109°
In 1976 Frederick Almgren and Jean Taylor proved that these three prop-
erties all follow from a single mathematical principle, the one that forms
the basis of Chapter ViI, §11: the soap film takes up whatever shape
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Fig 299, Minitnad smeface in & setrahedral frane: four snrfaces mvet at the centeal point, formaiay wigles of 106",

minimizes the total area. Perhaps surprisingly, the difficult step is the
first and most qualitative of Plateau’s principles—that the shape consists
of a finite number of surfaces. The other two principles follow relatively
easily from geometric arguments, just as the 120° angle in Steiner's prob-
lem does. We first indicate this deduction and then discuss the proof of
Plateau's first principle.

The first step in the deduction of the second and third principles from
the first is to use the smoothness of the surfaces to reduce the problem
to one about planes. If a very small region near a line of intersection of
three surfaces, or a point of i ion of four, is ified, then the
surfaces appear nearly flat, and the greater the magnification the flatter
they seem to be. By thinking about the errors involved in such an ap-
proximation, it turns out to be sufficient to prove Plateau’s second and
third prineiple under the simplifying assumption that the surfaces are
planar. The second step is to reduce this question to one about lines on
a sphere. Consider how the planar regions intersect a sphere centered
on the line or point of intersection. The system of planes is then replaced
by a system of arcs of great circles (see Fig. 300). The analogue of the
requirement of minimum area is that the total length of these arcs should
be minimal. By a spherical version of Steiner’s theorem (p. 354), proved
in a similar manner, the ares meet in three at angles of 120°. The third
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Fig 300, Reducing the geomenry of  system of planes o thal of a systen of arcs.

step is to prove that precisely ten different coufigurations of great circle
arcs satisfy these conditions (Fig. 301). The fourth step is to take each
such configuration in turn and carry out a search for small deformations
of the cor ding ¢ ation of planar surfaces—possibly intro-
ducing new pieces—that reduce the total area within the sphere. If any
such reduction of area is possible, then the corresponding configuration
of arcs can be ruled out: it does not correspond to an arrangement of
surfaces of minimal area. (In practice, several of these cases were stud-
ied by making corresponding wire frames and observing the shapes
formed by soap films in order to deduce the general form of the smali
deformation invoived. Then the possibility of reducing the area was es-
tablished rigorously by making suitable estimates.) Exactly three con-
figurations survived this process. They comprise a single great circle,
three semicircles meeting at 120° angles, and four arcs forming a cur-
vilinear tetrahedron—numbers 1-3 in Fig. 301. The corresponding pla-
nar configurations are a single surface not meeting any other, three
surfaces meeting at 120° angles, or four surfaces meeting at 109° angles.
Plateau’s second and third principles are immediate.

Everything thus depends upon proving that the minimat shape con-
sists of finitely many surfaces, In order to achieve this, it is necessary
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to contemplate the possibility of more complex shapes, and this in turn
requires generalizing the concept of area to these more complex shapes.
The problem then breaks down into two separate stages. First, prove
the existence of some compiex shape that minimizes this generalized
area. Second, use the minimality property to show that the complex
shape is actually fairly siraple, composed of finitely many smooth sur-
faces.

The technigues for making these two stages work are novef and ab-
stract, belonging to an area known as “geometric measure theory”—the
same area that the definition of fractal dimension belongs to. Roughly
speaking, any particular surface S is replaced by an associated “mea-
sure,” a function that assigns to any region X of space the area of that
part of § that lies inside X. More complex shapes are represented by
functions with similar properties to these surface-based measures. The
advantage of replacing shapes by measures is that measures have much
more pleasant properties—for example, they can be added together, or
defined as the limit of sequences of other measures, operations that are
hard to define directly for geometric shapes.

The existence of a minimizing measure then turns out to be a straight-
forward argument in geometric measure theory. The more difficult part
of the argument is to show that every minimizing measure corresponds
to a finite system of smooth surfaces. Ironically, knowledge of how these
surfaces would fit together if they really were surfaces-——Plateau's sec-
ond and third principles—helped Almgren and Taylor to work out how
to prove that they actually are surfaces. Knowing in advance what the
answer “ought to be” often makes it easier to find a proof.

§12. NONSTANDARD ANALYSIS
(see page 433)

On page 435 Courant and Robbins remark that * ‘differentials’ as in-
finitely small guantities are now definitely and dishonorably discarded,”
an accurate reflection of the consensus view when What Is Mathemal-
ies? was written. Despite Courant and Robbing’s verdict, there has al-
ways been something intuitive and appealing about the old-style
arguments with infinitesimals. They are still embedded in our language,
in ideas as “instants” of time, “instantaneous” velocities, a curve
as a serjes of infinitely small straight lines, the area bounded by a curve
as an infinite sum of areas of infinitesimal rectangles. This kind of in-
tutition turns out to be justified, for it has recently been discovered that
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the concept of infinitely small quantities is not dishonorable and need
not be discarded at all. It is possible to set up a rigorous framework for
analysis in which the Weierstrassian epsilon-delta definitions (see p.
305) are replaced by statements about infinitesimals that look astonish-
ingly similar to the intuitive ideas of Leibniz, Newton, and Cauchy.

The way to make infinitesimals respectable is called nonstandard
analysis. It is entirely viable as an alternative to the epsilon-delta ap-
proach, but for several reasons—only one being scientific conserva-
tism-—most mathermaticians still prefer Weterstrass’s point of view. The
big psychological problem is that setting up such a framework involves
sophisticated ideas from modern mathematical logic. Between about
1920 and 1950 there was a great explosion of mathematical logic. One
of the topics that emerged was model theory, which constructs and
characterizes models of axiom systems--mathematical structures that
obey those axioms. Thus the coordinate plane is a model for the axioms
of Euclidean geometry, Poincaré’s disk (p. 223) is a model for the axioms
of hyperbolic geometry, and so on.

There is a standard axiom system for the real numbers, and it has
long been known that there is a unique model, the standard real numbers
K. This is one reason why different ways of constructing “the” real num-
bers (see pp. 68, 69) lead to number systems that are effectively iden-
tical. Moreover, R does not contain any infinitesimals or infinities. So
how is it possible to apply model theory to construct a “nonstandard”
real number system that does contain these strange objects? Logicians
distinguish between “first order” and “second order” axiomatic systems.
In a first order theory the axioms express properties required of ail
objects in the systers, but not of all sets of objects. In a second order
theory there is no such restriction. In ordinary arithmetic, a statement
such as
(8) r+y =y +xforallwyandy
is first order, and so are all the usual laws of algebra; but the “Archi-
medean axiom”

[¢)] if < 1/n for all natural numbers n then x = 0

is second order. Most of the usual axioms for the real numbers are first
order, but the list includes some that are second order. In fact the sec-
ond order axiom (9) is the crucial one that rules out both infinitesimals

and infinities in R. However, it turns out that if the axioms are weakened
to comprise only the first order properties of £, then other models exist,
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including some that violate (9) above. Let B* be such a model and call
it the system of Ayperreal numbers. This idea, the basis of nonstandard
analysis, was discovered by Abraham Robinson around 1960. We have
already seen that there are non-Euclidean geometries and non-Cantorian
set theories; now we find that there are non-Archimedean number sys-
tems,

The set. B* contains several important subsets. There is a set of “stan-
dard” natural numbers N = {0, 1, 2, 3, ...}, and there is also a larger
system of “nonstandard™ natural numbers % There are the standard
integers Z and a corr ding extension to d integers Z*%.
There are the standard rationals @, and a corresponding extension to
nonstandard rationals Q*. And there are standard reals R and nonstan-
dard reals (or hyperreals) R*.

Every first order property of R has a unique natural extension to R*.
However, () expresses a second order property, and it is false in R*
The hyperreals contain actual infinities, actual infinitesimals. For ex-
ample x € R* is infinitesimal if and only if x #* 0 and & < 1/n for all
n € N. The usual argument that “infinitesimals do not exist” actually
proves that real infinitesimals do not exist; that is, that the infinitesimals
in R* do not belong to R. But that is entirely reasonable, because R* is
bigger than R. Incidentally, the “correct” analogue of (9) in R* is

(10) if r < U/n for all n € N* then & = 0,

and this is true. So changing (9) to refer to the nonstandard natural
numbers instead of the standard ones makes a big difference.

The extension from reals to hyperreals is just one further example of
the ancient game of extending the number system in order to secure a
desirable property (see pp. 52-63). For example, the rational numbers
were extended to the reals 1o allow 2 to have a square root; and the real
numbers were extended to the complex numbers to allow — 1 to have a
square root. So why not extend from real numbers to hyperreal numbers
to allow infinitesimals to exist?

We can use R* to prove theorems about R, because the number sys-
tems R and R* are indistinguishable as far as first order properties are
concerned. However, R* has all sorts of new features, such as infinites-
imals and infinities, which can be e ited in new ways. These new
features are second order properties, which is why the new systems can
have them even though the old ones cannot. Similar remarks apply to
the subsystems N and N*, Z and 2%, and @ and Q%

A few definitions will give the flavor of the approach. A hyperreal
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number is firnite if it is smaller than some standard real. It is infinites-
imal if it is smaatler than all positive standard real:s Anythmg not ﬁnm‘
is énfinite, and anything not in R is dard. f x is i

then 1/x is infinite, and vice versa.

None of this would be of any great importance if all that could be
done was invent a new number system. But even though R and R* are
different, they are intimately connected. In fact, every finite hyperreat x
has a unique standard part std(x) which is infinitely close to r, that is,
@ - std(x) is mﬁmu-sxma.l In other words, each finite hyperreal has a
unique as real plus infinitesi: " 1t is as if each
standard real is surrounded by a cloud of infinitely close hyperreals,
often called its kalo. And each such halo surrounds a single real, which
for some obscure reason is usually called its shadow, although a word
like “core” or “center” would convey the image better. By using the
standard part ./e can transfer properties from R* to R, or vice versa.

To see how proofs in nonstandard analysis differ from their standard
counterparts, consider Leibniz’s calculation of the derivative of the func-
tion ¥ = f{x’) = x* What he does is take a small number Ax and form
the ratio [flx + Ax) ~ flx))/ Ax. (Newton's approach was basically the
same, except that he used the symbol o in place of Ax.) Following Leib-
niz we calculate:

(r + Ax)* — 2
Ax
&+ 2Ax + (Ax) —
=S
_ 2rAx + (Ax)*
Ax
= 27 + A

Leibniz then argued that since Ax is infinitesimal, it can be ignored,
leaving 2. However, Ax must be nonzero in order for [fla + Az) —
SO Ax to make sense, in which case 2r + Ax is not equal to 2o It
was this difficulty that led Bishop Berkeley to write his famous critique
The Analyst, Or a Discourse Addressed to an Infidel Mathematician,
in which he pointed out some logical i tes in the found;
of the calculus.

Weierstrass overcame Berkeley's objections by adding one final step:
take the fimit as Ax tends to zero. (Both Leibniz and Newton had ex-
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pressed similar ideas, but not with the same crystal clarity as
Weierstass’s € and 8.) Because nonzero values of Ax can tend to zero,
we may assume all values of Az that are encountered during the cal-
culation are nonzero, so that dividing by A« is meaningful. Then we take
the limit as Ax — 0 to get rid of that awkward extra term Ax and leave
the required answer 2x.

In nonstandard analysis there is a simpler way. Take x 1o be finite
and standard (that is, let = € R) and assume that Ax is a genuine infin-
itesimal, Instead of 2 + Aux take its standard part std(2xr + Ax), which
is 2. In other words, define the derivative of f(r) to be

td{ﬂx + Ax) :_@}
Ax

where x is a standard real and Ax is any infinitesimal. The innocent-
looking idea of the standard part is exactly what is needed to make the
derivative a real function of x instead of a hyperreal function of x and
Ax. Tt is a perfectly rigorous way of removing the Ax term, because
std(x) is a uniquely defined real. Instead of the extra Ax being swept
under the carpet with much speciai pleading, it is neatly expunged.

A course in nonstandard analysis looks like an extended parade of
exactly those errors that Courant and Robbins spend so many pages
teaching us to avoid. For example:

1. A sequence s, converges to a limit L if 5, ~ L is infinitesimal for

all infinite . (Compare with p. 291.)

2. A function f is coniinuous at x if f{la + &) is infinitely close to f(x)
(that is, flzx + €) — fzr) is infinitesimal) for ail infinitesimal €. (Com-
pare with p. 310.)

3. The function f has derivative d at «x if and only if [flx + Ax) -
f@)VAx is infinitely close to d for all infinitesimals Ax. (Compare
with p. 417.)

4. The area of a curved region is an infinite sum of infinitesimal rec-
tangles. (Compare with p. 405.)

However, within the framework of nonstandard analysis these state-
ments can be given a rigorous meaning.

In fact, nonstandard analysis does not lead to any conclusions about
R that differ from standard anralysis. It is easy to conclude from this that
there is no point in using the nonstandard approach, because “it does
not lead to anything new.” But this criticism is not conclusive: the ques-
tion is not “does it give the same results?” so much as “is it a simpler
or more natural way to derive those results?” As Newton showed in his
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Principia, anything that can be proved with calculus can also be proved
by classical geometry. In no way does this imply that calculus is worth-
less, and the same goes for nonstandard analysis.

Experience suggests that proofs via nonstandard ahalysis are usually
shorter and more direct than the classical epsilon-delta proofs. This is
because they avoid complicated estimates of the sizes of things, which
form the bulk of the classical proof. The main obstacle to the wide-
spread adoption of nonstandard analysis is that its appreciation reguires
a background with an eémphasis on mathematical logic—very different
from traditional analysis.






APPENDIX
SUPPLEMENTARY REMARKS, PROBLEMS, AND EXERCISES

Many of the following probl are i ded for the hat ad-
vanced reader. They are designed not so much to develop routine
technique as to stimulate inventive ability.

Arithmetic and Algebra

(1) How do we know that 3 does not divide any power of 10, as
stated on page 617 (See p. 47.)

(2) Prove that the principle of the smallest integer is a consequence
of the theorem of mathematical induction. (See p. 19.)

(3) By the binomial theorem applied to the expansxon of (1 4 1)1,
show that C5 + CT + CF + -+ + €}

(*4) Teke any integer, z = abc form the sum of its digits,
a4+ b+ ¢+ ..., subtract this from z, cross out any one digit from
the resalt, and denote the sum of the remaining digits by w. From a
knowledge of w alone, can a rule be found for determining the value
of the digit crossed out? (There will be one ambiguous case, when
w = 0.) Like many other simple facts about congruences, this can be
used as the basis for a parlor trick.

(5) Anarithmetical progression of first order is a sequence of numbers,

4, a +d,a+ 2d, @ + 3d, .., such that the difference between suc-
cessive bhers of the is a stant,  An arith ical pro-
gression of second order is a sequence of numbers, a;, @z, g, - - - such

that the differences a:y; — a; form an arithmetical progression of first
order. Similarly, an arithmetical progression of 4th order is a seguence
such that the diff form an arjtk ical progression of order
k — 1. Prove that the squares of the integers form an arithmetical
progression of second order, and prove by induction that the kth powers
of the integers form an arithmetical progression of order k. Prove that
auy sequence whose nth term, a,, is given by the expression ¢ + cin +
o’ + -+ 4 c®, where the ¢'s are constants, is an arithmetical pro-
gression of order k. *Prove the converse of this statement for & = 2;
= 3; for general &.
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(8) Prove that the sum of the first n terms of an arithmetical progres-
sion of order k is an arithmetical progression of order & + 1.

(7) How many divisors has 10,2967 (See p. 25.)

(8) From the algebraic formula (a° + b)(c* + d) = (ac — bd)* +
(ad + bc) prove by induction that any integer r = ;a5 -« - G, Where
all the a’s are sums of two squares, is itself a sum of two squares, Check
this with 2 = 14 1%, 5 = 1"+ 2, 8 = 2* + 2, ete. for r = 160,
r = 1600, r = 1300, r = 625. If possible, give several different repre-
sentations of these numbers as sums of two squares.

(9) Apply the result of Exercise 8 to construct new Pythagorean
number triples from given one:

(10) Set up rules for divisibil
systems with the bases 7, 11, 12,

{11) Show that for two positive rational numbers, r = a/b and
§ = c¢/d, the inequality r > s is equivalent to ac — bd > 0.

(12) Show that for positive r and s, with r < s, we always have

r<’%’<s and

similar to those on page 35 for number

2 )
am+ 5 < 2rs < (r 4+ 98)%

(13) If z is any complex number, prove by induection that 2" + 1/z"
can be expressed as a polynomial of degree n in the quantity v = 2z + 1/z,
(See p. 100.)

(*14) Introduciag the abbreviation cos ¢ + ¢ sin ¢ = E(p), we have
[E()]™ = E(mp). Use this and the formulas of page 13 on geometrical
series, which remain correct for complex quantities, in order to prove
that

cos &~ cos (n + §)e

8in ¢ + sin 2¢ + sin 3p + ... + sin np = ———— ,
2sin ¥
2
sin (n + §¢
34 cosp+ cos2p + c083p + - + cosnp = St

(15) Find what the formula of Exercise 3 on page 18 yields, if we sub-
stitute ¢ = E(p).
Analytic Geometry

A careful study of the following exercises, )t d by drawings
and numerical examples, will help in mastering the elements of analytic
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geometry. The definitions and simplest facts of trigonometry are
presupposed.

It will often be useful to think of a line or a segment as being directed
from one of its points toward another. By the directed line PQ (or
the directed segment PQ) we shall mean the line (or segment) having
the direction from P toward @. In the absence of explicit specification
a directed line I will be supposed to have a fixed but arbitrary direction;
except that the directed r-axis will be taken to be directed from O
toward a point on it with positive z-codrdinate, and similarly for the
directed y-axis. Directed lines (or directed segments) will then be said
to be parallel if and only if they have the same direction, The direction
of a directed segment on a directed line can be indicated by attaching
a plus or a minus sign to the distance between the endpoints of the
segment, according as the segment has the same direction as the line
or the opposite direction. It will be desirable to extend the terminology
“segment PQ" to the case in which P and @ coincide; to such a “seg-
ment” we must clearly assign length zero, but no direction.

(16) Prove: If Py(xy, ) and Pa(zz, y2) are any two points, the co-
ordinates of the midpoint, Py (9, ), of the segment PP, are 7o =
{21 + 2)/2, %o = (ys + w)/2. More generally, show that, if P, and
P, are distinct, then the point P, on the directed line PP, for which
the ratio PiPy: PPy of the directed lengths has the value k, has the
cobrdinates

== Bz-t+ke, w=1-~kn+ip.

(Hint: Parallel lines cut two transversals in proportional segments.)

Thus the points on the line P\P, have cobrdinates of the form
z = Mo b A2z, ¥ = My: + My, with v + A = 1. The values
Ay = land s = 0 characterize the points Py and P; respectively. Nega-
tive values of A\ characterize points beyond P, , and negative values
of A; characterize points before Py .

(17) Characterize the position of points on the line in a similar man-
ner by means of the values of k.

It is just as important to use positive and negative numbers to indi-
cate the dircetions of rotations as of distances. By definition, the
direction of rotation that brings the directed z-axis into comcxdwo(‘
with the directed y-axis after a rotation of 90° is
the usnal codrdinate m, with the pos
right and the pesitive y-axis upward, this is tl\e counterclockwise sense
of rotation. We now define the angle from a directed line I; to a di-
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rected line L as the anzle through which I, must be rotated in order to
become parallel to Iy Of course, this angle is determined only up to
integral multiples of a complete revolution of 360°. Thus the angle
from the directed z-axis to the directed y-axis is 90° or —270°, ete.

(18) If « is the angle from the directed z-axis to the directed line I,
if P1, Py are any two points on [, and if d denotes the directed distance
from P; to Py, show that

(rg =~ ) sina = (y: — 1) cos a

Tf the line ! is not perpendicular to the z-axis, the slope of [ is de-
fined as
Yo i

m = tan & = .
T — I

The value of m does not depend on the choice of direction on the
line, since tan « = tan (a -+ 180°), or, equivalently, (y ~ w»)/
(2 — @) = (@2 ~ y)/(@2 ~ @)

(19) Prove: The slope of a line is zero, positive, or negative, accord-
ing as & parallel to it through the origin lies on the z-axis, in the first
and third quadrants, or in the second and fourth quadrants,
respectively.

We distinguish a positive and a negative side of a directed line [ as
follows. Let P be any point not on I, and let @ be the foot of the
perpendicular to I through P. Then P is on the positive or negative
side of I according as the angle from ! to the directed line QP is 90°
or —90°.

We shall now determine the equation of a directed line I. We draw
through the origin O a line m perpendicular to I, and direct m so that
the angle from it to 1is 80°. The angle from the directed z-axis to m
will be called 8. Then o = 90° 4 B, sin & = cos 8, cos a = —sin 8.
Let R with coordinates z1, ¥ be the point where m meets I We shall
denote by d the directed distance OR on directed m.

{20) Show that 4 is positive if and only if O lies on the negative side
of L

We have oy = deos B, 3 = dsin 8 (compare Ex. 18). Hence,
(@~ a)sina = (y ~ ) cose, or (z— deosBycos§ = —(y — dsin §)
sin 8, which gives the equation

zcos B+ ysinf ~ d = 0.
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This is the normal form of the equation of the Line . Note that this
equation does not depend on the direction assigned to !, for a change
in direction would change the sign of every term on the left side, and
hence would leave the equation unchanged,

By multiplying the normal equation with an arbitrary factor, we ob-
tain the general form of the equation of the line:

ar + by + ¢ = 0.

To retrieve from this general form the geometrically significant normal
form we must multiply by a factor which will reduce the first two co-
efficients to cos A and sin 8, whose squares add up to 1. This may be
done by the factor 1/4/af - b2, which yields the normal form

so that we have

[ —
VaE L

(21) Show: (a) that the only factors that will reduce the general
form to the normal form are 1/4/@ + &2 and —1/4/a% + 12; (b) that
the choice of the one or the other of these factors determines which
direction is assigned to the line; and (e) that, when one of these factors
has been used, the origin is on the positive or negative side of the result~
ing directed line, or is on the line, according as 4 is negative, positive,
or zero.

(22) Prove directly that the line with slope m through a given point
Po(xq , o) is given by the equation

= €08 8,

Yy — 4= m{z — To), or y o= mz + Yo — M.

Prove that the line through two given points, Pi(zr, y1), Palxe, ye),
has an equation
e — e — @) = (@~ 2)(y ~ ¥)

The z-cobrdinate of a point in which a line or curve cuts the z-axis
is called un x-éntercept of the curve; similarly for y-infercept.
(23) By dividing the general equation of Exercise 20 by an appropriate
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factor, show that the equation of a line may be written in the infercept
form,

I4¥=
a+b

where a and b are the z- and y-intercepts. What exceptions are there?
(24) By a similar procedure show that the equation of a line not
parallel to the y-axis may be written in the slope-intercept form,

y = mx + b

(If the line is parallel to the y-axis, its equation may be written as
I =a)

(25) Letax + by + ¢ = O and ¢’z + by + ¢’ = 0 be equations of

undirected lines I and I', with slopes m and m’ respectively. Show that
! and ' are parallel or perpendicular according as: (a) m = m’ or
mm’ = —1. (b) ab’ — a'b = 0 or aa’ + bb’ = 0. (Note that (b)

holds even when a line has no slope, i.e. is parallel to the y-axis.)

(26) Show that the equation of a line through a given point Po(xo , o)
and parallel to a given line [ with equation az + by + ¢ = 0 has the
equation az + by = azo + byo. Show that a similar formula, bz — ay =
bzo — ay, holds for the equation of the line through P and perpen-
dicular to I (Note that if the equation of 1 is in the normal form, so
also will the new equation be, in each case.)

(27) Let zcos 8 + ysing ~ d = 0 and az + by + ¢ = O be the
normal and general forms of the equation of a line L. Show that the
directed distance & from [ to any point Q{u, v} is given by

h=wucosf+vsing —d,

or by

and that h is positive or negative according as Q is on the positive or
negative side of the directed line I (the direction having been determined
by 8, or by the choice of the sign before v/a* + b%). (Hint: Write the
normal form of the equation of the line m through Q parallel to I, and
find the distaree from I to m.)

(28) Let iz, y) = 0 represent the equation ez + by + ¢ = 0 of a
line I; similasly for '(z, ¥) = 0. Let A and X’ be constants, with
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X 4+ A = 1. Show that, if  and U’ intersect in Pu(Zo, o), then every
line through P, has an equation

Miz, y) + Nz, y) =0,

and conversely; and that every such line is uniquely determined by the
choice of a pair of values for A and A, (Hint: P, lies on { if and only
if Wxo, yo) = axe + bys + ¢ = 0.) What lineés are represented if {
and I are parallel? Note that the condition A -+ ' = 1 is unnecessary,
but serves to determine a unique equation for each line through P .

(29) Use the result of the previdus exercise to find the eguation of a
line through the intersection Py of I and I’ and through another point,
Pi(xi, y1), without finding the codrdinates of Po. (Hint: Find X and
¥ from the eonditions M{z1 , 1) + N'{21, %) = 0,A + X = 1.} Check
by finding the codrdinates of Py (see pp. 76-77) and showing that
P, lies on the line whose equation you have found.

(30) Prove that the equations of the bisectors of the angles formed
by intersecting lines I and I’ are

VAT F b Uz, y) = V@ F Bz, 9).
(Hint: See Ex. 27.) What do these equations represent if [ and I
are paraliel?

(31) Find the equation of the perpendicular bisector of the segment
P,P; by each of the following methods: (a) Find the equation of line
PPy ; find the codrdinates of the midpoint Py of segment PiP, ; find
the equation of the line through P, perpendicular to PP, . (b) Write
the equation expressing the fact that the distance (p. 74) between P,
and any point P(z, y) on the perpendicular bisector is equal to the
distance between P, and P; square both sides of the equation and
simplify.

(32) Tind the equation of the circle through three non-collinear
points, P1, Py, Py, by each of the following methods: (a) Find the
equation of the bisectors of the segments P1Py and P2P; ; find the co-
ordinates of the center as the point of intersection of these lines; find
the radius as the distance between the center and Py. (b) The equa
tion must be of the form 2 + ¢ — 20z — 2by = k (see p. 74). Since
each of the given points lies on the circle we must have

2%+ yf — 20z — 2y = k,
23 + 45 — 20z, — 2bys = k,

2yt = 20m — by = &,



32 APPENDIX

for a point lies on a curve if and only if its codrdinates satisfly the equa~
tion of the curve.. Solve these simultaneous equations for a, b, k.

(33) To find the equation of the ellipse with major axis 2p, minor
axis 2g, and foci at F(e, 0) and F(—e, 0), where ¢’ = p’ — ¢, use the
distances r and 7’ from F and F’ to any point on the curve. By defini~
tion of the ellipse, r 4 r’ = 2p. By using the distance formula on
page 74, show that

e = (3 e - (2 - e) = dex.
Since
=P (O =) = 20 — 1),
show that r’ — r = 2ex/p. Solve this relation and »' + r = 2p to
find the important formulas

'

r=-%x+p, =+ p.

¢

P

Since (again by the distance formula) * = (z — ¢)* + ¢, equate this
2

expression for r* to the expression —-% z 4+ p) just above,

2

(z~6)2+1f=<~%x+11)

Expand, eollect terms, substitute p* — ¢ for ¢, and simplify. Show
that the result may be expressed in the form

Carry out the same procedure for the hyperbola, defined as the
locus of all points P for which the absolute value of the difference
» — ' is equal to a given quantit ~ . Heree’ = p’ + ¢"

(34) The parabola is defined . the loeus of a point whose distance
from a fixed line {the directrix) is equal to its distance from a fixed
point (the focus). If we choose the line x = —a as directrix and
the point F(a, 0) as focus, show that the equation of the parabola may
be written in the form y* = 4az.

Geometrical Constructions

(35) Prove the impossibility of constructing with ruler and compass
the numbers +/3, /4, v/5. Prove that the construction of /&
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is only possible if @ is the cube of a rational number. (See p. 134, ff.)

(36) ¥ind the sides of the regular 3.2"-gon and of the 5-2"-gon and
characterize the corresponding sequences of extension fields.

(37) Prove the impossibility of trisecting with ruler and compass an
angle of 120 or 30 degrees. (Hint for the case of 30°: The equation to
be discussed is 42° ~ 3z = cos 30° = §+/3. Introduce a new unknown,
u = z4/3, and obtain an equation for z from which the non-constructi-
bility of z follows as in the text, p. 139.)

(38) Prove that the regular 9-gon is not constructible.

(39) Prove that the inversion of a point P(z, y) into the point P'(z’, ¥’}
in the circle with the radius r about the origin is given by the equations

¥ind algebraically the equations giving =, y in terms of 2, y'.

(*40) Prove analytically by using Exercise 39 that by inversion the
totality of circles and straight lines is transformed into itself. Check
the properties a) - d) on page 142 separately, and likewise the trans-
formations corresponding to Figure 61,

(41) What becomes of the two families of lines, z = const. and
y = const,, parallel to the codrdinate axes, after inversion in the unit
cirele about the origin? Find the answer without and with analytic
geometry. (See p. 160.)

(42) Carry out the Apollonius constructions in simple cases of your
own selection. Try the solution analytically according to the method
of page 125.

Projective and Non-Euclidean G ¥

(43) Find all the values of the cross ratio X of four harmonie points,
if the points are subjected to permutations. (Answer: A = —1, 2, }).

(44) For what configurations of four points do some of the six values
of the cross-ratio on page 176 coincide? (Answer: Only for A = —1
or X = 1; there is also one imaginary value of A for which X = 1/(1 — \),
the “equianharmonic” eross-ratio.)

(45) Show that a cross-ratio (ABCD) = 1 means coincidence of the
points € and D.

(46) Prove the statements about the cross-ratio of planes, page 176.

(47) Prove that if P and P’ are inverse with respect to a circle and
if the diameter 4B is collinear with P, P’, then the points 4, B, P, P/
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form a harmonic quadruple. (Hint: Use the analytic expression (2)
on p. 178, take the circle as the unit eircle and AR as the axis.)

{48) Find the codrdinates of the fourth harmonic point to three points
Py, Py, P;. What happens if P moves to the midpoint of P,P;?
(Bee p. 178.)

(*49) Use Dandelin’s spheres to develop the theory of conic sections,
In particular prove that they are all (except for the circle) geometrical
loci of points whose distances from a fixed point F and & fixed line !
have a constant ratio k. For ¥ > 1 we have & hyperbola, fork = 1 a
parabola, for £ < 1 an ellipse. The line ! is obtained by intersecting
the plune of the conic with the plane through the circle in which the
Dandelin sphere touches the cone.  (Since the circle does not come under
this characterization except as a limiting case, it is not entirely ap-
propriate to choose this property as a definition of the conics, although
this is sometimes done.)

(50) Discuss: “A conic, regarded as both a set of points and  set
of lines, is seif-dual.” (See p. 209.)

{*51) Try to prove Desargues's theorem in the plane by carrying out
the pas. ge to the limit from the three-dimensional configuration of
Figure 73. (See p. 172.)

(*32) How many lines intersecting four given skew lines can be
drawn? How can they be characterized? (Hint: Draw a hyperboloid
through three of the given lines, see p. 212.)

(*53) I the Poincaré circle is the unit circle of the complex plane,
then two points z; and 2 and the z-values w; , w, of the two points of
intersection of the “straight line” through these two points with the
i ,Z" = :: which, sccording to

2 =
Exercise 8 on page 97, is real. Its logz\nthm is by definition the hy-
perbolic distance between z, and 2.

(*54) By an inversion transform the Poincaré circle into the upper
haif plane. Develop the Poincaré model and its properties for this
half plane directly and by means of this inversion. (See p. 224.)

unit circle define a cross-ratio -
2

Topology
(55) Verify Euler's formula for the five regular polyhedra and for
other polyliedra. Carry out the ponding network reducti

(56) In the proof of Euler’s formula (p. 239} we are required to re-
duce any plane network of triangles, by successive application of two
fundamental operations, to a network consisting of a single triangle, for
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whichV — E 4+ F =3 — 3 4 1 = 1. How can we be sure that the
final result will not be a pair of triangles with no vertices in common,
sothat V- E4+ F =6 — 6 4+ 2 = 27 (Hint: We can assume that
the original network is connected, i.e. that one can pass from any vertex
to any other along edges of the network. Show that this property
cannot be destroyed by the two fundamental operations.)

(57) Wehave admitted only two fundamental operations in the reduc-
tion of the network. Might it not happen at some stage that a triangle
appears having only one vertex in common with the other triangles of
the network? (Construct an example.) This would require a third
operation: Removal of two vertices, three edges, and a face, Would
this affect the proof?

(58) Can a wide rubber band be wrapped three times around a broom-
stick so as to lie flat (i.e. untwisted) on the broomstick? (Of course, the
rubber band must cross itself somewhere.)

(59) Show that a circular disk from which the point at the center
has been removed admits a continuous, fixed-point-free transformation
into itself.

(*60) The transformation which shifts each point of a disk one unit
in a fixed direction obviously has no fixed points. Of course, this is
not a transformation of the disk into dtself, since some points will be
taken into points outside the disk, Why does not the argument of
page 255, based on the transformation P — P* hold in this case?

(61) Suppose we have a rubber inner tube, the inside of which is
painted white and the outside black. Is it possible, by cutting a small
hole, deforming the tube, and then sealing up the hole, to turn the tube
inside out, so that the inside will be black and the outside white?

(*62) Show that there is no “four eolor problem” in three dimensions
by proving that for any desired number n, n bodies can be placed in
space so that each touches all the others.

(*63) Using either an actual torus surface {inner tube, anchor ring)
or a plane region with boundary identification (Fig. 143), construct a
map censisting of seven regions, each of which touches all the others.
{See p. 248.)

(64) The 4-dimensional tetrahedron of Figure 118 consists of five
points, a, b, ¢, d, e, each of which is joined to the other four. Even if
the connecting lines are allowed to be curved, the figure cannot be
drawn in the plane in such a way that no two of the connections cross.
Another configuration, containing ten connections, that cannot bedrawn
in the plane without crossings consists of six points, a, b, ¢, @/, ¥, ¢/,
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such that each of the points a, b, ¢, is connected to each of the points
a', b, ¢’ Verify these facts by experiment, * and try to devise a proof,
using the Jordan curve theorem as a basis. (It has been proved that
any configuration of points and lines that cannot be represented in the
plane without crossings must contain one of these two configurations
as a part.)

(65) A configuration is formed by taking the six sides of a 3-dimen-
sional tetrahedron and adding one line joining the midpoints of two
apposite sides. (Two sides of a tetrahedron are opposite if they have
no common endpoint.) Show that this configuration is equivalent to
one described in the preceding exercise.

(*66) Let p, g, r be the three tips of the symbol E. The symbol is
shifted some distance away, giving another E, with tips p', ¢/, #. Can
one join p to p', g to ¢, and r to ¢’ by three curves which do not cross
each other or the E's?

If we go around = square, we change our direction four times, each
time by an amount 90°, giving a total change of A = 360°. I we go
around a triangle, it is known from elementary geometry that A = 360°,

(67) Prove that if C is any simple closed polygon, then A = 360°.
(Hint: Cut the interior of ¢ into triangles, then remove boundery
segments, as on p. 239, Let the successive boundaries be By, B,
By, «-+, By, Then By = C, and B, is a triangle. Show that, if a:
corresponds to By, then Ay = Ay )

(*68) Let C be any simple closed curve with a continuously turning
tangent vector. If A denotes the total change in the angle of the tangent
as we traverse the curve once, show that here also A = 360°. (Hint:
Let po, o1, p2, -+, Pa, po be points cutting C into small, nearly
straight segments. Let C; be the curve with the segments popr, pips ,
<+« piapi, and the original ares pipist, -+, Papo. Then Co = C,
and C, is composed of line segments.  Show that A; = Auy, and use
the result of the preceding exercise). Does this apply to the hypocy-
cloid of Figure 557

(68) Show that if in the diagram of the Klein bottle on page 263 all
four arrows are drawn clockwise, a surface is formed that is equivalent
to a sphere with one disk replaced by a cross-cap. (This surface is
topologicaily equivalent to the extended plane of projective geometry.)

(70) The Kleirn bottle of Figure 142 may be cut into two symmetrical
halves by a plane. Show that the result consists of two Moebius strips.

(*71) In the Moebius strip of Figure 139 the two endpoints of each
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transversal segment are identified. Show that the result is topologically
equivalent to a Klein bottle.

All possible ordered pairs of points on a line segment (the two points
coinciding or not} form a square, in the following sense. If the points
of the segment are designated by their distances z, y from one end 4,
the ordered pairs of numbers (z, ¥) may be regarded as the Cartesian
cobrdinates of a point of the square.

All possible pairs of points without regard to order (i.e. with (z, %)
regarded as the same as (y, z)) form a surface S which is topologically
equivalent to & square. To see this choose that representation which
has the first point nearest the end A4 of the segment, if z ¢ . Thus S
is the set of all pairs (z, y) where either z isless than yorz = y. Using
Cartesian codrdinates, this gives the triangle in the plane with vertices
©,0), 0, 1), (1, 1.

(*72) What surface is formed by the set of all ordered pairs of points
of which the first belor.zz to a line and the second to the circumference
of a circle? (Answer: A cylinder.)

(73) What surface is formed by the set of all ordered pairs of points
on a circle? (Answer: A torus.)

(*74) What surface is formed by the set of all unordered pairs of
points on a circle? (Answer: A Moebius strip.)

(75) Here are the rules of a game, played with pennies on a large
circular table: 4 and Bin turn place pennies on the table. The pennies
need not touch each other, and a penny may be placed anywhere on
the table, so long as it does not extend over the edge or overlap & penny
already on the table. Once placed, a penny may not be moved. In
time, the table will be covered with pennies in such a way that no space
large enough for another penny remains. The player who is able to
place the last penny on the table wins, If A plays first, prove that no
matter how B plays, 4 can be sure of winning, provided that he plays
correctly.

(76) i, in the game of Exercise 75 the table has the form of Figure
125, b, prove that B can always win.

Functions, Limits and Continuity

{77) Find the continued fraction expansion for the ratio OB:4AB
of page 123, 3
(78) Show that the sequence gy = /2, . = v/2 & g, is mono-
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tone increasing, bounded by B = 2, and hence has a imit. Show that
this limit must be the number 2. (See pp. 125 and 326.)

(*79) Try to prove, by methods similar to those used on pages 318
and following, that given any smooth closed curve, & square may always
be drawn whose sides are tangent to the curve,

The funetion u = f(z) is called convez if the midpoint of the segment
joining any two peints of the graph of the function lies above the graph.
For example, u = ¢ (Fig. 278) is convex, while u = log z (Fig. 277) is
not.

{80) Prove that the function u = f(z) is convex if, and only if,

S + fla) 7 +
T 2 P »’),

with equality only for z; = 4.
(*81) Prove that for convex functions the more general inequality

Mf(@) + Mf(@) Z f(az1 + Mta)

holds, where A;, A; are any two constants such that A, + A = 1 and

M 2 0, A > 0. This is equivalent to the statement that no point

of the segment joining two points of the graph lies below the graph,
(82) Using the condition of Exercise 80 prove that the functions

w = /1 4 2t and w = 1/z (for x > ) are convex, i.e. that
Vit '; vi¥a, 1/1—+ (?E;—':{z)?

%(%-}-;4) > G%Iz for positive z; and z» .
(83) The same foru = z°, u = z"forz > O, u = sinzfor = < z < 2r,
u=tanzfor0 <z < n/2 u= —+/1 = zifor|z| <1

Maxima and Minima

(84) ¥ind the path of shortest length between P and Q as in Figure
178, if the path is supposed to meet the two given lines alternately n
times.  (See p. 333.)

(85) Find the shortest connection between two points P and @ within
a triangle with acute angles if the path is required to meet the sides of
the triangle in a given order. (See p. 334.)

(86) Draw the level lines and check the existence of at least two saddle
points in a surface over a triply connected domain whose boundary is
on the same level. (See p. 345.) Again we must exclude the case
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where the tangent plane to the surface is horizontal along a whole
closed curve.

(87) Starting with two arbitrary positive rational numbers,  and b,
form, step by step, the pairs g, = A/ Gabn ) bus1 = ¥an, + ba). Prove
that they define a sequence of nested intervals. (The limit point as
n — o, the so-called arithmetical-geometrical mean of ay and b,
played & great réle in the early researches of Gauss).

(88) Find the length of the whole graph in Figure 219, and compare
this with the total length of the two diagonals.

(*89) Investigate conditions on four points, Ay, As, 4,5, A4, that
show whether they lead to the case of Figure 216 or 218,

(*30) Find systems of five points for which different street nets
satisfying the angular conditions exist. Only some of them will yield
relative minima. (See p. 361.)

(91) Prove Schwarz’s inequality,

(b + o+ @b S (o + o+ QDB B0,
valid for any set of pairs of numbers ay, by ; prove that the inequality
sign holds only if the a; are proportional to the b;. (Hint: Generalize
the algebraic formula of Ex. 8.)

(*99) With » positive numbers 2, - -+ , 2, we form the expressions
& defined by

8 = (Tzs - 2+ -2 )/CF

where the symbol “+ ...” means that all the C} products of com-
binations of k of these quantities are to be added. Then preve that
Vo S Vs
where the equality sign holds only if all the gaantities z; are equal.
(93) Forn = 3 these inequalities state Luat for three positive numbers
a b c
J—
Vate < 4/t rac ke cathb e
Vafe £ 3% 7y
What extremal properties of the cube are implied hy these inequalities?
(*94) Find an arc of a curve of shortest length joining two points
A, B and including with the segment AB a prescribed area. ({Answer:
The are must be circular.)
(*95) Given two segments AB and 4'B’, find an arc joining 4 to B
and one joining 4’ to B’ such that the two ares include with the two
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segments a prescribed area and have a minimum total length. (Answer:
rhe arcs are circular with the same radius.)

(*96) The same for any number of segments, AB, A'B’, ete.

{*97) On two lines intersecting at O find two points A and B, re-
spectively, and join 4 with B by an arc of minimal length such thet
the area included by it and the lines is preseribed. (Answer: The arc
is circular and perpendicular to the lines.)

(*98) The same problem, but now the total perimeter of the domain
included, i.e. the arc plus 04 plus OB is to be a minimum. (Answer:
The solution is given by an arc of & circle which bulges outward and
touches the two lines,)

{*99) The same problem for several angular sectors.

(*100) Prove that the nearly plane surfaces in Figure 240 are not
plane except for the stabilizing surface in the center. Remark: To
find or characterize these curved surfaces analytically is a challenging
unsolved problem. The same is true for the surfaces in Figure 251,
In Figure 258 we actually have twelve symmetric planes meeting at
120° in the diagonals.

Advice for some additional soap film experiments. Carry out experi-
ments indicated by Figures 256 and 257 for more than three connecting
rods. Study the limiting cases for volume of air tending te zero, Ex-
periment with non-parallel planes or other surfaces. Blow up the cubic
bubble of Figure 258 until it fills the whole cube and bulges over the
edges. Then suck the air out again, reversing the process.

(*101) Find two equilateral triangles with given total perimeter and
minimum area, (Answer: The triangles must be congruent (use cal-
culus).)

*(102) Find two triangles with given total perimeter and maximum
area. (Answer: One triangle degenerates into a peint; the other one
must be equilateral.)

*(103) Find two triangles with given total area and minimum perim-
eter,

(*104) Find two equilateral triangles with given total arca and maxi-
mum perimeter.

The Calealus

(105) Differentiate the functions /T ¥ 7, V"1, V iy
applying directly the definition of derivative, forming and transforming

the difference quotient until the limit can be obtained easily by sub-
stituting @) = z. (See p. 421.)
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(106) Prove that the function y = ¢ ", with y = 0 for z = 0, has
all its derivatives zero at z = 0.

(107) Show that the function of Exercise 106 eannot be expanded in
& Taylor series. (See p. 477.)

(108) Fmd the points of inflection (f'(z) = 0) of the curvesy = ¢ .
and y = ze

(109) Prove that for a polynomial f(x) with all n roots @, «-- ,z
distinet we have

£@ 1
@ Sr-x

*(110} Using the direct definition of the integral as Hmit of a sum,
prove that for n — o« we have

1 1 1 x
"(m+m+ +m)*a'
{*111) Prove in a similar way that

b sm~+sm2b+ +ainﬂ—;%)—>cosb—l.

(112 By drawing Figure 276 in large scale on coérdinate paper and
counting the small squares in the shaded ares, find an appreximate
value for .

(113) Use formula (7), page 441 for the numerical calculation of =
with a guaranteed accuracy of at least 1/100.

(114) Prove: €™ = —1, (Seep.478.)

(115) A curve of given shape is expanded in the ratio 1:z. L(z)
and A(z) denote the length and area of the expanded curve. Show that
L(z)/A(z) — 0 as £ — © and, more generally, L(z)/A(z)* — 0 as
z— e, if k > 4. Check for circle, square and, * ellipse. (Area is of
8 higher order of magnitude than circumference. See p. 472.)

{116) Often the exponential function occurs in combinations given
and denoted as follows:

u = gnhz = (e ~ ™), v = cosh z = }{¢" + ¢™)

- €

w = tanh z = + ST

called hyperbolic sine, hyperbolic cosine, and hyperbolic tangent respec-
tively. These functions have many properties analogous to those of




542 APPENDIX

the trigonometric functions; they are linked to the hyperbola u* — v* = 1
much as the functions u = cos z and v = sin z are linked to the circle
ut + ' = 1. The following facts should be proved by the reader and
compared with the 1i facts i i i
functions:

D cosh z = sinh z, D sinh z = cosh z, D tanh z = 1/cosh’z,
sinh (z + 2’) = sinh z.cosh 2’ + cosh « sinh z’,
cosh (z + z) = cosh z.cosh 2’ + sinh z.sinh 2/,

The inverse functions are called £ = arc sinh u = log (u + Vo + 1)}
z=arccosho = log (v + /¥ — 1) (v > 1).
Their derivatives are given by

i
- ) Darccosho =
Vit w V)
1
iyl

D arcsinh y =

D are tanh w = (wi> 1)

(117) On the besis of Euler’s formula check the analogy between
hyperbolic and trigonometric functions.
(*118) Find simple summation formulas for
sinh 2 + sinh 22 + ... + sinh nz
and
% + cosh z + cosh 2z + ... + cosh nz

analogous to those in Exercise 14 for trigonometric functions.

Technique of Integration
The theorem of p. 439 reduces the problem of integrating a function
f(z) between the limits a and b to that of finding & primitive function
G(x) for f(x), i.e. one for which (/(x) = f(x). The integral is then simply
the difference G(b) — G(a). For these primitive functions, which are
determined by f(z) (except for an arbitrary additive constant), the name
“indefinite integral” and the suggestive notation

@@ = [ @ ar,

without limits of integration, is customary. (This notation may be
misleading for the beginner; see the remark on p. 438.)
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Every formula of differentiation contains the solution of a problem of
indefinite integration simply by interpreting it inverscly as a formuls of
integration. We can extend this somewhat empirical procedure by two
important rules, which are nothing but the equivalent of the rules of
differentiation of a compound function and of & product of functions.
In their integ:al form these are called the rules of integration by substitu~
tion and inlegration by paris.

A) The first rule resuits from the formula for the differentiation of a
compound function,

H{u) = G(),
where
z =y and u=e()

are supposed to be functions of each other, uniquely determined in the
interval under consideration. Then we have

H'(u) = G'(@)y'(w).

I
G'(x) = f(z),
we can write
0w = [ ) dz
and also
Gz (w) = J@W'(w),
which, in consequence of the formula above for H'(u}, is equivalent to
HO) = [ S du.

Hence, since H(u) = G(z),
) [ 1) dx = | o aw.

Written in Leibniz’ notation (see p. 434) this rule takes the very
suggestive form

jj(z) dz = ff(x)%du,
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which means that the symbol dz may be replaced by thé symbol g—i du,

just as if dz and du were numbers and g—l—i a fraction.
‘The usefulness of formula (I) will be illustrated by a few examples.

8 J = f L 4u. Here we start with the right hand side of (1),
ulogu

substituting z = log u = y{u). We then have y/(u} = %, fx) = % H
hence

J= d——logz,

or

f du log log u.
wlogu

We can verily this result by differentiating both sides. We find
1

ulogu i (Iog tog u), which is easily shown to be correct.

b)J = fcotu du = f’“—os—u du. Setting x = sin w = Y(u) we find
V) =cosu,  f@) =z,
hence,

dr
J = ?——]ogx

or
f cot w du = logsinu.

This result can again be verified by differentiation.
¢) In general, if we have an integral of the form

¥
f o) du,

we set 2 = Y(u), f(z) = z and find

J = f%ﬁ = log 2 = log ${u).




TECHNIQUE OF INTEGRATION 545
aJ= fsinxcusx dz. Wepulsinz = u, cosx = ‘% Then

2
fu-«dx—fudu-——;—mésiniz.

_ [logu _ 1 _dz
J—deu. Seblogu—z,;—

F Then

J = fz%duzfxdz— 7y g w)'.

Tn the examples below (1) is used, starting from the left side.

NJ= \5;—;. Set /T

4 Thenz =1 and % = 2u. There-
du
fore
d=[1 o ouau 2= 2V
u

g) By the substitution x = au, where a is a constant, we find

f.“ Sfde b g Lo ) tan®
du a1+ al+w a a’
h) J = dz. Setx:cc@u,i%:—sinu, Then
J o= - [s'nf wdu = - f X_:k;-ios 2u du = — g + Lné?“.
Using sin 2u = 2 sin  cos u = 2 cos un/1 — cos’u, we have

J = —}arceosz + /1 — 28

Evaluate the following indefinite integrals and verify the results by
differentiation:

u du r
1o [ 52 20 [ ey
120) [ ue du 125) [ 2 ViFFa

du
2 | itiog
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) [ Hoan 1z [
123) fi"% 128) fcos"l-sinhdl.
1 dz
129) Prove that [ T g M ta.nh = \—/‘;ﬁ = are smh =

{Compare examples g, h.)
B) The rule (p. 428) for the differentiation of & product,

(p(z)-¢(@)" = p)-¢'(® + p'@-9(@),
can be written as an integral formula:
p@-00) = [ p@) @z + [ p0)-a) ds
or

an [ p@-¢@dz = pd) - [ 1@ 0o da.

In this form it is called the rule of integration by parts. 'This rule is
usefu} when the function to be integrated can be written as a product of
the form p(z)q’(z), where the primitive function g(z) of ¢(z) is known.
In that case formula (II) reduces the problem of finding the indefinite
integral of p(x)¢'(z) to that of the integration of the function p'(z)¢(z),
which is often much simpler to solve.

Erxamples:

8y J = flog zdr. Set p(z) = log z, ¢'(z) = 1, so that ¢(z) = z.
Then (II) leads to
z
flogxdx = zlogz ~ f;dz =zlogz —2.
b) J = f zlog zdz. Setp(x) = logz, ¢'(x) =z. Then
2
@
logz——[—-dx 7—log:c— i
c)J = fa: sin rdz. Here we set p(z) = z, ¢(2) = —cos x and find

fxsinxdz: —zcosz + sin 2.
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Evaluate the following integ-als using i ion by parts.

130) f ze° dz. 132) f 2 logzdr (a# ~1).

131) [ 2*consdn. (Rint: 133) f e de. (Hint: Use Ex. 130)
Apply (II) twice.)

Integration by parts of the integral f sin™ 2 dx leads to a remarkable

expression for the number x as an infinite product. To derive it we
write the function sin™ z in the form sin™ " z.sin z and integrate by
parts between the limits 0 and r/2. This leads to the formula

/2 x/2
f sin"zds = (m 1) [ sin™* 5 cos” z dx
¢ kel

it /2
= etm— 1) [ dntzdet m-0) [ sintads,
o o
or
i
£ i’ xdx-—-——«—f sin"™* v dz,

because the first term on the right side of (II), pg, is equal to zero for

the values 0 and =/2. By repeated application of the last formula we
f2

find the following value for I, = f sin”™ zdr (the formulas differ aceord-

ing as m is even or odd):

a=2n120-3  1x
T T -2 Y
Toy = 20 2
L TR | 3
2nmt

Since 0 < sinz < 1for0 < z < /2, we have sin®™" z > sin™ z >

sin*** g, 50 that
Tsns > Inp > Diana (see p. 414)
or
Iy Ion
Lo > Lz

>1.
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Substituting the values calculated above for J .1, ete. in the last in-
equalities, we find
2'n.+1>1,3-3-5 5.7.-. (20 — !)(2n—l)(2n+1) T
2n 224466--»(27;)(211)
If we now pass to the limit as n — » we see that the middle termtends
t0:1, hence we obtain Wallis’ product representation for 7/2:

>1

T _ 2.2.4-466...2n.2n...
2 1.33355.7. G -—1@n—1)-2n+1) ..
= lim as n— o,

@) Fen ¥ D
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absolute value, 57
acceleration, 425
addition, of complex numbers, 90

of natural numbers, 1-3

of rational numbers, 53

of real numbers, 70

of sets, 110
adjunetion of irrationals, 132
Alexander polynomial, 503, 505
algebra, Boalean, 114

fundamental theorem of, 101-103,

269-271

of number fields, 117-146

of sets, 108116, 494-495
algebraic equations, 101-103, 269-271
algebraic numnbers, 103-1¢
algorithm, definition of, 44

Euclidean, 42-51, 494, 519

and formula for primes, 487

and Steiner's problem, 508-512
Algorithmic Complexity Theory, 509

512

analysis, nonstandard, 518-523
analytic geometry, 72-77, 191196, 488—
494

of » dimensions, 228-230
angle of complex number, 94
antecedent point of mapping, 141
Appollonius' problera, 117, 125-127,
161-162
Archimedes' trisection of the angle,
138, 519-520
area, 399401, 464-465
arithmetic, fundamental theorem of, 23,
46-48
laws of, -4
arithimetical mean,
arithmetical progre:
primes in, 26-27
assoc e laws, for natural numbers, 2
for rational numbers, 54
for sets, 110
asymptotes of hyperbola, 76
asymptotically equal, 28

361-365
ns, 12-13,487-488

axes of conics, 76-76
axes of coordinates, 73
axiomatics, 214-217
axioms, 214-217, 494, 519

bicontinuous { = continuous in both
directions), 241

binomial series, 475476

binomial theorem, 16-18

bisection of segment with compass
alone, 145

binnique correspondence, 78

Bolzano's theorem, 312-313

applications of, 317-821, 506

Boolean algebra, 114

boundary conditions in extremum prob-
lews, 376-379, 506507

bounded sequence, 295

bmchmo('hmne problem, 379-381,

Brianc! hou 's theorem, 190, 191, 209-212

calculus, 398-486, 502-510, 523
fundamental theorem of, 436439
calcutus of variations, 379-385
Cantor’s middle thirds set, 248-249, 501
Cantor’s theory of infinile sets, 7786,
494

cardinal number, 83-86, 493

Cartesian codrdinates, 72-74

center of circle, compass construction
of, 146

characteristic, Euler's, 236-240, 258
259, 262

equation of, 74

on (topological) of surfaces,

264, 502-503

coaxial planes, 176

collinear points, 170

combinatorial geometry, 230-234

cotunutative laws, for natural numbers,
)

for rational nurabers,
for sets, 110
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compact sets, 316
compass constructions, 145-146, 147—
151
complerent of a set, 111
complete quadritateral, 170-180
complex conjugate,
complex rumbers, 88-103
absolute value of, 93
angle of, 94
modulus of, 93
operations with, 90-91

continuity of function of several varia-
bles, 288
continuous variable, 374
continuur hypothesis, 88, 403494
continuum of real numbers, 68
denumerability, 79-80
contour lines, 286-287
convergence, of sequences, 294
of series, 472, 478479
cobrdinates, general, 192
homogeneous, 193-196

of, 95
complex variable, theory of functions
of 2, 478479
composite numbers, 22
compound functions, 281-283
compound interest, 457
concurrent lines, 170
congruence of geometrical figures, 166
congruences (arithmetical), 31-4(
conics, 198-212
equations of, 74-77
line, 207
metric definition of, 199, 494, 496
point, 204
projective definition of, 204
conjugate, complex, 93
conjugate, harmonic, 176-176
connectivity, 243-244
constant, 273
constructible numbers and number
fields, 127-134
definition, 132-133
constructions, geometri
Mascheroni, 147-151
of number fields, 120127
of rational quantities, 120-122
of regular polygous, 122-125
of square roots, 122
with compass alone, 145-146, 147-152
wilh straightedge alone, 151-152,
196-198
with varions instruments, 140-164
construetive proof, 86
continued fractions, 49-51, 301-363
continuity of function of one variable,
283-286, 310-312, 327-328, 423

(Cartesian), 73
coplanar lines, 176
correspondence, for sets, 78
projective, 178, 204
counting, 78
cross-cap, 261, 262
cross-ratio, 172-180, 185
curvature, mean, 386-387
curve, elliptic, 491493
equation of, 74-77
length of, 466-469
cut (in real number system), 71-72
cycloids, 152-165, 380-381
cyclotomic equation, 99-100

dataped oscillations, 459
decagon, construction of regular, 122--
123

decimal fractions, 61-63

Dedekind cut, 71-72

deformation, 242

delta (4), 402

De Moivre's theorem, 96, 98-100

density of rational numbers, 58

denumerability of rational numbers, 79—
80

dependent variable, 275
derivative, $14-433

second, 426, 435
Desargues’s thearem, 170-172, 187-188
differential equations, 453461
differential quotient, 4:
differentials, 433426, 518
differentiation, 417, 423, 427433, 462~

464

dimension, 248-251, 499-501
Diophantine equations, 50-51, 487, 491
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Dirichlet's principle, 368

discontinuities of functions, 264-286

discontinuous functions as limits of
continuous functio

distance, 74, 316

distributive laws, for natural numbers,

for rationa numbers, 54
for sets, 110

divergence, of sequences, 294
of series, 472

division by zero excluded,

domain of a variable,

. 90

ar
doubling of the (uhe 11 T, 134-135, 146,
147

uualll}. principle of, in algebra of sets,

in gﬁomo'ry, 191, 193196, 209, 217
ducdecimal systen, &

o 8
dyr\mmc ‘l(*wronm.n 460461, H06

2,

Euler's aunibes, 207209
base of natural logarithms, 445
as limit, 448-450
expressions for, 298, 302, 303
irrationality of, 208-299
eccentricity (of conies), 75
Ecole Polytechnigue, 167
ellipse, equation of, 7
langent properties of, 33
elfiptic curves, theory of, 491493
elliptic geometry, 224-227, 489490
elliptic points, 226
empirical induction, 10
empty set, 18
epicycloid,
equation, cyclotonic, 99-100
Diophantine, 50-55, 487, 491
multiplicity of toots of, 102
of a curve, T4-77
of cirele, 74
of ellipse
of hypethola,
of straight line, 7
quadratic, 91-;
toots of, 101
equations of motion, 460461

equivalence of sets, 78
Eratosthenes, sieve of,
ergodic motion, 353-354
Erlanger program, 167
Euclidean algorithm,
Euler’s characteristic, 2
9, 262, 4 197
Euler's phi-function, 48-49
excluded middle, law of, 86
exhaustion, method of, 400
existence, mathematical, 88
existence proofs, 86, 3
experimental solution 01 minimurt
problems, 385-
exponential function, 440»447. 449-450
differential equation of, 454457
order of magnitude of, 469-470
extension field, 129
extraction of square root, geometrical,
122
extremu and inequalities, 361
extreme distances 10 given curve, 336—

489

cxtremuns problems, 329-397
general principle in, 33834
in elementary geomet
with boundary conditions, 376-379,
506-507

factorial n, 17

factorization, unique, 23, 46-48

factors, prime, 23

Fermat numbers, 25, 119

Fermat's last theorer, 40-42, 491493

Fermat's principle, 381-383

Fermat's theorem, 3

field, 56

fields, algebra of number, 117-340
geometric construction of, 120-127

five color theorent, 26 495499

fixed point theorem, 251

focus of conie,

formatism, 88,

foundations vf mathematics, 57-88

four color probleny, 246-248, 495-499

fractals, 499-501

fractions, decisn
continued, 39-51, 3H1-303

=1
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Frey's elliptic curves, 491492, 483
functions (and limits), 272-328
functions, compound, 282-283
continuity of, 283-286, 288, 310-312,
327-328
convex, 500
definition of, 274
graphs of, 278
inverse, 278-281
monotone, 260
of a complex variable, 478-479
of several variables, 286-288
prin 38
fundamental theorem of algebra, 101-
103, 269-271
fundamental theorem of arithmed
6

23,

fundamental theorem of the calculus,
43643

generalization, principle of, 56
genus of surface, 256268, 262
geode 26
geodesics on a sphere, 384385
geometric measure theory, 518
geometrical constructions, theory of,
117-164
geometrical mean, 361-365
geometrical progression, 13-14
geometrical series, 65-66
geometrical transformations, 140-141,
165-167

7
geometry, analytic, 72-77, 191-196,
488494

axioms in,
combinator
elliptic, 2

al, 230-234
227, 489490

theory of constructions in, 117-164,

196-198
topological, 235-271, 502-503

Goldbach’s theorem, 30-31, 485490

graph of a function, 279

greatest common divisor, 4345

Greek problems, three famous, 117,
134-140

growth, law of, 457
group, 168

harmonic conjugate, 175176

harmonic cross-ratio, 175-176

harmonic series, 479480

Hart's inversor, 157-158

Hausdoxff dimension, 499-501

heptagon, impossibility of constructing

regular, 138-139

Heron's theorem, 330-332

hexagon, construction of regular, 123

HOMFLY polynomial, 505

homogeneous codrdinates, 193-106

hyperbola, equations of, 75-76
tangeut properties of, 334-336

hyperbolic functions, 503504

hyperbolic geometry, 214-224

hyperbolic points, 226
paraboloid, 286

hyperboloid, 212-214

hyperreal numbers, 519-521

hypocycloid, 164

ideal elements in projective geometry,
80-185

inage point (of mapping), 141
imaginary numbers (see complex nun-
bers)
incidence, 169

segruents,

5861

problems in elementary,
330-338

hyperbolic, 218-224

inversion, 140146, 168-164

metric, 168

n-dimensiona

non-Euclidean

projective, 165-

Riemanman, 224-227, 489490

synthetic, 165

227-

independent variable, 275
indirect proof, sul
induction, empirical, 10
mathematical, 9-20
inequalities ,H 15-16, 57, 58, 94, 322,
36

infinite ¢ onl.umed fractions, 301-303
infinite decimals, 61-63
infinite products, 300, 481-482
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infinite series, 63-66, 472-477
“infinitely small,” 433436, 518-523
infinitude of primes, 22, 26-27, 481
infinity, 56, 77-88
elements at (in projective geometry),
180-185, 492
mathematical analysis of, 77-88
point at (in inversion geometry), 142
integer, principle of the smallest, 18-19
integers
and continuum hypothesis, 493
and definition of dimension, 499
and fractal sets, 501
and Hausdorff dimension, 500, 501
negative, 56
and nonstandard analysis, 520
positive,
integral, 399414, -!()4—400 504-510
interest, compound,
intersection of sets, llO 494495
interval, 57
intervals, nested, 68
intuitionism, 86-87, 215
invariance, 165-167
of angles under inversion, 158159
of cross-ratio, 173174
inverse functions, 278-281
inverse operations, 3
inverse points, 141
construction of, 144-145
inversion geometry, 140-146, 158164
inversors, 155-158
irrational muubers, as infinite decimals,

63
defined by cuts, 71-72
defined by nested intervals, 68-71
defined by sequences, 72
isoperimetric problems, 373-376
teration, limits by, 326-327

Jones polynomial, 501, 503, 505

Jordan curve theorem, 244-246, 267
269

junp discontinuity, 284

least squares, method of, 365-366
Leibniz' formuta for x, 441
Leibniz and nonstandard analysis, 519,
621
length of a curve, 466-469
level lines, 286-287
light rays, extremtum property of, 330
332
light triangles, 352-353
limits, 289-321
by continuous approach, 303-312
by iteration, 326-327
examples on, 322-327
of geometrical series, 65-66
of infinite decimals, 63-66
of sequences, 289-303
lime at infinity, 182
Tine conic, 207
lines, concurrent, 170
contour, 286-287
coplanar, 176
pencil of, 203
linkages, 155-158, 501-505
Liouville’s theorern, 104-107
logarithm, natural, 28, 443446, 450-
453, 469470, 500
log n!, order of magnitude of, 471472
logic, mathematical, 87-88, 112-114
logical product, 110, 494
logical sum, 110, 494

magnitude. orders of, 469-472

Mandelbrot set, 499-500, 501

map, regular, 264

map-coloring problem, 246-248, 264
267

mapping, 141
Mascheroni constructions, 147-152
rmathematical induction, 9-20
mathematical logic, $7-88, 112-114
fwaxima and minima, 320-397, 426-427,

mean, arithmetical, 361-365
mean, geometrical, 361-365
means, inequality connecting, 361
ical instruments,
with, 152-155
mechanics, problem in, 505-507

365
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metamathematics, 88
metric geometry, 169
minitax, points of, 343-345
modulo ¢, 32
modutus of complex number, 93
Moebius strip, 269-262
monotone function, 280
monotone sequence, 205-207
Morse relations, 345
motion, equations of, 460-461
ergodic, 353-354
rigid, 141
multiplicity of roots of algebraic equa-
tion, 102

aatural numbers, 1-26, 520

n-dimeasional geometry, 227-234

negative numbers, 54-55

Newtonian dynamics, 460-461, 506

non-denumerability of continuum, 81-
83

non-Euclidean geometry, 218-227
nonstandard analysis, 518-523
NP<complete, 512
number fields, 127-134
number system, 51-107, 501
numbers, algebraic, 103-104
cardinal, 83-86, 493
complex, 88-103
composite, 22
constructible, 127-134
fermat, 25, 119
natural, 1-20, 520
negative, 54-55
numbers, prime, 21-31
Pythagorean, 4042
rational, 52-
real, 58-72
transcendental, 103-104

8, 520

9-264
, 469-472

one-sided surfaces,
arders of magnitu

Pappus’ theorem, 188
paradoxes of the infinite, 87
paradoxes of Zeno, 305-306
paralle] postulate, 218

paralietism and infinity, 180-185,
493
Pascal's theorem, 188, 191, 209-212
Pascal's Triangle, 17
Peaucellier's inversor, 155-157
pencil of lines, 203
pentagon, construction of regular, 100,
2-123

perspective, 169
pi, 140, 299-300, 303, 441442
plane at infinity, 184-185
Plateau's problem, 386, 514, 515-516,
518
point conic, 204
points, at infinity, 180185
collinear, 170
range of, 207
polyhedra, Euler characteristic of, 236—
240, 258-259, 262
genus of, 256-258, 262
in n dimensions, 227-234
one-sided, 269-262
regular, 236-240
simple, 236
polynomial time, 509-512
polynomials
Alexander, 503, 505
and computability, 488
and formuia for primes, 487488
HOMFLY, 505
Jones, 501, 503, 505
and knots, 501, 503, 505
variables of, 487488
positional notation, 4
postulates, 214
prime number theorer, 27-30, 482-486,
487490
primes, 21-31, 481, 482-486, 487490
primitive functions, 438
prohability, 114-116
product, infinite, 300, 481482
logical, 110
progressions, arithmetical, 12-13, 26--
27, 487488
projective correspondence, 178204
projective geometry, 165-214
projective transformation, 167170
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proof: constructive, indirect, and exis-
tential, 86-87
and sense of “theorem,” 498
via nonstandard analysis, 523
Pythagorean numbers, 40-42, 492

quadrants, 73

quadratic equation, 91-92, 302
quadratic residues, 38

quadric surfaces, 212-214
quadrilateral, complete, 178180

radian measure, 277-278
radioactive disinfegration, 455457
range of points, 207
rational numbers, 52-58, 520
density of, 5
denum(‘rabmly of, 79-80
operations with, 53-54
rational quantities, geometrical con-
struction of, 120-122
real numbers, 58-72
continuum of, 68, 493
operations with, 70-71, 519
refiection, general extremum problems
in, 353-35
in a circle, 140-146
in a systemn of circles, 163164
in one or more fines, 330-332
in triangles, 352-353
repeated, 162-164
regnlar polygons, construction of, 119,
122-125, 485
regular polyhedra, 236-240
n-dimensional, 227-234
relativity, 227, 229
residues, guadratic, 38-40
Riemannian geometry, 224-227, 489
400

rigid motion, 141
raats of mnity, 98-100

\‘(’l\w 2's triangle problem, 346-354,

second deriv: ative, 435, 426
egment,
sense (of angles), 159

septimal system, 5-6, 7-8
sequences, 289-303
bounded, 295
convergent, divergent, and oscillating
294
sequences, monotone, 295-207
theorem on, 315-316
series, infinite, 472-477
set, 78
Cantorian, 484, 501
compact, 316
complernent of, 111
empty, 18, 494
fractal, 501
Mandelbrot, 499-500, 501
sets, algebra of, 108-116, 494495
equivalence of, 78
Sierpinski gasket, 501
sieves, 25, 489, 490
simple closed curve, 244
simple polyhedron, 236
simply connected, 243
slape, 415, 490
smallest integer, principle of, 18-19
soap film experiments, 385397, 513
518
solvability of problems, 118
square root, geometrical construction
of, 122
squaring the circle, 140, 147
stationary points, 341-346
Steiner constructions, 151-15:

L 196—

Steiner's problem, 354-361, 377-379,
391, 507513, 5

straightedge constructions, 151-152,
196-198

straight line, equation of, 75

street network problem. See Steiner's
problem

subfield, 138

subscripts, 5

subset, 109

praper, 78

sum, logical, 110, 494

sum of first # cubes, 15

s of first # squares

surfaces, minimal, 5
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one-sided, 259-264
quadric, 212-214
synthetic geometry, 165

tangent, 415

tangent properties of ellipse and hyper-
bola, 333-336

Taniyama conjecture, 492-493

Taylor series, 476-477

theory of numbers, 21-51, 481, 482-486,
481

topological classification of surfaces,
256-264, 502-503

topological transformation, 241
topology, 235-271

and critical points, 345
torus, 248

three-dimensional, 262-264
transcendence of pi, 104, 140
transcendental numbers, 103-104, 104

107

transformations, equations of, 288-289
geometrical, 140-141, 165-167
projective, 167-170
topological, 241

triangles, extremum properties of, 330,

332-333, 346-353, 354-350
and Steiner’s problem, 507-513

INDEX

trigonometric functions, definition of.
277
trisection of angle, 117, 137-138

union (of sets), 110, 404-495

unique factorization, 23, 46-48

unit circle, 93, 492

unity, roots of, 98-100

unsolvability of Greek probiens, 134-

unsolvability, proofs of, 120-146

variable, 273-277
complex, 478
dependent, 275
general notion of,
independent, 275
real, 274

variation:

vector, 7

velocity, 423-425

vibrations, 458459

leulus of, 379-385

Wallis' product, 482, 508-510

Weierstrass’” theorem on extreme val-
ues, 313-315, 316, 519, 521-522

work, 4654

zero, 4
zeta-function, 480481, 489
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